/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
#include
#ifdef HAVE_Z3
#include
#endif
#include
#include
#include
#include
using namespace std;
using namespace solidity;
using namespace solidity::util;
using namespace solidity::langutil;
using namespace solidity::smtutil;
using namespace solidity::frontend;
CHC::CHC(
smt::EncodingContext& _context,
ErrorReporter& _errorReporter,
map const& _smtlib2Responses,
ReadCallback::Callback const& _smtCallback,
[[maybe_unused]] smtutil::SMTSolverChoice _enabledSolvers
):
SMTEncoder(_context),
m_outerErrorReporter(_errorReporter),
m_enabledSolvers(_enabledSolvers)
{
#ifdef HAVE_Z3
if (_enabledSolvers.z3)
m_interface = make_unique();
#endif
if (!m_interface)
m_interface = make_unique(_smtlib2Responses, _smtCallback);
}
void CHC::analyze(SourceUnit const& _source)
{
solAssert(_source.annotation().experimentalFeatures.count(ExperimentalFeature::SMTChecker), "");
bool usesZ3 = false;
#ifdef HAVE_Z3
usesZ3 = m_enabledSolvers.z3;
if (usesZ3)
{
auto z3Interface = dynamic_cast(m_interface.get());
solAssert(z3Interface, "");
m_context.setSolver(z3Interface->z3Interface());
}
#endif
if (!usesZ3)
{
auto smtlib2Interface = dynamic_cast(m_interface.get());
solAssert(smtlib2Interface, "");
m_context.setSolver(smtlib2Interface->smtlib2Interface());
}
m_context.clear();
m_context.setAssertionAccumulation(false);
m_variableUsage.setFunctionInlining(false);
resetSourceAnalysis();
auto genesisSort = make_shared(
vector(),
smtutil::SortProvider::boolSort
);
m_genesisPredicate = createSymbolicBlock(genesisSort, "genesis");
addRule(genesis(), "genesis");
set sources;
sources.insert(&_source);
for (auto const& source: _source.referencedSourceUnits(true))
sources.insert(source);
for (auto const* source: sources)
defineInterfacesAndSummaries(*source);
for (auto const* source: sources)
source->accept(*this);
for (auto const& [scope, target]: m_verificationTargets)
{
if (target.type == VerificationTarget::Type::Assert)
{
auto assertions = transactionAssertions(scope);
for (auto const* assertion: assertions)
{
createErrorBlock();
connectBlocks(target.value, error(), target.constraints && (target.errorId == assertion->id()));
auto [result, model] = query(error(), assertion->location());
// This should be fine but it's a bug in the old compiler
(void)model;
if (result == smtutil::CheckResult::UNSATISFIABLE)
m_safeAssertions.insert(assertion);
}
}
else if (target.type == VerificationTarget::Type::PopEmptyArray)
{
solAssert(dynamic_cast(scope), "");
createErrorBlock();
connectBlocks(target.value, error(), target.constraints && (target.errorId == scope->id()));
auto [result, model] = query(error(), scope->location());
// This should be fine but it's a bug in the old compiler
(void)model;
if (result != smtutil::CheckResult::UNSATISFIABLE)
{
string msg = "Empty array \"pop\" ";
if (result == smtutil::CheckResult::SATISFIABLE)
msg += "detected here.";
else
msg += "might happen here.";
m_unsafeTargets.insert(scope);
m_outerErrorReporter.warning(
2529_error,
scope->location(),
msg
);
}
}
else
solAssert(false, "");
}
}
vector CHC::unhandledQueries() const
{
if (auto smtlib2 = dynamic_cast(m_interface.get()))
return smtlib2->unhandledQueries();
return {};
}
bool CHC::visit(ContractDefinition const& _contract)
{
resetContractAnalysis();
initContract(_contract);
m_stateVariables = stateVariablesIncludingInheritedAndPrivate(_contract);
m_stateSorts = stateSorts(_contract);
clearIndices(&_contract);
string suffix = _contract.name() + "_" + to_string(_contract.id());
m_errorPredicate = createSymbolicBlock(arity0FunctionSort(), "error_" + suffix);
m_constructorSummaryPredicate = createSymbolicBlock(constructorSort(), "summary_constructor_" + suffix);
m_implicitConstructorPredicate = createSymbolicBlock(arity0FunctionSort(), "implicit_constructor_" + suffix);
auto stateExprs = currentStateVariables();
setCurrentBlock(*m_interfaces.at(m_currentContract), &stateExprs);
SMTEncoder::visit(_contract);
return false;
}
void CHC::endVisit(ContractDefinition const& _contract)
{
auto implicitConstructor = (*m_implicitConstructorPredicate)({});
connectBlocks(genesis(), implicitConstructor);
m_currentBlock = implicitConstructor;
m_context.addAssertion(m_error.currentValue() == 0);
if (auto constructor = _contract.constructor())
constructor->accept(*this);
else
inlineConstructorHierarchy(_contract);
auto summary = predicate(*m_constructorSummaryPredicate, vector{m_error.currentValue()} + currentStateVariables());
connectBlocks(m_currentBlock, summary);
clearIndices(m_currentContract, nullptr);
auto stateExprs = vector{m_error.currentValue()} + currentStateVariables();
setCurrentBlock(*m_constructorSummaryPredicate, &stateExprs);
addAssertVerificationTarget(m_currentContract, m_currentBlock, smtutil::Expression(true), m_error.currentValue());
connectBlocks(m_currentBlock, interface(), m_error.currentValue() == 0);
SMTEncoder::endVisit(_contract);
}
bool CHC::visit(FunctionDefinition const& _function)
{
if (!shouldVisit(_function))
return false;
// This is the case for base constructor inlining.
if (m_currentFunction)
{
solAssert(m_currentFunction->isConstructor(), "");
solAssert(_function.isConstructor(), "");
solAssert(_function.scope() != m_currentContract, "");
SMTEncoder::visit(_function);
return false;
}
solAssert(!m_currentFunction, "Function inlining should not happen in CHC.");
m_currentFunction = &_function;
initFunction(_function);
auto functionEntryBlock = createBlock(m_currentFunction);
auto bodyBlock = createBlock(&m_currentFunction->body());
auto functionPred = predicate(*functionEntryBlock, currentFunctionVariables());
auto bodyPred = predicate(*bodyBlock);
if (_function.isConstructor())
connectBlocks(m_currentBlock, functionPred);
else
connectBlocks(genesis(), functionPred);
m_context.addAssertion(m_error.currentValue() == 0);
for (auto const* var: m_stateVariables)
m_context.addAssertion(m_context.variable(*var)->valueAtIndex(0) == currentValue(*var));
for (auto const& var: _function.parameters())
m_context.addAssertion(m_context.variable(*var)->valueAtIndex(0) == currentValue(*var));
connectBlocks(functionPred, bodyPred);
setCurrentBlock(*bodyBlock);
SMTEncoder::visit(*m_currentFunction);
return false;
}
void CHC::endVisit(FunctionDefinition const& _function)
{
if (!shouldVisit(_function))
return;
// This is the case for base constructor inlining.
if (m_currentFunction != &_function)
{
solAssert(m_currentFunction && m_currentFunction->isConstructor(), "");
solAssert(_function.isConstructor(), "");
solAssert(_function.scope() != m_currentContract, "");
}
else
{
// We create an extra exit block for constructors that simply
// connects to the interface in case an explicit constructor
// exists in the hierarchy.
// It is not connected directly here, as normal functions are,
// because of the case where there are only implicit constructors.
// This is done in endVisit(ContractDefinition).
if (_function.isConstructor())
{
string suffix = m_currentContract->name() + "_" + to_string(m_currentContract->id());
auto constructorExit = createSymbolicBlock(constructorSort(), "constructor_exit_" + suffix);
connectBlocks(m_currentBlock, predicate(*constructorExit, vector{m_error.currentValue()} + currentStateVariables()));
clearIndices(m_currentContract, m_currentFunction);
auto stateExprs = vector{m_error.currentValue()} + currentStateVariables();
setCurrentBlock(*constructorExit, &stateExprs);
}
else
{
auto assertionError = m_error.currentValue();
auto sum = summary(_function);
connectBlocks(m_currentBlock, sum);
auto iface = interface();
auto stateExprs = initialStateVariables();
setCurrentBlock(*m_interfaces.at(m_currentContract), &stateExprs);
if (_function.isPublic())
{
addAssertVerificationTarget(&_function, m_currentBlock, sum, assertionError);
connectBlocks(m_currentBlock, iface, sum && (assertionError == 0));
}
}
m_currentFunction = nullptr;
}
SMTEncoder::endVisit(_function);
}
bool CHC::visit(IfStatement const& _if)
{
solAssert(m_currentFunction, "");
bool unknownFunctionCallWasSeen = m_unknownFunctionCallSeen;
m_unknownFunctionCallSeen = false;
solAssert(m_currentFunction, "");
auto const& functionBody = m_currentFunction->body();
auto ifHeaderBlock = createBlock(&_if, "if_header_");
auto trueBlock = createBlock(&_if.trueStatement(), "if_true_");
auto falseBlock = _if.falseStatement() ? createBlock(_if.falseStatement(), "if_false_") : nullptr;
auto afterIfBlock = createBlock(&functionBody);
connectBlocks(m_currentBlock, predicate(*ifHeaderBlock));
setCurrentBlock(*ifHeaderBlock);
_if.condition().accept(*this);
auto condition = expr(_if.condition());
connectBlocks(m_currentBlock, predicate(*trueBlock), condition);
if (_if.falseStatement())
connectBlocks(m_currentBlock, predicate(*falseBlock), !condition);
else
connectBlocks(m_currentBlock, predicate(*afterIfBlock), !condition);
setCurrentBlock(*trueBlock);
_if.trueStatement().accept(*this);
connectBlocks(m_currentBlock, predicate(*afterIfBlock));
if (_if.falseStatement())
{
setCurrentBlock(*falseBlock);
_if.falseStatement()->accept(*this);
connectBlocks(m_currentBlock, predicate(*afterIfBlock));
}
setCurrentBlock(*afterIfBlock);
if (m_unknownFunctionCallSeen)
eraseKnowledge();
m_unknownFunctionCallSeen = unknownFunctionCallWasSeen;
return false;
}
bool CHC::visit(WhileStatement const& _while)
{
bool unknownFunctionCallWasSeen = m_unknownFunctionCallSeen;
m_unknownFunctionCallSeen = false;
solAssert(m_currentFunction, "");
auto const& functionBody = m_currentFunction->body();
auto namePrefix = string(_while.isDoWhile() ? "do_" : "") + "while";
auto loopHeaderBlock = createBlock(&_while, namePrefix + "_header_");
auto loopBodyBlock = createBlock(&_while.body(), namePrefix + "_body_");
auto afterLoopBlock = createBlock(&functionBody);
auto outerBreakDest = m_breakDest;
auto outerContinueDest = m_continueDest;
m_breakDest = afterLoopBlock.get();
m_continueDest = loopHeaderBlock.get();
if (_while.isDoWhile())
_while.body().accept(*this);
connectBlocks(m_currentBlock, predicate(*loopHeaderBlock));
setCurrentBlock(*loopHeaderBlock);
_while.condition().accept(*this);
auto condition = expr(_while.condition());
connectBlocks(m_currentBlock, predicate(*loopBodyBlock), condition);
connectBlocks(m_currentBlock, predicate(*afterLoopBlock), !condition);
// Loop body visit.
setCurrentBlock(*loopBodyBlock);
_while.body().accept(*this);
m_breakDest = outerBreakDest;
m_continueDest = outerContinueDest;
// Back edge.
connectBlocks(m_currentBlock, predicate(*loopHeaderBlock));
setCurrentBlock(*afterLoopBlock);
if (m_unknownFunctionCallSeen)
eraseKnowledge();
m_unknownFunctionCallSeen = unknownFunctionCallWasSeen;
return false;
}
bool CHC::visit(ForStatement const& _for)
{
bool unknownFunctionCallWasSeen = m_unknownFunctionCallSeen;
m_unknownFunctionCallSeen = false;
solAssert(m_currentFunction, "");
auto const& functionBody = m_currentFunction->body();
auto loopHeaderBlock = createBlock(&_for, "for_header_");
auto loopBodyBlock = createBlock(&_for.body(), "for_body_");
auto afterLoopBlock = createBlock(&functionBody);
auto postLoop = _for.loopExpression();
auto postLoopBlock = postLoop ? createBlock(postLoop, "for_post_") : nullptr;
auto outerBreakDest = m_breakDest;
auto outerContinueDest = m_continueDest;
m_breakDest = afterLoopBlock.get();
m_continueDest = postLoop ? postLoopBlock.get() : loopHeaderBlock.get();
if (auto init = _for.initializationExpression())
init->accept(*this);
connectBlocks(m_currentBlock, predicate(*loopHeaderBlock));
setCurrentBlock(*loopHeaderBlock);
auto condition = smtutil::Expression(true);
if (auto forCondition = _for.condition())
{
forCondition->accept(*this);
condition = expr(*forCondition);
}
connectBlocks(m_currentBlock, predicate(*loopBodyBlock), condition);
connectBlocks(m_currentBlock, predicate(*afterLoopBlock), !condition);
// Loop body visit.
setCurrentBlock(*loopBodyBlock);
_for.body().accept(*this);
if (postLoop)
{
connectBlocks(m_currentBlock, predicate(*postLoopBlock));
setCurrentBlock(*postLoopBlock);
postLoop->accept(*this);
}
m_breakDest = outerBreakDest;
m_continueDest = outerContinueDest;
// Back edge.
connectBlocks(m_currentBlock, predicate(*loopHeaderBlock));
setCurrentBlock(*afterLoopBlock);
if (m_unknownFunctionCallSeen)
eraseKnowledge();
m_unknownFunctionCallSeen = unknownFunctionCallWasSeen;
return false;
}
void CHC::endVisit(FunctionCall const& _funCall)
{
solAssert(_funCall.annotation().kind != FunctionCallKind::Unset, "");
if (_funCall.annotation().kind != FunctionCallKind::FunctionCall)
{
SMTEncoder::endVisit(_funCall);
return;
}
FunctionType const& funType = dynamic_cast(*_funCall.expression().annotation().type);
switch (funType.kind())
{
case FunctionType::Kind::Assert:
visitAssert(_funCall);
SMTEncoder::endVisit(_funCall);
break;
case FunctionType::Kind::Internal:
internalFunctionCall(_funCall);
break;
case FunctionType::Kind::External:
case FunctionType::Kind::DelegateCall:
case FunctionType::Kind::BareCall:
case FunctionType::Kind::BareCallCode:
case FunctionType::Kind::BareDelegateCall:
case FunctionType::Kind::BareStaticCall:
case FunctionType::Kind::Creation:
case FunctionType::Kind::KECCAK256:
case FunctionType::Kind::ECRecover:
case FunctionType::Kind::SHA256:
case FunctionType::Kind::RIPEMD160:
case FunctionType::Kind::BlockHash:
case FunctionType::Kind::AddMod:
case FunctionType::Kind::MulMod:
SMTEncoder::endVisit(_funCall);
unknownFunctionCall(_funCall);
break;
default:
SMTEncoder::endVisit(_funCall);
break;
}
createReturnedExpressions(_funCall);
}
void CHC::endVisit(Break const& _break)
{
solAssert(m_breakDest, "");
connectBlocks(m_currentBlock, predicate(*m_breakDest));
auto breakGhost = createBlock(&_break, "break_ghost_");
m_currentBlock = predicate(*breakGhost);
}
void CHC::endVisit(Continue const& _continue)
{
solAssert(m_continueDest, "");
connectBlocks(m_currentBlock, predicate(*m_continueDest));
auto continueGhost = createBlock(&_continue, "continue_ghost_");
m_currentBlock = predicate(*continueGhost);
}
void CHC::visitAssert(FunctionCall const& _funCall)
{
auto const& args = _funCall.arguments();
solAssert(args.size() == 1, "");
solAssert(args.front()->annotation().type->category() == Type::Category::Bool, "");
solAssert(m_currentContract, "");
solAssert(m_currentFunction, "");
if (m_currentFunction->isConstructor())
m_functionAssertions[m_currentContract].insert(&_funCall);
else
m_functionAssertions[m_currentFunction].insert(&_funCall);
auto previousError = m_error.currentValue();
m_error.increaseIndex();
connectBlocks(
m_currentBlock,
m_currentFunction->isConstructor() ? summary(*m_currentContract) : summary(*m_currentFunction),
currentPathConditions() && !m_context.expression(*args.front())->currentValue() && (m_error.currentValue() == _funCall.id())
);
m_context.addAssertion(m_error.currentValue() == previousError);
}
void CHC::internalFunctionCall(FunctionCall const& _funCall)
{
solAssert(m_currentContract, "");
auto const* function = functionCallToDefinition(_funCall);
if (function)
{
if (m_currentFunction && !m_currentFunction->isConstructor())
m_callGraph[m_currentFunction].insert(function);
else
m_callGraph[m_currentContract].insert(function);
auto const* contract = function->annotation().contract;
// Libraries can have constants as their "state" variables,
// so we need to ensure they were constructed correctly.
if (contract->isLibrary())
m_context.addAssertion(interface(*contract));
}
auto previousError = m_error.currentValue();
m_context.addAssertion(predicate(_funCall));
connectBlocks(
m_currentBlock,
(m_currentFunction && !m_currentFunction->isConstructor()) ? summary(*m_currentFunction) : summary(*m_currentContract),
(m_error.currentValue() > 0)
);
m_context.addAssertion(m_error.currentValue() == 0);
m_error.increaseIndex();
m_context.addAssertion(m_error.currentValue() == previousError);
}
void CHC::unknownFunctionCall(FunctionCall const&)
{
/// Function calls are not handled at the moment,
/// so always erase knowledge.
/// TODO remove when function calls get predicates/blocks.
eraseKnowledge();
/// Used to erase outer scope knowledge in loops and ifs.
/// TODO remove when function calls get predicates/blocks.
m_unknownFunctionCallSeen = true;
}
void CHC::makeArrayPopVerificationTarget(FunctionCall const& _arrayPop)
{
FunctionType const& funType = dynamic_cast(*_arrayPop.expression().annotation().type);
solAssert(funType.kind() == FunctionType::Kind::ArrayPop, "");
auto memberAccess = dynamic_cast(&_arrayPop.expression());
solAssert(memberAccess, "");
auto symbArray = dynamic_pointer_cast(m_context.expression(memberAccess->expression()));
solAssert(symbArray, "");
auto previousError = m_error.currentValue();
m_error.increaseIndex();
addArrayPopVerificationTarget(&_arrayPop, m_error.currentValue());
connectBlocks(
m_currentBlock,
m_currentFunction->isConstructor() ? summary(*m_currentContract) : summary(*m_currentFunction),
currentPathConditions() && symbArray->length() <= 0 && m_error.currentValue() == _arrayPop.id()
);
m_context.addAssertion(m_error.currentValue() == previousError);
}
void CHC::resetSourceAnalysis()
{
m_verificationTargets.clear();
m_safeAssertions.clear();
m_unsafeTargets.clear();
m_functionAssertions.clear();
m_callGraph.clear();
m_summaries.clear();
}
void CHC::resetContractAnalysis()
{
m_stateSorts.clear();
m_stateVariables.clear();
m_unknownFunctionCallSeen = false;
m_breakDest = nullptr;
m_continueDest = nullptr;
m_error.resetIndex();
}
void CHC::eraseKnowledge()
{
resetStateVariables();
m_context.resetVariables([&](VariableDeclaration const& _variable) { return _variable.hasReferenceOrMappingType(); });
}
void CHC::clearIndices(ContractDefinition const* _contract, FunctionDefinition const* _function)
{
SMTEncoder::clearIndices(_contract, _function);
for (auto const* var: m_stateVariables)
/// SSA index 0 is reserved for state variables at the beginning
/// of the current transaction.
m_context.variable(*var)->increaseIndex();
if (_function)
{
for (auto const& var: _function->parameters() + _function->returnParameters())
m_context.variable(*var)->increaseIndex();
for (auto const& var: _function->localVariables())
m_context.variable(*var)->increaseIndex();
}
}
bool CHC::shouldVisit(FunctionDefinition const& _function) const
{
return _function.isImplemented();
}
void CHC::setCurrentBlock(
smt::SymbolicFunctionVariable const& _block,
vector const* _arguments
)
{
if (m_context.solverStackHeigh() > 0)
m_context.popSolver();
solAssert(m_currentContract, "");
clearIndices(m_currentContract, m_currentFunction);
m_context.pushSolver();
if (_arguments)
m_currentBlock = predicate(_block, *_arguments);
else
m_currentBlock = predicate(_block);
}
set CHC::transactionAssertions(ASTNode const* _txRoot)
{
set assertions;
solidity::util::BreadthFirstSearch{{_txRoot}}.run([&](auto const* function, auto&& _addChild) {
assertions.insert(m_functionAssertions[function].begin(), m_functionAssertions[function].end());
for (auto const* called: m_callGraph[function])
_addChild(called);
});
return assertions;
}
vector CHC::stateVariablesIncludingInheritedAndPrivate(ContractDefinition const& _contract)
{
return fold(
_contract.annotation().linearizedBaseContracts,
vector{},
[](auto&& _acc, auto _contract) { return _acc + _contract->stateVariables(); }
);
}
vector CHC::stateSorts(ContractDefinition const& _contract)
{
return applyMap(
stateVariablesIncludingInheritedAndPrivate(_contract),
[](auto _var) { return smt::smtSortAbstractFunction(*_var->type()); }
);
}
smtutil::SortPointer CHC::constructorSort()
{
return make_shared(
vector{smtutil::SortProvider::uintSort} + m_stateSorts,
smtutil::SortProvider::boolSort
);
}
smtutil::SortPointer CHC::interfaceSort()
{
return make_shared(
m_stateSorts,
smtutil::SortProvider::boolSort
);
}
smtutil::SortPointer CHC::interfaceSort(ContractDefinition const& _contract)
{
return make_shared(
stateSorts(_contract),
smtutil::SortProvider::boolSort
);
}
smtutil::SortPointer CHC::arity0FunctionSort()
{
return make_shared(
vector(),
smtutil::SortProvider::boolSort
);
}
/// A function in the symbolic CFG requires:
/// - Index of failed assertion. 0 means no assertion failed.
/// - 2 sets of state variables:
/// - State variables at the beginning of the current function, immutable
/// - Current state variables
/// At the beginning of the function these must equal set 1
/// - 2 sets of input variables:
/// - Input variables at the beginning of the current function, immutable
/// - Current input variables
/// At the beginning of the function these must equal set 1
/// - 1 set of output variables
smtutil::SortPointer CHC::sort(FunctionDefinition const& _function)
{
auto smtSort = [](auto _var) { return smt::smtSortAbstractFunction(*_var->type()); };
auto inputSorts = applyMap(_function.parameters(), smtSort);
auto outputSorts = applyMap(_function.returnParameters(), smtSort);
return make_shared(
vector{smtutil::SortProvider::uintSort} + m_stateSorts + inputSorts + m_stateSorts + inputSorts + outputSorts,
smtutil::SortProvider::boolSort
);
}
smtutil::SortPointer CHC::sort(ASTNode const* _node)
{
if (auto funDef = dynamic_cast(_node))
return sort(*funDef);
auto fSort = dynamic_pointer_cast(sort(*m_currentFunction));
solAssert(fSort, "");
auto smtSort = [](auto _var) { return smt::smtSortAbstractFunction(*_var->type()); };
return make_shared(
fSort->domain + applyMap(m_currentFunction->localVariables(), smtSort),
smtutil::SortProvider::boolSort
);
}
smtutil::SortPointer CHC::summarySort(FunctionDefinition const& _function, ContractDefinition const& _contract)
{
auto stateVariables = stateVariablesIncludingInheritedAndPrivate(_contract);
auto sorts = stateSorts(_contract);
auto smtSort = [](auto _var) { return smt::smtSortAbstractFunction(*_var->type()); };
auto inputSorts = applyMap(_function.parameters(), smtSort);
auto outputSorts = applyMap(_function.returnParameters(), smtSort);
return make_shared(
vector{smtutil::SortProvider::uintSort} + sorts + inputSorts + sorts + outputSorts,
smtutil::SortProvider::boolSort
);
}
unique_ptr CHC::createSymbolicBlock(smtutil::SortPointer _sort, string const& _name)
{
auto block = make_unique(
_sort,
_name,
m_context
);
m_interface->registerRelation(block->currentFunctionValue());
return block;
}
void CHC::defineInterfacesAndSummaries(SourceUnit const& _source)
{
for (auto const& node: _source.nodes())
if (auto const* contract = dynamic_cast(node.get()))
for (auto const* base: contract->annotation().linearizedBaseContracts)
{
string suffix = base->name() + "_" + to_string(base->id());
m_interfaces[base] = createSymbolicBlock(interfaceSort(*base), "interface_" + suffix);
for (auto const* var: stateVariablesIncludingInheritedAndPrivate(*base))
if (!m_context.knownVariable(*var))
createVariable(*var);
for (auto const* function: base->definedFunctions())
m_summaries[contract].emplace(function, createSummaryBlock(*function, *contract));
}
}
smtutil::Expression CHC::interface()
{
auto paramExprs = applyMap(
m_stateVariables,
[this](auto _var) { return m_context.variable(*_var)->currentValue(); }
);
return (*m_interfaces.at(m_currentContract))(paramExprs);
}
smtutil::Expression CHC::interface(ContractDefinition const& _contract)
{
return (*m_interfaces.at(&_contract))(stateVariablesAtIndex(0, _contract));
}
smtutil::Expression CHC::error()
{
return (*m_errorPredicate)({});
}
smtutil::Expression CHC::error(unsigned _idx)
{
return m_errorPredicate->functionValueAtIndex(_idx)({});
}
smtutil::Expression CHC::summary(ContractDefinition const&)
{
return (*m_constructorSummaryPredicate)(
vector{m_error.currentValue()} +
currentStateVariables()
);
}
smtutil::Expression CHC::summary(FunctionDefinition const& _function)
{
vector args{m_error.currentValue()};
auto contract = _function.annotation().contract;
args += contract->isLibrary() ? stateVariablesAtIndex(0, *contract) : initialStateVariables();
args += applyMap(_function.parameters(), [this](auto _var) { return valueAtIndex(*_var, 0); });
args += contract->isLibrary() ? stateVariablesAtIndex(1, *contract) : currentStateVariables();
args += applyMap(_function.returnParameters(), [this](auto _var) { return currentValue(*_var); });
return (*m_summaries.at(m_currentContract).at(&_function))(args);
}
unique_ptr CHC::createBlock(ASTNode const* _node, string const& _prefix)
{
return createSymbolicBlock(sort(_node),
"block_" +
uniquePrefix() +
"_" +
_prefix +
predicateName(_node));
}
unique_ptr CHC::createSummaryBlock(FunctionDefinition const& _function, ContractDefinition const& _contract)
{
return createSymbolicBlock(summarySort(_function, _contract),
"summary_" +
uniquePrefix() +
"_" +
predicateName(&_function, &_contract));
}
void CHC::createErrorBlock()
{
solAssert(m_errorPredicate, "");
m_errorPredicate->increaseIndex();
m_interface->registerRelation(m_errorPredicate->currentFunctionValue());
}
void CHC::connectBlocks(smtutil::Expression const& _from, smtutil::Expression const& _to, smtutil::Expression const& _constraints)
{
smtutil::Expression edge = smtutil::Expression::implies(
_from && m_context.assertions() && _constraints,
_to
);
addRule(edge, _from.name + "_to_" + _to.name);
}
vector CHC::initialStateVariables()
{
return stateVariablesAtIndex(0);
}
vector CHC::stateVariablesAtIndex(int _index)
{
solAssert(m_currentContract, "");
return applyMap(m_stateVariables, [&](auto _var) { return valueAtIndex(*_var, _index); });
}
vector CHC::stateVariablesAtIndex(int _index, ContractDefinition const& _contract)
{
return applyMap(
stateVariablesIncludingInheritedAndPrivate(_contract),
[&](auto _var) { return valueAtIndex(*_var, _index); }
);
}
vector CHC::currentStateVariables()
{
solAssert(m_currentContract, "");
return applyMap(m_stateVariables, [this](auto _var) { return currentValue(*_var); });
}
vector CHC::currentFunctionVariables()
{
vector initInputExprs;
vector mutableInputExprs;
for (auto const& var: m_currentFunction->parameters())
{
initInputExprs.push_back(m_context.variable(*var)->valueAtIndex(0));
mutableInputExprs.push_back(m_context.variable(*var)->currentValue());
}
auto returnExprs = applyMap(m_currentFunction->returnParameters(), [this](auto _var) { return currentValue(*_var); });
return vector{m_error.currentValue()} +
initialStateVariables() +
initInputExprs +
currentStateVariables() +
mutableInputExprs +
returnExprs;
}
vector CHC::currentBlockVariables()
{
if (m_currentFunction)
return currentFunctionVariables() + applyMap(m_currentFunction->localVariables(), [this](auto _var) { return currentValue(*_var); });
return currentFunctionVariables();
}
string CHC::predicateName(ASTNode const* _node, ContractDefinition const* _contract)
{
string prefix;
if (auto funDef = dynamic_cast(_node))
{
prefix += TokenTraits::toString(funDef->kind());
if (!funDef->name().empty())
prefix += "_" + funDef->name() + "_";
}
else if (m_currentFunction && !m_currentFunction->name().empty())
prefix += m_currentFunction->name();
auto contract = _contract ? _contract : m_currentContract;
solAssert(contract, "");
return prefix + "_" + to_string(_node->id()) + "_" + to_string(contract->id());
}
smtutil::Expression CHC::predicate(smt::SymbolicFunctionVariable const& _block)
{
return _block(currentBlockVariables());
}
smtutil::Expression CHC::predicate(
smt::SymbolicFunctionVariable const& _block,
vector const& _arguments
)
{
return _block(_arguments);
}
smtutil::Expression CHC::predicate(FunctionCall const& _funCall)
{
auto const* function = functionCallToDefinition(_funCall);
if (!function)
return smtutil::Expression(true);
m_error.increaseIndex();
vector args{m_error.currentValue()};
auto const* contract = function->annotation().contract;
args += contract->isLibrary() ? stateVariablesAtIndex(0, *contract) : currentStateVariables();
args += symbolicArguments(_funCall);
for (auto const& var: m_stateVariables)
m_context.variable(*var)->increaseIndex();
args += contract->isLibrary() ? stateVariablesAtIndex(1, *contract) : currentStateVariables();
auto const& returnParams = function->returnParameters();
for (auto param: returnParams)
if (m_context.knownVariable(*param))
m_context.variable(*param)->increaseIndex();
else
createVariable(*param);
args += applyMap(function->returnParameters(), [this](auto _var) { return currentValue(*_var); });
if (contract->isLibrary())
return (*m_summaries.at(contract).at(function))(args);
solAssert(m_currentContract, "");
return (*m_summaries.at(m_currentContract).at(function))(args);
}
void CHC::addRule(smtutil::Expression const& _rule, string const& _ruleName)
{
m_interface->addRule(_rule, _ruleName);
}
pair> CHC::query(smtutil::Expression const& _query, langutil::SourceLocation const& _location)
{
smtutil::CheckResult result;
vector values;
tie(result, values) = m_interface->query(_query);
switch (result)
{
case smtutil::CheckResult::SATISFIABLE:
break;
case smtutil::CheckResult::UNSATISFIABLE:
break;
case smtutil::CheckResult::UNKNOWN:
break;
case smtutil::CheckResult::CONFLICTING:
m_outerErrorReporter.warning(1988_error, _location, "At least two SMT solvers provided conflicting answers. Results might not be sound.");
break;
case smtutil::CheckResult::ERROR:
m_outerErrorReporter.warning(1218_error, _location, "Error trying to invoke SMT solver.");
break;
}
return {result, values};
}
void CHC::addVerificationTarget(
ASTNode const* _scope,
VerificationTarget::Type _type,
smtutil::Expression _from,
smtutil::Expression _constraints,
smtutil::Expression _errorId
)
{
m_verificationTargets.emplace(_scope, CHCVerificationTarget{{_type, _from, _constraints}, _errorId});
}
void CHC::addAssertVerificationTarget(ASTNode const* _scope, smtutil::Expression _from, smtutil::Expression _constraints, smtutil::Expression _errorId)
{
addVerificationTarget(_scope, VerificationTarget::Type::Assert, _from, _constraints, _errorId);
}
void CHC::addArrayPopVerificationTarget(ASTNode const* _scope, smtutil::Expression _errorId)
{
solAssert(m_currentContract, "");
solAssert(m_currentFunction, "");
if (m_currentFunction->isConstructor())
addVerificationTarget(_scope, VerificationTarget::Type::PopEmptyArray, summary(*m_currentContract), smtutil::Expression(true), _errorId);
else
{
auto iface = (*m_interfaces.at(m_currentContract))(initialStateVariables());
auto sum = summary(*m_currentFunction);
addVerificationTarget(_scope, VerificationTarget::Type::PopEmptyArray, iface, sum, _errorId);
}
}
string CHC::uniquePrefix()
{
return to_string(m_blockCounter++);
}