/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
// SPDX-License-Identifier: GPL-3.0
#include
#include
#include
#include
#include
#include
#include
using namespace solidity::langutil;
using namespace solidity::frontend;
bool DeclarationTypeChecker::visit(ElementaryTypeName const& _typeName)
{
if (_typeName.annotation().type)
return false;
_typeName.annotation().type = TypeProvider::fromElementaryTypeName(_typeName.typeName());
if (_typeName.stateMutability().has_value())
{
// for non-address types this was already caught by the parser
solAssert(_typeName.annotation().type->category() == Type::Category::Address, "");
switch (*_typeName.stateMutability())
{
case StateMutability::Payable:
_typeName.annotation().type = TypeProvider::payableAddress();
break;
case StateMutability::NonPayable:
_typeName.annotation().type = TypeProvider::address();
break;
default:
m_errorReporter.typeError(
2311_error,
_typeName.location(),
"Address types can only be payable or non-payable."
);
break;
}
}
return true;
}
bool DeclarationTypeChecker::visit(EnumDefinition const& _enum)
{
if (_enum.members().size() > 256)
m_errorReporter.declarationError(
1611_error,
_enum.location(),
"Enum with more than 256 members is not allowed."
);
return false;
}
bool DeclarationTypeChecker::visit(StructDefinition const& _struct)
{
if (_struct.annotation().recursive.has_value())
{
if (!m_currentStructsSeen.empty() && *_struct.annotation().recursive)
m_recursiveStructSeen = true;
return false;
}
if (m_currentStructsSeen.count(&_struct))
{
_struct.annotation().recursive = true;
m_recursiveStructSeen = true;
return false;
}
bool previousRecursiveStructSeen = m_recursiveStructSeen;
bool hasRecursiveChild = false;
m_currentStructsSeen.insert(&_struct);
for (auto const& member: _struct.members())
{
m_recursiveStructSeen = false;
member->accept(*this);
solAssert(member->annotation().type, "");
if (m_recursiveStructSeen)
hasRecursiveChild = true;
}
if (!_struct.annotation().recursive.has_value())
_struct.annotation().recursive = hasRecursiveChild;
m_recursiveStructSeen = previousRecursiveStructSeen || *_struct.annotation().recursive;
m_currentStructsSeen.erase(&_struct);
if (m_currentStructsSeen.empty())
m_recursiveStructSeen = false;
// Check direct recursion, fatal error if detected.
auto visitor = [&](StructDefinition const& _struct, auto& _cycleDetector, size_t _depth)
{
if (_depth >= 256)
m_errorReporter.fatalDeclarationError(
5651_error,
_struct.location(),
"Struct definition exhausts cyclic dependency validator."
);
for (ASTPointer const& member: _struct.members())
{
Type const* memberType = member->annotation().type;
if (auto arrayType = dynamic_cast(memberType))
memberType = arrayType->finalBaseType(true);
if (auto structType = dynamic_cast(memberType))
if (_cycleDetector.run(structType->structDefinition()))
return;
}
};
if (util::CycleDetector(visitor).run(_struct))
m_errorReporter.fatalTypeError(2046_error, _struct.location(), "Recursive struct definition.");
return false;
}
void DeclarationTypeChecker::endVisit(UserDefinedValueTypeDefinition const& _userDefined)
{
TypeName const* typeName = _userDefined.underlyingType();
solAssert(typeName, "");
if (!dynamic_cast(typeName))
m_errorReporter.fatalTypeError(
8657_error,
typeName->location(),
"The underlying type for a user defined value type has to be an elementary value type."
);
Type const* type = typeName->annotation().type;
solAssert(type, "");
solAssert(!dynamic_cast(type), "");
if (!type->isValueType())
m_errorReporter.typeError(
8129_error,
_userDefined.location(),
"The underlying type of the user defined value type \"" +
_userDefined.name() +
"\" is not a value type."
);
}
void DeclarationTypeChecker::endVisit(UserDefinedTypeName const& _typeName)
{
if (_typeName.annotation().type)
return;
Declaration const* declaration = _typeName.pathNode().annotation().referencedDeclaration;
solAssert(declaration, "");
if (StructDefinition const* structDef = dynamic_cast(declaration))
{
if (!m_insideFunctionType && !m_currentStructsSeen.empty())
structDef->accept(*this);
_typeName.annotation().type = TypeProvider::structType(*structDef, DataLocation::Storage);
}
else if (EnumDefinition const* enumDef = dynamic_cast(declaration))
_typeName.annotation().type = TypeProvider::enumType(*enumDef);
else if (ContractDefinition const* contract = dynamic_cast(declaration))
_typeName.annotation().type = TypeProvider::contract(*contract);
else if (auto userDefinedValueType = dynamic_cast(declaration))
_typeName.annotation().type = TypeProvider::userDefinedValueType(*userDefinedValueType);
else
{
_typeName.annotation().type = TypeProvider::emptyTuple();
m_errorReporter.fatalTypeError(
5172_error,
_typeName.location(),
"Name has to refer to a user-defined type."
);
}
}
void DeclarationTypeChecker::endVisit(IdentifierPath const& _path)
{
Declaration const* declaration = _path.annotation().referencedDeclaration;
solAssert(declaration, "");
if (ContractDefinition const* contract = dynamic_cast(declaration))
if (contract->isLibrary())
m_errorReporter.typeError(1130_error, _path.location(), "Invalid use of a library name.");
}
bool DeclarationTypeChecker::visit(FunctionTypeName const& _typeName)
{
if (_typeName.annotation().type)
return false;
bool previousInsideFunctionType = m_insideFunctionType;
m_insideFunctionType = true;
_typeName.parameterTypeList()->accept(*this);
_typeName.returnParameterTypeList()->accept(*this);
m_insideFunctionType = previousInsideFunctionType;
switch (_typeName.visibility())
{
case Visibility::Internal:
case Visibility::External:
break;
default:
m_errorReporter.fatalTypeError(
6012_error,
_typeName.location(),
"Invalid visibility, can only be \"external\" or \"internal\"."
);
return false;
}
if (_typeName.isPayable() && _typeName.visibility() != Visibility::External)
{
m_errorReporter.fatalTypeError(
7415_error,
_typeName.location(),
"Only external function types can be payable."
);
return false;
}
_typeName.annotation().type = TypeProvider::function(_typeName);
return false;
}
void DeclarationTypeChecker::endVisit(Mapping const& _mapping)
{
if (_mapping.annotation().type)
return;
if (auto const* typeName = dynamic_cast(&_mapping.keyType()))
switch (typeName->annotation().type->category())
{
case Type::Category::Enum:
case Type::Category::Contract:
case Type::Category::UserDefinedValueType:
break;
default:
m_errorReporter.fatalTypeError(
7804_error,
typeName->location(),
"Only elementary types, user defined value types, contract types or enums are allowed as mapping keys."
);
break;
}
else
solAssert(dynamic_cast(&_mapping.keyType()), "");
Type const* keyType = _mapping.keyType().annotation().type;
ASTString keyName = _mapping.keyName();
Type const* valueType = _mapping.valueType().annotation().type;
ASTString valueName = _mapping.valueName();
// Convert key type to memory.
keyType = TypeProvider::withLocationIfReference(DataLocation::Memory, keyType);
// Convert value type to storage reference.
valueType = TypeProvider::withLocationIfReference(DataLocation::Storage, valueType);
_mapping.annotation().type = TypeProvider::mapping(keyType, keyName, valueType, valueName);
// Check if parameter names are conflicting.
if (!keyName.empty())
{
auto childMappingType = dynamic_cast(valueType);
ASTString currentValueName = valueName;
bool loop = true;
while (loop)
{
bool isError = false;
// Value type is a mapping.
if (childMappingType)
{
// Compare top mapping's key name with child mapping's key name.
ASTString childKeyName = childMappingType->keyName();
if (keyName == childKeyName)
isError = true;
auto valueType = childMappingType->valueType();
currentValueName = childMappingType->valueName();
childMappingType = dynamic_cast(valueType);
}
else
{
// Compare top mapping's key name with the value name.
if (keyName == currentValueName)
isError = true;
loop = false; // We arrived at the end of mapping recursion.
}
// Report error.
if (isError)
{
m_errorReporter.declarationError(
1809_error,
_mapping.location(),
"Conflicting parameter name \"" + keyName + "\" in mapping."
);
}
}
}
}
void DeclarationTypeChecker::endVisit(ArrayTypeName const& _typeName)
{
if (_typeName.annotation().type)
return;
Type const* baseType = _typeName.baseType().annotation().type;
if (!baseType)
{
solAssert(!m_errorReporter.errors().empty(), "");
return;
}
if (Expression const* length = _typeName.length())
{
std::optional lengthValue;
if (length->annotation().type && length->annotation().type->category() == Type::Category::RationalNumber)
lengthValue = dynamic_cast(*length->annotation().type).value();
else if (std::optional value = ConstantEvaluator::evaluate(m_errorReporter, *length))
lengthValue = value->value;
if (!lengthValue)
m_errorReporter.typeError(
5462_error,
length->location(),
"Invalid array length, expected integer literal or constant expression."
);
else if (*lengthValue == 0)
m_errorReporter.typeError(1406_error, length->location(), "Array with zero length specified.");
else if (lengthValue->denominator() != 1)
m_errorReporter.typeError(3208_error, length->location(), "Array with fractional length specified.");
else if (*lengthValue < 0)
m_errorReporter.typeError(3658_error, length->location(), "Array with negative length specified.");
else if (lengthValue > TypeProvider::uint256()->max())
m_errorReporter.typeError(
1847_error,
length->location(),
"Array length too large, maximum is 2**256 - 1."
);
_typeName.annotation().type = TypeProvider::array(
DataLocation::Storage,
baseType,
lengthValue ? u256(lengthValue->numerator()) : u256(0)
);
}
else
_typeName.annotation().type = TypeProvider::array(DataLocation::Storage, baseType);
}
void DeclarationTypeChecker::endVisit(VariableDeclaration const& _variable)
{
if (_variable.annotation().type)
return;
if (_variable.isFileLevelVariable() && !_variable.isConstant())
m_errorReporter.declarationError(
8342_error,
_variable.location(),
"Only constant variables are allowed at file level."
);
if (_variable.isConstant() && (!_variable.isStateVariable() && !_variable.isFileLevelVariable()))
m_errorReporter.declarationError(
1788_error,
_variable.location(),
"The \"constant\" keyword can only be used for state variables or variables at file level."
);
if (_variable.immutable() && !_variable.isStateVariable())
m_errorReporter.declarationError(
8297_error,
_variable.location(),
"The \"immutable\" keyword can only be used for state variables."
);
using Location = VariableDeclaration::Location;
Location varLoc = _variable.referenceLocation();
DataLocation typeLoc = DataLocation::Memory;
std::set allowedDataLocations = _variable.allowedDataLocations();
if (!allowedDataLocations.count(varLoc))
{
auto locationToString = [](VariableDeclaration::Location _location) -> std::string
{
switch (_location)
{
case Location::Memory: return "\"memory\"";
case Location::Storage: return "\"storage\"";
case Location::CallData: return "\"calldata\"";
case Location::Unspecified: return "none";
}
return {};
};
std::string errorString;
if (!_variable.hasReferenceOrMappingType())
errorString = "Data location can only be specified for array, struct or mapping types";
else
{
errorString = "Data location must be " +
util::joinHumanReadable(
allowedDataLocations | ranges::views::transform(locationToString),
", ",
" or "
);
if (_variable.isConstructorParameter())
errorString += " for constructor parameter";
else if (_variable.isCallableOrCatchParameter())
errorString +=
" for " +
std::string(_variable.isReturnParameter() ? "return " : "") +
"parameter in" +
std::string(_variable.isExternalCallableParameter() ? " external" : "") +
" function";
else
errorString += " for variable";
}
errorString += ", but " + locationToString(varLoc) + " was given.";
m_errorReporter.typeError(6651_error, _variable.location(), errorString);
solAssert(!allowedDataLocations.empty(), "");
varLoc = *allowedDataLocations.begin();
}
// Find correct data location.
if (_variable.isEventOrErrorParameter())
{
solAssert(varLoc == Location::Unspecified, "");
typeLoc = DataLocation::Memory;
}
else if (_variable.isFileLevelVariable())
{
solAssert(varLoc == Location::Unspecified, "");
typeLoc = DataLocation::Memory;
}
else if (_variable.isStateVariable())
{
solAssert(varLoc == Location::Unspecified, "");
typeLoc = (_variable.isConstant() || _variable.immutable()) ? DataLocation::Memory : DataLocation::Storage;
}
else if (
dynamic_cast(_variable.scope()) ||
dynamic_cast(_variable.scope())
)
// The actual location will later be changed depending on how the type is used.
typeLoc = DataLocation::Storage;
else
switch (varLoc)
{
case Location::Memory:
typeLoc = DataLocation::Memory;
break;
case Location::Storage:
typeLoc = DataLocation::Storage;
break;
case Location::CallData:
typeLoc = DataLocation::CallData;
break;
case Location::Unspecified:
solAssert(!_variable.hasReferenceOrMappingType(), "Data location not properly set.");
}
Type const* type = _variable.typeName().annotation().type;
if (auto ref = dynamic_cast(type))
{
bool isPointer = !_variable.isStateVariable();
type = TypeProvider::withLocation(ref, typeLoc, isPointer);
}
if (_variable.isConstant() && !type->isValueType())
{
bool allowed = false;
if (auto arrayType = dynamic_cast(type))
allowed = arrayType->isByteArrayOrString();
if (!allowed)
m_errorReporter.fatalTypeError(9259_error, _variable.location(), "Only constants of value type and byte array type are implemented.");
}
_variable.annotation().type = type;
}
bool DeclarationTypeChecker::visit(UsingForDirective const& _usingFor)
{
if (_usingFor.usesBraces())
{
for (ASTPointer const& function: _usingFor.functionsOrLibrary())
if (auto functionDefinition = dynamic_cast(function->annotation().referencedDeclaration))
{
if (!functionDefinition->isFree() && !(
dynamic_cast(functionDefinition->scope()) &&
dynamic_cast(functionDefinition->scope())->isLibrary()
))
m_errorReporter.typeError(
4167_error,
function->location(),
"Only file-level functions and library functions can be attached to a type in a \"using\" statement"
);
}
else
m_errorReporter.fatalTypeError(8187_error, function->location(), "Expected function name." );
}
else
{
ContractDefinition const* library = dynamic_cast(
_usingFor.functionsOrLibrary().front()->annotation().referencedDeclaration
);
if (!library || !library->isLibrary())
m_errorReporter.fatalTypeError(
4357_error,
_usingFor.functionsOrLibrary().front()->location(),
"Library name expected. If you want to attach a function, use '{...}'."
);
}
// We do not visit _usingFor.functions() because it will lead to an error since
// library names cannot be mentioned stand-alone.
if (_usingFor.typeName())
_usingFor.typeName()->accept(*this);
return false;
}
bool DeclarationTypeChecker::visit(InheritanceSpecifier const& _inheritanceSpecifier)
{
auto const* contract = dynamic_cast(_inheritanceSpecifier.name().annotation().referencedDeclaration);
solAssert(contract, "");
if (contract->isLibrary())
{
m_errorReporter.typeError(
2571_error,
_inheritanceSpecifier.name().location(),
"Libraries cannot be inherited from."
);
return false;
}
return true;
}
bool DeclarationTypeChecker::check(ASTNode const& _node)
{
auto watcher = m_errorReporter.errorWatcher();
_node.accept(*this);
return watcher.ok();
}