/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * Yul interpreter. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace dev; using namespace yul; using namespace yul::test; void InterpreterState::dumpTraceAndState(ostream& _out) const { _out << "Trace:" << endl; for (auto const& line: trace) _out << " " << line << endl; _out << "Memory dump:\n"; map words; for (auto const& [offset, value]: memory) words[(offset / 0x20) * 0x20] |= u256(uint32_t(value)) << (256 - 8 - 8 * size_t(offset % 0x20)); for (auto const& [offset, value]: words) if (value != 0) _out << " " << std::uppercase << std::hex << std::setw(4) << offset << ": " << h256(value).hex() << endl; _out << "Storage dump:" << endl; for (auto const& slot: storage) if (slot.second != h256(0)) _out << " " << slot.first.hex() << ": " << slot.second.hex() << endl; } void Interpreter::operator()(ExpressionStatement const& _expressionStatement) { evaluateMulti(_expressionStatement.expression); } void Interpreter::operator()(Assignment const& _assignment) { solAssert(_assignment.value, ""); vector values = evaluateMulti(*_assignment.value); solAssert(values.size() == _assignment.variableNames.size(), ""); for (size_t i = 0; i < values.size(); ++i) { YulString varName = _assignment.variableNames.at(i).name; solAssert(m_variables.count(varName), ""); m_variables[varName] = values.at(i); } } void Interpreter::operator()(VariableDeclaration const& _declaration) { vector values(_declaration.variables.size(), 0); if (_declaration.value) values = evaluateMulti(*_declaration.value); solAssert(values.size() == _declaration.variables.size(), ""); for (size_t i = 0; i < values.size(); ++i) { YulString varName = _declaration.variables.at(i).name; solAssert(!m_variables.count(varName), ""); m_variables[varName] = values.at(i); solAssert(!m_scopes.back().count(varName), ""); m_scopes.back().emplace(varName, nullptr); } } void Interpreter::operator()(If const& _if) { solAssert(_if.condition, ""); if (evaluate(*_if.condition) != 0) (*this)(_if.body); } void Interpreter::operator()(Switch const& _switch) { solAssert(_switch.expression, ""); u256 val = evaluate(*_switch.expression); solAssert(!_switch.cases.empty(), ""); for (auto const& c: _switch.cases) // Default case has to be last. if (!c.value || evaluate(*c.value) == val) { (*this)(c.body); break; } } void Interpreter::operator()(FunctionDefinition const&) { } void Interpreter::operator()(ForLoop const& _forLoop) { solAssert(_forLoop.condition, ""); openScope(); for (auto const& statement: _forLoop.pre.statements) visit(statement); while (evaluate(*_forLoop.condition) != 0) { m_state.loopState = LoopState::Default; (*this)(_forLoop.body); if (m_state.loopState == LoopState::Break) break; m_state.loopState = LoopState::Default; (*this)(_forLoop.post); } m_state.loopState = LoopState::Default; closeScope(); } void Interpreter::operator()(Break const&) { m_state.loopState = LoopState::Break; } void Interpreter::operator()(Continue const&) { m_state.loopState = LoopState::Continue; } void Interpreter::operator()(Block const& _block) { m_state.numSteps++; if (m_state.maxSteps > 0 && m_state.numSteps >= m_state.maxSteps) { m_state.trace.emplace_back("Interpreter execution step limit reached."); throw StepLimitReached(); } openScope(); // Register functions. for (auto const& statement: _block.statements) if (holds_alternative(statement)) { FunctionDefinition const& funDef = std::get(statement); solAssert(!m_scopes.back().count(funDef.name), ""); m_scopes.back().emplace(funDef.name, &funDef); } for (auto const& statement: _block.statements) { visit(statement); if (m_state.loopState != LoopState::Default) break; } closeScope(); } u256 Interpreter::evaluate(Expression const& _expression) { ExpressionEvaluator ev(m_state, m_dialect, m_variables, m_scopes); ev.visit(_expression); return ev.value(); } vector Interpreter::evaluateMulti(Expression const& _expression) { ExpressionEvaluator ev(m_state, m_dialect, m_variables, m_scopes); ev.visit(_expression); return ev.values(); } void Interpreter::closeScope() { for (auto const& [var, funDeclaration]: m_scopes.back()) if (!funDeclaration) solAssert(m_variables.erase(var) == 1, ""); m_scopes.pop_back(); } void ExpressionEvaluator::operator()(Literal const& _literal) { static YulString const trueString("true"); static YulString const falseString("false"); setValue(valueOfLiteral(_literal)); } void ExpressionEvaluator::operator()(Identifier const& _identifier) { solAssert(m_variables.count(_identifier.name), ""); setValue(m_variables.at(_identifier.name)); } void ExpressionEvaluator::operator()(FunctionalInstruction const& _instr) { evaluateArgs(_instr.arguments); EVMInstructionInterpreter interpreter(m_state); // The instruction might also return nothing, but it does not // hurt to set the value in that case. setValue(interpreter.eval(_instr.instruction, values())); } void ExpressionEvaluator::operator()(FunctionCall const& _funCall) { evaluateArgs(_funCall.arguments); if (EVMDialect const* dialect = dynamic_cast(&m_dialect)) { if (BuiltinFunctionForEVM const* fun = dialect->builtin(_funCall.functionName.name)) { EVMInstructionInterpreter interpreter(m_state); setValue(interpreter.evalBuiltin(*fun, values())); return; } } else if (WasmDialect const* dialect = dynamic_cast(&m_dialect)) if (dialect->builtin(_funCall.functionName.name)) { EWasmBuiltinInterpreter interpreter(m_state); setValue(interpreter.evalBuiltin(_funCall.functionName.name, values())); return; } auto [functionScopes, fun] = findFunctionAndScope(_funCall.functionName.name); solAssert(fun, "Function not found."); solAssert(m_values.size() == fun->parameters.size(), ""); map variables; for (size_t i = 0; i < fun->parameters.size(); ++i) variables[fun->parameters.at(i).name] = m_values.at(i); for (size_t i = 0; i < fun->returnVariables.size(); ++i) variables[fun->returnVariables.at(i).name] = 0; Interpreter interpreter(m_state, m_dialect, variables, functionScopes); interpreter(fun->body); m_values.clear(); for (auto const& retVar: fun->returnVariables) m_values.emplace_back(interpreter.valueOfVariable(retVar.name)); } u256 ExpressionEvaluator::value() const { solAssert(m_values.size() == 1, ""); return m_values.front(); } void ExpressionEvaluator::setValue(u256 _value) { m_values.clear(); m_values.emplace_back(std::move(_value)); } void ExpressionEvaluator::evaluateArgs(vector const& _expr) { vector values; /// Function arguments are evaluated in reverse. for (auto const& expr: _expr | boost::adaptors::reversed) { visit(expr); values.push_back(value()); } m_values = std::move(values); std::reverse(m_values.begin(), m_values.end()); } pair< vector>, FunctionDefinition const* > ExpressionEvaluator::findFunctionAndScope(YulString _functionName) const { FunctionDefinition const* fun = nullptr; std::vector> newScopes; for (auto const& scope: m_scopes) { // Copy over all functions. newScopes.push_back({}); for (auto const& [name, funDef]: scope) if (funDef) newScopes.back().emplace(name, funDef); // Stop at the called function. if (scope.count(_functionName)) { fun = scope.at(_functionName); break; } } return {move(newScopes), fun}; }