/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ // SPDX-License-Identifier: GPL-3.0 /** * @author Christian * @date 2014 * Utilities for the solidity compiler. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Change to "define" to output all intermediate code #undef SOL_OUTPUT_ASM using namespace std; using namespace solidity; using namespace solidity::util; using namespace solidity::evmasm; using namespace solidity::frontend; using namespace solidity::langutil; void CompilerContext::addStateVariable( VariableDeclaration const& _declaration, u256 const& _storageOffset, unsigned _byteOffset ) { m_stateVariables[&_declaration] = make_pair(_storageOffset, _byteOffset); } void CompilerContext::addImmutable(VariableDeclaration const& _variable) { solAssert(_variable.immutable(), "Attempted to register a non-immutable variable as immutable."); solUnimplementedAssert(_variable.annotation().type->isValueType(), "Only immutable variables of value type are supported."); solAssert(m_runtimeContext, "Attempted to register an immutable variable for runtime code generation."); m_immutableVariables[&_variable] = CompilerUtils::generalPurposeMemoryStart + *m_reservedMemory; solAssert(_variable.annotation().type->memoryHeadSize() == 32, "Memory writes might overlap."); *m_reservedMemory += _variable.annotation().type->memoryHeadSize(); } size_t CompilerContext::immutableMemoryOffset(VariableDeclaration const& _variable) const { solAssert(m_immutableVariables.count(&_variable), "Memory offset of unknown immutable queried."); solAssert(m_runtimeContext, "Attempted to fetch the memory offset of an immutable variable during runtime code generation."); return m_immutableVariables.at(&_variable); } vector CompilerContext::immutableVariableSlotNames(VariableDeclaration const& _variable) { string baseName = to_string(_variable.id()); solAssert(_variable.annotation().type->sizeOnStack() > 0, ""); if (_variable.annotation().type->sizeOnStack() == 1) return {baseName}; vector names; auto collectSlotNames = [&](string const& _baseName, Type const* type, auto const& _recurse) -> void { for (auto const& [slot, type]: type->stackItems()) if (type) _recurse(_baseName + " " + slot, type, _recurse); else names.emplace_back(_baseName); }; collectSlotNames(baseName, _variable.annotation().type, collectSlotNames); return names; } size_t CompilerContext::reservedMemory() { solAssert(m_reservedMemory.has_value(), "Reserved memory was used before "); size_t reservedMemory = *m_reservedMemory; m_reservedMemory = std::nullopt; return reservedMemory; } void CompilerContext::startFunction(Declaration const& _function) { m_functionCompilationQueue.startFunction(_function); *this << functionEntryLabel(_function); } void CompilerContext::callLowLevelFunction( string const& _name, unsigned _inArgs, unsigned _outArgs, function const& _generator ) { evmasm::AssemblyItem retTag = pushNewTag(); CompilerUtils(*this).moveIntoStack(_inArgs); *this << lowLevelFunctionTag(_name, _inArgs, _outArgs, _generator); appendJump(evmasm::AssemblyItem::JumpType::IntoFunction); adjustStackOffset(static_cast(_outArgs) - 1 - static_cast(_inArgs)); *this << retTag.tag(); } void CompilerContext::callYulFunction( string const& _name, unsigned _inArgs, unsigned _outArgs ) { m_externallyUsedYulFunctions.insert(_name); auto const retTag = pushNewTag(); CompilerUtils(*this).moveIntoStack(_inArgs); appendJumpTo(namedTag(_name, _inArgs, _outArgs, {}), evmasm::AssemblyItem::JumpType::IntoFunction); adjustStackOffset(static_cast(_outArgs) - 1 - static_cast(_inArgs)); *this << retTag.tag(); } evmasm::AssemblyItem CompilerContext::lowLevelFunctionTag( string const& _name, unsigned _inArgs, unsigned _outArgs, function const& _generator ) { auto it = m_lowLevelFunctions.find(_name); if (it == m_lowLevelFunctions.end()) { evmasm::AssemblyItem tag = newTag().pushTag(); m_lowLevelFunctions.insert(make_pair(_name, tag)); m_lowLevelFunctionGenerationQueue.push(make_tuple(_name, _inArgs, _outArgs, _generator)); return tag; } else return it->second; } void CompilerContext::appendMissingLowLevelFunctions() { while (!m_lowLevelFunctionGenerationQueue.empty()) { string name; unsigned inArgs; unsigned outArgs; function generator; tie(name, inArgs, outArgs, generator) = m_lowLevelFunctionGenerationQueue.front(); m_lowLevelFunctionGenerationQueue.pop(); setStackOffset(static_cast(inArgs) + 1); *this << m_lowLevelFunctions.at(name).tag(); generator(*this); CompilerUtils(*this).moveToStackTop(outArgs); appendJump(evmasm::AssemblyItem::JumpType::OutOfFunction); solAssert(stackHeight() == outArgs, "Invalid stack height in low-level function " + name + "."); } } void CompilerContext::appendYulUtilityFunctions(OptimiserSettings const& _optimiserSettings) { solAssert(!m_appendYulUtilityFunctionsRan, "requestedYulFunctions called more than once."); m_appendYulUtilityFunctionsRan = true; string code = m_yulFunctionCollector.requestedFunctions(); if (!code.empty()) { appendInlineAssembly( yul::reindent("{\n" + move(code) + "\n}"), {}, m_externallyUsedYulFunctions, true, _optimiserSettings, yulUtilityFileName() ); solAssert(!m_generatedYulUtilityCode.empty(), ""); } } void CompilerContext::addVariable( VariableDeclaration const& _declaration, unsigned _offsetToCurrent ) { solAssert(m_asm->deposit() >= 0 && unsigned(m_asm->deposit()) >= _offsetToCurrent, ""); unsigned sizeOnStack = _declaration.annotation().type->sizeOnStack(); // Variables should not have stack size other than [1, 2], // but that might change when new types are introduced. solAssert(sizeOnStack == 1 || sizeOnStack == 2, ""); m_localVariables[&_declaration].push_back(unsigned(m_asm->deposit()) - _offsetToCurrent); } void CompilerContext::removeVariable(Declaration const& _declaration) { solAssert(m_localVariables.count(&_declaration) && !m_localVariables[&_declaration].empty(), ""); m_localVariables[&_declaration].pop_back(); if (m_localVariables[&_declaration].empty()) m_localVariables.erase(&_declaration); } void CompilerContext::removeVariablesAboveStackHeight(unsigned _stackHeight) { vector toRemove; for (auto _var: m_localVariables) { solAssert(!_var.second.empty(), ""); solAssert(_var.second.back() <= stackHeight(), ""); if (_var.second.back() >= _stackHeight) toRemove.push_back(_var.first); } for (auto _var: toRemove) removeVariable(*_var); } unsigned CompilerContext::numberOfLocalVariables() const { return static_cast(m_localVariables.size()); } shared_ptr CompilerContext::compiledContract(ContractDefinition const& _contract) const { auto ret = m_otherCompilers.find(&_contract); solAssert(ret != m_otherCompilers.end(), "Compiled contract not found."); return ret->second->assemblyPtr(); } shared_ptr CompilerContext::compiledContractRuntime(ContractDefinition const& _contract) const { auto ret = m_otherCompilers.find(&_contract); solAssert(ret != m_otherCompilers.end(), "Compiled contract not found."); return ret->second->runtimeAssemblyPtr(); } bool CompilerContext::isLocalVariable(Declaration const* _declaration) const { return !!m_localVariables.count(_declaration); } evmasm::AssemblyItem CompilerContext::functionEntryLabel(Declaration const& _declaration) { return m_functionCompilationQueue.entryLabel(_declaration, *this); } evmasm::AssemblyItem CompilerContext::functionEntryLabelIfExists(Declaration const& _declaration) const { return m_functionCompilationQueue.entryLabelIfExists(_declaration); } FunctionDefinition const& CompilerContext::superFunction(FunctionDefinition const& _function, ContractDefinition const& _base) { solAssert(m_mostDerivedContract, "No most derived contract set."); ContractDefinition const* super = _base.superContract(mostDerivedContract()); solAssert(super, "Super contract not available."); FunctionDefinition const& resolvedFunction = _function.resolveVirtual(mostDerivedContract(), super); solAssert(resolvedFunction.isImplemented(), ""); return resolvedFunction; } ContractDefinition const& CompilerContext::mostDerivedContract() const { solAssert(m_mostDerivedContract, "Most derived contract not set."); return *m_mostDerivedContract; } Declaration const* CompilerContext::nextFunctionToCompile() const { return m_functionCompilationQueue.nextFunctionToCompile(); } unsigned CompilerContext::baseStackOffsetOfVariable(Declaration const& _declaration) const { auto res = m_localVariables.find(&_declaration); solAssert(res != m_localVariables.end(), "Variable not found on stack."); solAssert(!res->second.empty(), ""); return res->second.back(); } unsigned CompilerContext::baseToCurrentStackOffset(unsigned _baseOffset) const { return static_cast(m_asm->deposit()) - _baseOffset - 1; } unsigned CompilerContext::currentToBaseStackOffset(unsigned _offset) const { return static_cast(m_asm->deposit()) - _offset - 1; } pair CompilerContext::storageLocationOfVariable(Declaration const& _declaration) const { auto it = m_stateVariables.find(&_declaration); solAssert(it != m_stateVariables.end(), "Variable not found in storage."); return it->second; } CompilerContext& CompilerContext::appendJump(evmasm::AssemblyItem::JumpType _jumpType) { evmasm::AssemblyItem item(Instruction::JUMP); item.setJumpType(_jumpType); return *this << item; } CompilerContext& CompilerContext::appendPanic(util::PanicCode _code) { callYulFunction(utilFunctions().panicFunction(_code), 0, 0); return *this; } CompilerContext& CompilerContext::appendConditionalPanic(util::PanicCode _code) { *this << Instruction::ISZERO; evmasm::AssemblyItem afterTag = appendConditionalJump(); appendPanic(_code); *this << afterTag; return *this; } CompilerContext& CompilerContext::appendRevert(string const& _message) { appendInlineAssembly("{ " + revertReasonIfDebug(_message) + " }"); return *this; } CompilerContext& CompilerContext::appendConditionalRevert(bool _forwardReturnData, string const& _message) { if (_forwardReturnData && m_evmVersion.supportsReturndata()) appendInlineAssembly(R"({ if condition { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } })", {"condition"}); else appendInlineAssembly("{ if condition { " + revertReasonIfDebug(_message) + " } }", {"condition"}); *this << Instruction::POP; return *this; } void CompilerContext::resetVisitedNodes(ASTNode const* _node) { stack newStack; newStack.push(_node); std::swap(m_visitedNodes, newStack); updateSourceLocation(); } void CompilerContext::appendInlineAssembly( string const& _assembly, vector const& _localVariables, set const& _externallyUsedFunctions, bool _system, OptimiserSettings const& _optimiserSettings, string _sourceName ) { unsigned startStackHeight = stackHeight(); set externallyUsedIdentifiers; for (auto const& fun: _externallyUsedFunctions) externallyUsedIdentifiers.insert(yul::YulString(fun)); for (auto const& var: _localVariables) externallyUsedIdentifiers.insert(yul::YulString(var)); yul::ExternalIdentifierAccess identifierAccess; identifierAccess.resolve = [&]( yul::Identifier const& _identifier, yul::IdentifierContext, bool _insideFunction ) -> bool { if (_insideFunction) return false; return contains(_localVariables, _identifier.name.str()); }; identifierAccess.generateCode = [&]( yul::Identifier const& _identifier, yul::IdentifierContext _context, yul::AbstractAssembly& _assembly ) { solAssert(_context == yul::IdentifierContext::RValue || _context == yul::IdentifierContext::LValue, ""); auto it = std::find(_localVariables.begin(), _localVariables.end(), _identifier.name.str()); solAssert(it != _localVariables.end(), ""); auto stackDepth = static_cast(distance(it, _localVariables.end())); size_t stackDiff = static_cast(_assembly.stackHeight()) - startStackHeight + stackDepth; if (_context == yul::IdentifierContext::LValue) stackDiff -= 1; if (stackDiff < 1 || stackDiff > 16) BOOST_THROW_EXCEPTION( StackTooDeepError() << errinfo_sourceLocation(nativeLocationOf(_identifier)) << util::errinfo_comment("Stack too deep (" + to_string(stackDiff) + "), try removing local variables.") ); if (_context == yul::IdentifierContext::RValue) _assembly.appendInstruction(dupInstruction(static_cast(stackDiff))); else { _assembly.appendInstruction(swapInstruction(static_cast(stackDiff))); _assembly.appendInstruction(Instruction::POP); } }; ErrorList errors; ErrorReporter errorReporter(errors); langutil::CharStream charStream(_assembly, _sourceName); yul::EVMDialect const& dialect = yul::EVMDialect::strictAssemblyForEVM(m_evmVersion); optional locationOverride; if (!_system) locationOverride = m_asm->currentSourceLocation(); shared_ptr parserResult = yul::Parser(errorReporter, dialect, std::move(locationOverride)) .parse(charStream); #ifdef SOL_OUTPUT_ASM cout << yul::AsmPrinter(&dialect)(*parserResult) << endl; #endif auto reportError = [&](string const& _context) { string message = "Error parsing/analyzing inline assembly block:\n" + _context + "\n" "------------------ Input: -----------------\n" + _assembly + "\n" "------------------ Errors: ----------------\n"; for (auto const& error: errorReporter.errors()) // TODO if we have "locationOverride", it will be the wrong char stream, // but we do not have access to the solidity scanner. message += SourceReferenceFormatter::formatErrorInformation(*error, charStream); message += "-------------------------------------------\n"; solAssert(false, message); }; yul::AsmAnalysisInfo analysisInfo; bool analyzerResult = false; if (parserResult) analyzerResult = yul::AsmAnalyzer( analysisInfo, errorReporter, dialect, identifierAccess.resolve ).analyze(*parserResult); if (!parserResult || !errorReporter.errors().empty() || !analyzerResult) reportError("Invalid assembly generated by code generator."); // Several optimizer steps cannot handle externally supplied stack variables, // so we essentially only optimize the ABI functions. if (_optimiserSettings.runYulOptimiser && _localVariables.empty()) { yul::Object obj; obj.code = parserResult; obj.analysisInfo = make_shared(analysisInfo); optimizeYul(obj, dialect, _optimiserSettings, externallyUsedIdentifiers); if (_system) { // Store as generated sources, but first re-parse to update the source references. solAssert(m_generatedYulUtilityCode.empty(), ""); m_generatedYulUtilityCode = yul::AsmPrinter(dialect)(*obj.code); string code = yul::AsmPrinter{dialect}(*obj.code); langutil::CharStream charStream(m_generatedYulUtilityCode, _sourceName); obj.code = yul::Parser(errorReporter, dialect).parse(charStream); *obj.analysisInfo = yul::AsmAnalyzer::analyzeStrictAssertCorrect(dialect, obj); } analysisInfo = std::move(*obj.analysisInfo); parserResult = std::move(obj.code); #ifdef SOL_OUTPUT_ASM cout << "After optimizer:" << endl; cout << yul::AsmPrinter(&dialect)(*parserResult) << endl; #endif } else if (_system) { // Store as generated source. solAssert(m_generatedYulUtilityCode.empty(), ""); m_generatedYulUtilityCode = _assembly; } if (!errorReporter.errors().empty()) reportError("Failed to analyze inline assembly block."); solAssert(errorReporter.errors().empty(), "Failed to analyze inline assembly block."); yul::CodeGenerator::assemble( *parserResult, analysisInfo, *m_asm, m_evmVersion, identifierAccess.generateCode, _system, _optimiserSettings.optimizeStackAllocation ); // Reset the source location to the one of the node (instead of the CODEGEN source location) updateSourceLocation(); } void CompilerContext::optimizeYul(yul::Object& _object, yul::EVMDialect const& _dialect, OptimiserSettings const& _optimiserSettings, std::set const& _externalIdentifiers) { #ifdef SOL_OUTPUT_ASM cout << yul::AsmPrinter(*dialect)(*_object.code) << endl; #endif bool const isCreation = runtimeContext() != nullptr; yul::GasMeter meter(_dialect, isCreation, _optimiserSettings.expectedExecutionsPerDeployment); yul::OptimiserSuite::run( _dialect, &meter, _object, _optimiserSettings.optimizeStackAllocation, _optimiserSettings.yulOptimiserSteps, isCreation? nullopt : make_optional(_optimiserSettings.expectedExecutionsPerDeployment), _externalIdentifiers ); #ifdef SOL_OUTPUT_ASM cout << "After optimizer:" << endl; cout << yul::AsmPrinter(*dialect)(*object.code) << endl; #endif } string CompilerContext::revertReasonIfDebug(string const& _message) { return YulUtilFunctions::revertReasonIfDebugBody( m_revertStrings, "mload(" + to_string(CompilerUtils::freeMemoryPointer) + ")", _message ); } void CompilerContext::updateSourceLocation() { m_asm->setSourceLocation(m_visitedNodes.empty() ? SourceLocation() : m_visitedNodes.top()->location()); } evmasm::Assembly::OptimiserSettings CompilerContext::translateOptimiserSettings(OptimiserSettings const& _settings) { // Constructing it this way so that we notice changes in the fields. evmasm::Assembly::OptimiserSettings asmSettings{false, false, false, false, false, false, false, m_evmVersion, 0}; asmSettings.isCreation = true; asmSettings.runInliner = _settings.runInliner; asmSettings.runJumpdestRemover = _settings.runJumpdestRemover; asmSettings.runPeephole = _settings.runPeephole; asmSettings.runDeduplicate = _settings.runDeduplicate; asmSettings.runCSE = _settings.runCSE; asmSettings.runConstantOptimiser = _settings.runConstantOptimiser; asmSettings.expectedExecutionsPerDeployment = _settings.expectedExecutionsPerDeployment; asmSettings.evmVersion = m_evmVersion; return asmSettings; } evmasm::AssemblyItem CompilerContext::FunctionCompilationQueue::entryLabel( Declaration const& _declaration, CompilerContext& _context ) { auto res = m_entryLabels.find(&_declaration); if (res == m_entryLabels.end()) { size_t params = 0; size_t returns = 0; if (auto const* function = dynamic_cast(&_declaration)) { FunctionType functionType(*function, FunctionType::Kind::Internal); params = CompilerUtils::sizeOnStack(functionType.parameterTypes()); returns = CompilerUtils::sizeOnStack(functionType.returnParameterTypes()); } // some name that cannot clash with yul function names. string labelName = "@" + _declaration.name() + "_" + to_string(_declaration.id()); evmasm::AssemblyItem tag = _context.namedTag( labelName, params, returns, _declaration.id() ); m_entryLabels.insert(make_pair(&_declaration, tag)); m_functionsToCompile.push(&_declaration); return tag.tag(); } else return res->second.tag(); } evmasm::AssemblyItem CompilerContext::FunctionCompilationQueue::entryLabelIfExists(Declaration const& _declaration) const { auto res = m_entryLabels.find(&_declaration); return res == m_entryLabels.end() ? evmasm::AssemblyItem(evmasm::UndefinedItem) : res->second.tag(); } Declaration const* CompilerContext::FunctionCompilationQueue::nextFunctionToCompile() const { while (!m_functionsToCompile.empty()) { if (m_alreadyCompiledFunctions.count(m_functionsToCompile.front())) m_functionsToCompile.pop(); else return m_functionsToCompile.front(); } return nullptr; } void CompilerContext::FunctionCompilationQueue::startFunction(Declaration const& _function) { if (!m_functionsToCompile.empty() && m_functionsToCompile.front() == &_function) m_functionsToCompile.pop(); m_alreadyCompiledFunctions.insert(&_function); }