/*
	This file is part of solidity.
	solidity is free software: you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation, either version 3 of the License, or
	(at your option) any later version.
	solidity is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
	GNU General Public License for more details.
	You should have received a copy of the GNU General Public License
	along with solidity.  If not, see .
*/
// SPDX-License-Identifier: GPL-3.0
/**
 * @author Christian 
 * @date 2015
 * Unit tests for the gas estimator.
 */
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
using namespace solidity::langutil;
using namespace solidity::evmasm;
using namespace solidity::frontend;
using namespace solidity::frontend::test;
namespace solidity::frontend::test
{
class GasMeterTestFramework: public SolidityExecutionFramework
{
public:
	void compile(string const& _sourceCode)
	{
		m_compiler.reset();
		m_compiler.setSources({{"", "pragma solidity >=0.0;\n"
				"// SPDX-License-Identifier: GPL-3.0\n" + _sourceCode}});
		m_compiler.setOptimiserSettings(solidity::test::CommonOptions::get().optimize);
		m_compiler.setEVMVersion(m_evmVersion);
		BOOST_REQUIRE_MESSAGE(m_compiler.compile(), "Compiling contract failed");
	}
	void testCreationTimeGas(string const& _sourceCode, u256 const& _tolerance = u256(0))
	{
		compileAndRun(_sourceCode);
		auto state = make_shared();
		PathGasMeter meter(*m_compiler.assemblyItems(m_compiler.lastContractName()), solidity::test::CommonOptions::get().evmVersion());
		GasMeter::GasConsumption gas = meter.estimateMax(0, state);
		u256 bytecodeSize(m_compiler.runtimeObject(m_compiler.lastContractName()).bytecode.size());
		// costs for deployment
		gas += bytecodeSize * GasCosts::createDataGas;
		// costs for transaction
		gas += gasForTransaction(m_compiler.object(m_compiler.lastContractName()).bytecode, true);
		// Skip the tests when we use ABIEncoderV2.
		// TODO: We should enable this again once the yul optimizer is activated.
		if (solidity::test::CommonOptions::get().useABIEncoderV1)
		{
			BOOST_REQUIRE(!gas.isInfinite);
			BOOST_CHECK_LE(m_gasUsed, gas.value);
			BOOST_CHECK_LE(gas.value - _tolerance, m_gasUsed);
		}
	}
	/// Compares the gas computed by PathGasMeter for the given signature (but unknown arguments)
	/// against the actual gas usage computed by the VM on the given set of argument variants.
	void testRunTimeGas(string const& _sig, vector _argumentVariants, u256 const& _tolerance = u256(0))
	{
		u256 gasUsed = 0;
		GasMeter::GasConsumption gas;
		util::FixedHash<4> hash(util::keccak256(_sig));
		for (bytes const& arguments: _argumentVariants)
		{
			sendMessage(hash.asBytes() + arguments, false, 0);
			BOOST_CHECK(m_transactionSuccessful);
			gasUsed = max(gasUsed, m_gasUsed);
			gas = max(gas, gasForTransaction(hash.asBytes() + arguments, false));
		}
		gas += GasEstimator(solidity::test::CommonOptions::get().evmVersion()).functionalEstimation(
			*m_compiler.runtimeAssemblyItems(m_compiler.lastContractName()),
			_sig
		);
		// Skip the tests when we use ABIEncoderV2.
		// TODO: We should enable this again once the yul optimizer is activated.
		if (solidity::test::CommonOptions::get().useABIEncoderV1)
		{
			BOOST_REQUIRE(!gas.isInfinite);
			BOOST_CHECK_LE(m_gasUsed, gas.value);
			BOOST_CHECK_LE(gas.value - _tolerance, m_gasUsed);
		}
	}
	static GasMeter::GasConsumption gasForTransaction(bytes const& _data, bool _isCreation)
	{
		auto evmVersion = solidity::test::CommonOptions::get().evmVersion();
		GasMeter::GasConsumption gas = _isCreation ? GasCosts::txCreateGas : GasCosts::txGas;
		for (auto i: _data)
			gas += i != 0 ? GasCosts::txDataNonZeroGas(evmVersion) : GasCosts::txDataZeroGas;
		return gas;
	}
};
BOOST_FIXTURE_TEST_SUITE(GasMeterTests, GasMeterTestFramework)
BOOST_AUTO_TEST_CASE(simple_contract)
{
	// Tests a simple "deploy contract" code without constructor. The actual contract is not relevant.
	char const* sourceCode = R"(
		contract test {
			bytes32 public shaValue;
			function f(uint a) public {
				shaValue = keccak256(abi.encodePacked(a));
			}
		}
	)";
	testCreationTimeGas(sourceCode);
}
BOOST_AUTO_TEST_CASE(store_keccak256)
{
	char const* sourceCode = R"(
		contract test {
			bytes32 public shaValue;
			constructor() {
				shaValue = keccak256(abi.encodePacked(this));
			}
		}
	)";
	testCreationTimeGas(sourceCode);
}
BOOST_AUTO_TEST_CASE(updating_store)
{
	char const* sourceCode = R"(
		contract test {
			uint data;
			uint data2;
			constructor() {
				data = 1;
				data = 2;
				data2 = 0;
			}
		}
	)";
	testCreationTimeGas(sourceCode, m_evmVersion < langutil::EVMVersion::constantinople() ? u256(0) : u256(9600));
}
BOOST_AUTO_TEST_CASE(branches)
{
	char const* sourceCode = R"(
		contract test {
			uint data;
			uint data2;
			function f(uint x) public {
				if (x > 7)
					data2 = 1;
				else
					data = 1;
			}
		}
	)";
	testCreationTimeGas(sourceCode, 1);
	testRunTimeGas("f(uint256)", vector{encodeArgs(2), encodeArgs(8)}, 1);
}
BOOST_AUTO_TEST_CASE(function_calls)
{
	char const* sourceCode = R"(
		contract test {
			uint data;
			uint data2;
			function f(uint x) public {
				if (x > 7)
					{ unchecked { data2 = g(x**8) + 1; } }
				else
					data = 1;
			}
			function g(uint x) internal returns (uint) {
				return data2;
			}
		}
	)";
	testCreationTimeGas(sourceCode);
	// In f, data2 is accessed twice, so there is a reduction of 2200 to 100 in actual costs.
	// However, GasMeter always assumes cold costs.
	testRunTimeGas(
		"f(uint256)",
		vector{encodeArgs(2), encodeArgs(8)},
		m_evmVersion < EVMVersion::berlin() ?
		u256(0) :
		u256(2100)
	);
}
BOOST_AUTO_TEST_CASE(multiple_external_functions)
{
	char const* sourceCode = R"(
		contract test {
			uint data;
			uint data2;
			function f(uint x) public {
				if (x > 7)
					{ unchecked { data2 = g(x**8) + 1; } }
				else
					data = 1;
			}
			function g(uint x) public returns (uint) {
				return data2;
			}
		}
	)";
	testCreationTimeGas(sourceCode);
	// In f, data2 is accessed twice, so there is a reduction of 2200 to 100 in actual costs.
	// However, GasMeter always assumes cold costs.
	testRunTimeGas(
		"f(uint256)",
		vector{encodeArgs(2), encodeArgs(8)},
		m_evmVersion < EVMVersion::berlin() ?
		u256(0) :
		u256(2100)
	);
	testRunTimeGas("g(uint256)", vector{encodeArgs(2)});
}
BOOST_AUTO_TEST_CASE(exponent_size)
{
	char const* sourceCode = R"(
		contract A {
			function f(uint x) public returns (uint) {
				unchecked { return x ** 0; }
			}
			function g(uint x) public returns (uint) {
				unchecked { return x ** 0x100; }
			}
			function h(uint x) public returns (uint) {
				unchecked { return x ** 0x10000; }
			}
		}
	)";
	testCreationTimeGas(sourceCode);
	testRunTimeGas("f(uint256)", vector{encodeArgs(2)});
	testRunTimeGas("g(uint256)", vector{encodeArgs(2)});
	testRunTimeGas("h(uint256)", vector{encodeArgs(2)});
}
BOOST_AUTO_TEST_CASE(balance_gas)
{
	char const* sourceCode = R"(
		contract A {
			function lookup_balance(address a) public returns (uint) {
				return a.balance;
			}
		}
	)";
	testCreationTimeGas(sourceCode);
	testRunTimeGas("lookup_balance(address)", vector{encodeArgs(2), encodeArgs(100)});
}
BOOST_AUTO_TEST_CASE(extcodesize_gas)
{
	char const* sourceCode = R"(
		contract A {
			function f() public returns (uint _s) {
				assembly {
					_s := extcodesize(0x30)
				}
			}
		}
	)";
	testCreationTimeGas(sourceCode);
	testRunTimeGas("f()", vector{encodeArgs()});
}
BOOST_AUTO_TEST_CASE(regular_functions_exclude_fallback)
{
	// A bug in the estimator caused the costs for a specific function
	// to always include the costs for the fallback.
	char const* sourceCode = R"(
		contract A {
			uint public x;
			fallback() external { x = 2; }
		}
	)";
	testCreationTimeGas(sourceCode);
	testRunTimeGas("x()", vector{encodeArgs()});
}
BOOST_AUTO_TEST_CASE(complex_control_flow)
{
	// This crashed the gas estimator previously (or took a very long time).
	// Now we do not follow branches if they start out with lower gas costs than the ones
	// we previously considered. This of course reduces accuracy.
	char const* sourceCode = R"(
		contract log {
			function ln(int128 x) public pure returns (int128 result) {
				unchecked {
					int128 t = x / 256;
					int128 y = 5545177;
					x = t;
					t = x * 16; if (t <= 1000000) { x = t; y = y - 2772588; }
					t = x * 4; if (t <= 1000000) { x = t; y = y - 1386294; }
					t = x * 2; if (t <= 1000000) { x = t; y = y - 693147; }
					t = x + x / 2; if (t <= 1000000) { x = t; y = y - 405465; }
					t = x + x / 4; if (t <= 1000000) { x = t; y = y - 223144; }
					t = x + x / 8; if (t <= 1000000) { x = t; y = y - 117783; }
					t = x + x / 16; if (t <= 1000000) { x = t; y = y - 60624; }
					t = x + x / 32; if (t <= 1000000) { x = t; y = y - 30771; }
					t = x + x / 64; if (t <= 1000000) { x = t; y = y - 15504; }
					t = x + x / 128; if (t <= 1000000) { x = t; y = y - 7782; }
					t = x + x / 256; if (t <= 1000000) { x = t; y = y - 3898; }
					t = x + x / 512; if (t <= 1000000) { x = t; y = y - 1951; }
					t = x + x / 1024; if (t <= 1000000) { x = t; y = y - 976; }
					t = x + x / 2048; if (t <= 1000000) { x = t; y = y - 488; }
					t = x + x / 4096; if (t <= 1000000) { x = t; y = y - 244; }
					t = x + x / 8192; if (t <= 1000000) { x = t; y = y - 122; }
					t = x + x / 16384; if (t <= 1000000) { x = t; y = y - 61; }
					t = x + x / 32768; if (t <= 1000000) { x = t; y = y - 31; }
					t = x + x / 65536; if (t <= 1000000) { y = y - 15; }
					return y;
				}
			}
		}
	)";
	testCreationTimeGas(sourceCode);
	// max gas is used for small x
	testRunTimeGas("ln(int128)", vector{encodeArgs(0), encodeArgs(10), encodeArgs(105), encodeArgs(30000)});
}
BOOST_AUTO_TEST_SUITE_END()
}