/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * @author Christian * @date 2014 * Routines used by both the compiler and the expression compiler. */ #include #include #include #include #include #include #include using namespace std; namespace dev { namespace solidity { const unsigned CompilerUtils::dataStartOffset = 4; const size_t CompilerUtils::freeMemoryPointer = 64; const size_t CompilerUtils::zeroPointer = CompilerUtils::freeMemoryPointer + 32; const size_t CompilerUtils::generalPurposeMemoryStart = CompilerUtils::zeroPointer + 32; const unsigned CompilerUtils::identityContractAddress = 4; static_assert(CompilerUtils::freeMemoryPointer >= 64, "Free memory pointer must not overlap with scratch area."); static_assert(CompilerUtils::zeroPointer >= CompilerUtils::freeMemoryPointer + 32, "Zero pointer must not overlap with free memory pointer."); static_assert(CompilerUtils::generalPurposeMemoryStart >= CompilerUtils::zeroPointer + 32, "General purpose memory must not overlap with zero area."); void CompilerUtils::initialiseFreeMemoryPointer() { m_context << u256(generalPurposeMemoryStart); storeFreeMemoryPointer(); } void CompilerUtils::fetchFreeMemoryPointer() { m_context << u256(freeMemoryPointer) << Instruction::MLOAD; } void CompilerUtils::storeFreeMemoryPointer() { m_context << u256(freeMemoryPointer) << Instruction::MSTORE; } void CompilerUtils::allocateMemory() { fetchFreeMemoryPointer(); m_context << Instruction::SWAP1 << Instruction::DUP2 << Instruction::ADD; storeFreeMemoryPointer(); } void CompilerUtils::toSizeAfterFreeMemoryPointer() { fetchFreeMemoryPointer(); m_context << Instruction::DUP1 << Instruction::SWAP2 << Instruction::SUB; m_context << Instruction::SWAP1; } void CompilerUtils::revertWithStringData(Type const& _argumentType) { solAssert(_argumentType.isImplicitlyConvertibleTo(*Type::fromElementaryTypeName("string memory")), ""); fetchFreeMemoryPointer(); m_context << (u256(FixedHash<4>::Arith(FixedHash<4>(dev::keccak256("Error(string)")))) << (256 - 32)); m_context << Instruction::DUP2 << Instruction::MSTORE; m_context << u256(4) << Instruction::ADD; // Stack: abiEncode({_argumentType.shared_from_this()}, {make_shared(DataLocation::Memory, true)}); toSizeAfterFreeMemoryPointer(); m_context << Instruction::REVERT; } unsigned CompilerUtils::loadFromMemory( unsigned _offset, Type const& _type, bool _fromCalldata, bool _padToWordBoundaries ) { solAssert(_type.category() != Type::Category::Array, "Unable to statically load dynamic type."); m_context << u256(_offset); return loadFromMemoryHelper(_type, _fromCalldata, _padToWordBoundaries); } void CompilerUtils::loadFromMemoryDynamic( Type const& _type, bool _fromCalldata, bool _padToWordBoundaries, bool _keepUpdatedMemoryOffset ) { if (_keepUpdatedMemoryOffset) m_context << Instruction::DUP1; if (auto arrayType = dynamic_cast(&_type)) { solAssert(!arrayType->isDynamicallySized(), ""); solAssert(!_fromCalldata, ""); solAssert(_padToWordBoundaries, ""); if (_keepUpdatedMemoryOffset) m_context << arrayType->memorySize() << Instruction::ADD; } else { unsigned numBytes = loadFromMemoryHelper(_type, _fromCalldata, _padToWordBoundaries); if (_keepUpdatedMemoryOffset) { // update memory counter moveToStackTop(_type.sizeOnStack()); m_context << u256(numBytes) << Instruction::ADD; } } } void CompilerUtils::storeInMemory(unsigned _offset) { unsigned numBytes = prepareMemoryStore(IntegerType(256), true); if (numBytes > 0) m_context << u256(_offset) << Instruction::MSTORE; } void CompilerUtils::storeInMemoryDynamic(Type const& _type, bool _padToWordBoundaries) { // process special types (Reference, StringLiteral, Function) if (auto ref = dynamic_cast(&_type)) { solUnimplementedAssert( ref->location() == DataLocation::Memory, "Only in-memory reference type can be stored." ); storeInMemoryDynamic(IntegerType(256), _padToWordBoundaries); } else if (auto str = dynamic_cast(&_type)) { m_context << Instruction::DUP1; storeStringData(bytesConstRef(str->value())); if (_padToWordBoundaries) m_context << u256(max(32, ((str->value().size() + 31) / 32) * 32)); else m_context << u256(str->value().size()); m_context << Instruction::ADD; } else if ( _type.category() == Type::Category::Function && dynamic_cast(_type).kind() == FunctionType::Kind::External ) { combineExternalFunctionType(true); m_context << Instruction::DUP2 << Instruction::MSTORE; m_context << u256(_padToWordBoundaries ? 32 : 24) << Instruction::ADD; } else if (_type.isValueType()) { unsigned numBytes = prepareMemoryStore(_type, _padToWordBoundaries); m_context << Instruction::DUP2 << Instruction::MSTORE; m_context << u256(numBytes) << Instruction::ADD; } else // Should never happen { solAssert( false, "Memory store of type " + _type.toString(true) + " not allowed." ); } } void CompilerUtils::abiDecode(TypePointers const& _typeParameters, bool _fromMemory) { /// Stack: if (m_context.experimentalFeatureActive(ExperimentalFeature::ABIEncoderV2)) { // Use the new Yul-based decoding function auto stackHeightBefore = m_context.stackHeight(); abiDecodeV2(_typeParameters, _fromMemory); solAssert(m_context.stackHeight() - stackHeightBefore == sizeOnStack(_typeParameters) - 2, ""); return; } //@todo this does not yet support nested dynamic arrays size_t encodedSize = 0; for (auto const& t: _typeParameters) encodedSize += t->decodingType()->calldataEncodedSize(true); m_context.appendInlineAssembly("{ if lt(len, " + to_string(encodedSize) + ") { revert(0, 0) } }", {"len"}); m_context << Instruction::DUP2 << Instruction::ADD; m_context << Instruction::SWAP1; /// Stack: // Retain the offset pointer as base_offset, the point from which the data offsets are computed. m_context << Instruction::DUP1; for (TypePointer const& parameterType: _typeParameters) { // stack: v1 v2 ... v(k-1) input_end base_offset current_offset TypePointer type = parameterType->decodingType(); solUnimplementedAssert(type, "No decoding type found."); if (type->category() == Type::Category::Array) { auto const& arrayType = dynamic_cast(*type); solUnimplementedAssert(!arrayType.baseType()->isDynamicallyEncoded(), "Nested arrays not yet implemented."); if (_fromMemory) { solUnimplementedAssert( arrayType.baseType()->isValueType(), "Nested memory arrays not yet implemented here." ); // @todo If base type is an array or struct, it is still calldata-style encoded, so // we would have to convert it like below. solAssert(arrayType.location() == DataLocation::Memory, ""); if (arrayType.isDynamicallySized()) { // compute data pointer m_context << Instruction::DUP1 << Instruction::MLOAD; // Check that the data pointer is valid and that length times // item size is still inside the range. Whiskers templ(R"({ if gt(ptr, 0x100000000) { revert(0, 0) } ptr := add(ptr, base_offset) let array_data_start := add(ptr, 0x20) if gt(array_data_start, input_end) { revert(0, 0) } let array_length := mload(ptr) if or( gt(array_length, 0x100000000), gt(add(array_data_start, mul(array_length, )), input_end) ) { revert(0, 0) } })"); templ("item_size", to_string(arrayType.isByteArray() ? 1 : arrayType.baseType()->calldataEncodedSize(true))); m_context.appendInlineAssembly(templ.render(), {"input_end", "base_offset", "offset", "ptr"}); // stack: v1 v2 ... v(k-1) input_end base_offset current_offset v(k) moveIntoStack(3); m_context << u256(0x20) << Instruction::ADD; } else { // Size has already been checked for this one. moveIntoStack(2); m_context << Instruction::DUP3; m_context << u256(arrayType.calldataEncodedSize(true)) << Instruction::ADD; } } else { // first load from calldata and potentially convert to memory if arrayType is memory TypePointer calldataType = arrayType.copyForLocation(DataLocation::CallData, false); if (calldataType->isDynamicallySized()) { // put on stack: data_pointer length loadFromMemoryDynamic(IntegerType(256), !_fromMemory); m_context << Instruction::SWAP1; // stack: input_end base_offset next_pointer data_offset m_context.appendInlineAssembly("{ if gt(data_offset, 0x100000000) { revert(0, 0) } }", {"data_offset"}); m_context << Instruction::DUP3 << Instruction::ADD; // stack: input_end base_offset next_pointer array_head_ptr m_context.appendInlineAssembly( "{ if gt(add(array_head_ptr, 0x20), input_end) { revert(0, 0) } }", {"input_end", "base_offset", "next_ptr", "array_head_ptr"} ); // retrieve length loadFromMemoryDynamic(IntegerType(256), !_fromMemory, true); // stack: input_end base_offset next_pointer array_length data_pointer m_context << Instruction::SWAP2; // stack: input_end base_offset data_pointer array_length next_pointer unsigned itemSize = arrayType.isByteArray() ? 1 : arrayType.baseType()->calldataEncodedSize(true); m_context.appendInlineAssembly(R"({ if or( gt(array_length, 0x100000000), gt(add(data_ptr, mul(array_length, )" + to_string(itemSize) + R"()), input_end) ) { revert(0, 0) } })", {"input_end", "base_offset", "data_ptr", "array_length", "next_ptr"}); } else { // size has already been checked // stack: input_end base_offset data_offset m_context << Instruction::DUP1; m_context << u256(calldataType->calldataEncodedSize()) << Instruction::ADD; } if (arrayType.location() == DataLocation::Memory) { // stack: input_end base_offset calldata_ref [length] next_calldata // copy to memory // move calldata type up again moveIntoStack(calldataType->sizeOnStack()); convertType(*calldataType, arrayType, false, false, true); // fetch next pointer again moveToStackTop(arrayType.sizeOnStack()); } // move input_end up // stack: input_end base_offset calldata_ref [length] next_calldata moveToStackTop(2 + arrayType.sizeOnStack()); m_context << Instruction::SWAP1; // stack: base_offset calldata_ref [length] input_end next_calldata moveToStackTop(2 + arrayType.sizeOnStack()); m_context << Instruction::SWAP1; // stack: calldata_ref [length] input_end base_offset next_calldata } } else { solAssert(!type->isDynamicallyEncoded(), "Unknown dynamically sized type: " + type->toString()); loadFromMemoryDynamic(*type, !_fromMemory, true); // stack: v1 v2 ... v(k-1) input_end base_offset v(k) mem_offset moveToStackTop(1, type->sizeOnStack()); moveIntoStack(3, type->sizeOnStack()); } // stack: v1 v2 ... v(k-1) v(k) input_end base_offset next_offset } popStackSlots(3); } void CompilerUtils::encodeToMemory( TypePointers const& _givenTypes, TypePointers const& _targetTypes, bool _padToWordBoundaries, bool _copyDynamicDataInPlace, bool _encodeAsLibraryTypes ) { // stack: ... bool const encoderV2 = m_context.experimentalFeatureActive(ExperimentalFeature::ABIEncoderV2); TypePointers targetTypes = _targetTypes.empty() ? _givenTypes : _targetTypes; solAssert(targetTypes.size() == _givenTypes.size(), ""); for (TypePointer& t: targetTypes) { TypePointer tEncoding = t->fullEncodingType(_encodeAsLibraryTypes, encoderV2, !_padToWordBoundaries); solUnimplementedAssert(tEncoding, "Encoding type \"" + t->toString() + "\" not yet implemented."); t = std::move(tEncoding); } if (_givenTypes.empty()) return; else if (_padToWordBoundaries && !_copyDynamicDataInPlace && encoderV2) { // Use the new Yul-based encoding function auto stackHeightBefore = m_context.stackHeight(); abiEncodeV2(_givenTypes, targetTypes, _encodeAsLibraryTypes); solAssert(stackHeightBefore - m_context.stackHeight() == sizeOnStack(_givenTypes), ""); return; } // Stack during operation: // ... ... // The values dyn_head_n are added during the first loop and they point to the head part // of the nth dynamic parameter, which is filled once the dynamic parts are processed. // store memory start pointer m_context << Instruction::DUP1; unsigned argSize = CompilerUtils::sizeOnStack(_givenTypes); unsigned stackPos = 0; // advances through the argument values unsigned dynPointers = 0; // number of dynamic head pointers on the stack for (size_t i = 0; i < _givenTypes.size(); ++i) { TypePointer targetType = targetTypes[i]; solAssert(!!targetType, "Externalable type expected."); if (targetType->isDynamicallySized() && !_copyDynamicDataInPlace) { // leave end_of_mem as dyn head pointer m_context << Instruction::DUP1 << u256(32) << Instruction::ADD; dynPointers++; solAssert((argSize + dynPointers) < 16, "Stack too deep, try using fewer variables."); } else { copyToStackTop(argSize - stackPos + dynPointers + 2, _givenTypes[i]->sizeOnStack()); solAssert(!!targetType, "Externalable type expected."); TypePointer type = targetType; if (_givenTypes[i]->dataStoredIn(DataLocation::Storage) && targetType->isValueType()) { // special case: convert storage reference type to value type - this is only // possible for library calls where we just forward the storage reference solAssert(_encodeAsLibraryTypes, ""); solAssert(_givenTypes[i]->sizeOnStack() == 1, ""); } else if ( _givenTypes[i]->dataStoredIn(DataLocation::Storage) || _givenTypes[i]->dataStoredIn(DataLocation::CallData) || _givenTypes[i]->category() == Type::Category::StringLiteral || _givenTypes[i]->category() == Type::Category::Function ) type = _givenTypes[i]; // delay conversion else convertType(*_givenTypes[i], *targetType, true); if (auto arrayType = dynamic_cast(type.get())) ArrayUtils(m_context).copyArrayToMemory(*arrayType, _padToWordBoundaries); else storeInMemoryDynamic(*type, _padToWordBoundaries); } stackPos += _givenTypes[i]->sizeOnStack(); } // now copy the dynamic part // Stack: ... ... stackPos = 0; unsigned thisDynPointer = 0; for (size_t i = 0; i < _givenTypes.size(); ++i) { TypePointer targetType = targetTypes[i]; solAssert(!!targetType, "Externalable type expected."); if (targetType->isDynamicallySized() && !_copyDynamicDataInPlace) { // copy tail pointer (=mem_end - mem_start) to memory m_context << dupInstruction(2 + dynPointers) << Instruction::DUP2; m_context << Instruction::SUB; m_context << dupInstruction(2 + dynPointers - thisDynPointer); m_context << Instruction::MSTORE; // stack: ... if (_givenTypes[i]->category() == Type::Category::StringLiteral) { auto const& strType = dynamic_cast(*_givenTypes[i]); m_context << u256(strType.value().size()); storeInMemoryDynamic(IntegerType(256), true); // stack: ... storeInMemoryDynamic(strType, _padToWordBoundaries); } else { solAssert(_givenTypes[i]->category() == Type::Category::Array, "Unknown dynamic type."); auto const& arrayType = dynamic_cast(*_givenTypes[i]); // now copy the array copyToStackTop(argSize - stackPos + dynPointers + 2, arrayType.sizeOnStack()); // stack: ... // copy length to memory m_context << dupInstruction(1 + arrayType.sizeOnStack()); ArrayUtils(m_context).retrieveLength(arrayType, 1); // stack: ... storeInMemoryDynamic(IntegerType(256), true); // stack: ... // copy the new memory pointer m_context << swapInstruction(arrayType.sizeOnStack() + 1) << Instruction::POP; // stack: ... // copy data part ArrayUtils(m_context).copyArrayToMemory(arrayType, _padToWordBoundaries); // stack: ... } thisDynPointer++; } stackPos += _givenTypes[i]->sizeOnStack(); } // remove unneeded stack elements (and retain memory pointer) m_context << swapInstruction(argSize + dynPointers + 1); popStackSlots(argSize + dynPointers + 1); } void CompilerUtils::abiEncodeV2( TypePointers const& _givenTypes, TypePointers const& _targetTypes, bool _encodeAsLibraryTypes ) { // stack: <$value0> <$value1> ... <$value(n-1)> <$headStart> auto ret = m_context.pushNewTag(); moveIntoStack(sizeOnStack(_givenTypes) + 1); string encoderName = m_context.abiFunctions().tupleEncoder(_givenTypes, _targetTypes, _encodeAsLibraryTypes); m_context.appendJumpTo(m_context.namedTag(encoderName)); m_context.adjustStackOffset(-int(sizeOnStack(_givenTypes)) - 1); m_context << ret.tag(); } void CompilerUtils::abiDecodeV2(TypePointers const& _parameterTypes, bool _fromMemory) { // stack: [stack top] auto ret = m_context.pushNewTag(); moveIntoStack(2); // stack: [stack top] m_context << Instruction::DUP2 << Instruction::ADD; m_context << Instruction::SWAP1; // stack: string decoderName = m_context.abiFunctions().tupleDecoder(_parameterTypes, _fromMemory); m_context.appendJumpTo(m_context.namedTag(decoderName)); m_context.adjustStackOffset(int(sizeOnStack(_parameterTypes)) - 3); m_context << ret.tag(); } void CompilerUtils::zeroInitialiseMemoryArray(ArrayType const& _type) { if (_type.baseType()->hasSimpleZeroValueInMemory()) { solAssert(_type.baseType()->isValueType(), ""); Whiskers templ(R"({ let size := mul(length, ) // cheap way of zero-initializing a memory range codecopy(memptr, codesize(), size) memptr := add(memptr, size) })"); templ("element_size", to_string(_type.isByteArray() ? 1 : _type.baseType()->memoryHeadSize())); m_context.appendInlineAssembly(templ.render(), {"length", "memptr"}); } else { // TODO: Potential optimization: // When we create a new multi-dimensional dynamic array, each element // is initialized to an empty array. It actually does not hurt // to re-use exactly the same empty array for all elements. Currently, // a new one is created each time. auto repeat = m_context.newTag(); m_context << repeat; pushZeroValue(*_type.baseType()); storeInMemoryDynamic(*_type.baseType()); m_context << Instruction::SWAP1 << u256(1) << Instruction::SWAP1; m_context << Instruction::SUB << Instruction::SWAP1; m_context << Instruction::DUP2; m_context.appendConditionalJumpTo(repeat); } m_context << Instruction::SWAP1 << Instruction::POP; } void CompilerUtils::memoryCopy32() { // Stack here: size target source m_context.appendInlineAssembly(R"( { for { let i := 0 } lt(i, len) { i := add(i, 32) } { mstore(add(dst, i), mload(add(src, i))) } } )", { "len", "dst", "src" } ); m_context << Instruction::POP << Instruction::POP << Instruction::POP; } void CompilerUtils::memoryCopy() { // Stack here: size target source m_context.appendInlineAssembly(R"( { // copy 32 bytes at once for {} iszero(lt(len, 32)) { dst := add(dst, 32) src := add(src, 32) len := sub(len, 32) } { mstore(dst, mload(src)) } // copy the remainder (0 < len < 32) let mask := sub(exp(256, sub(32, len)), 1) let srcpart := and(mload(src), not(mask)) let dstpart := and(mload(dst), mask) mstore(dst, or(srcpart, dstpart)) } )", { "len", "dst", "src" } ); m_context << Instruction::POP << Instruction::POP << Instruction::POP; } void CompilerUtils::splitExternalFunctionType(bool _leftAligned) { // We have to split the left-aligned
into two stack slots: // address (right aligned), function identifier (right aligned) if (_leftAligned) { m_context << Instruction::DUP1; rightShiftNumberOnStack(64 + 32); //
m_context << Instruction::SWAP1; rightShiftNumberOnStack(64); } else { m_context << Instruction::DUP1; rightShiftNumberOnStack(32); m_context << ((u256(1) << 160) - 1) << Instruction::AND << Instruction::SWAP1; } m_context << u256(0xffffffffUL) << Instruction::AND; } void CompilerUtils::combineExternalFunctionType(bool _leftAligned) { //
m_context << u256(0xffffffffUL) << Instruction::AND << Instruction::SWAP1; if (!_leftAligned) m_context << ((u256(1) << 160) - 1) << Instruction::AND; leftShiftNumberOnStack(32); m_context << Instruction::OR; if (_leftAligned) leftShiftNumberOnStack(64); } void CompilerUtils::pushCombinedFunctionEntryLabel(Declaration const& _function, bool _runtimeOnly) { m_context << m_context.functionEntryLabel(_function).pushTag(); // If there is a runtime context, we have to merge both labels into the same // stack slot in case we store it in storage. if (CompilerContext* rtc = m_context.runtimeContext()) { leftShiftNumberOnStack(32); if (_runtimeOnly) m_context << rtc->functionEntryLabel(_function).toSubAssemblyTag(m_context.runtimeSub()) << Instruction::OR; } } void CompilerUtils::convertType( Type const& _typeOnStack, Type const& _targetType, bool _cleanupNeeded, bool _chopSignBits, bool _asPartOfArgumentDecoding ) { // For a type extension, we need to remove all higher-order bits that we might have ignored in // previous operations. // @todo: store in the AST whether the operand might have "dirty" higher order bits if (_typeOnStack == _targetType && !_cleanupNeeded) return; Type::Category stackTypeCategory = _typeOnStack.category(); Type::Category targetTypeCategory = _targetType.category(); bool enumOverflowCheckPending = (targetTypeCategory == Type::Category::Enum || stackTypeCategory == Type::Category::Enum); bool chopSignBitsPending = _chopSignBits && targetTypeCategory == Type::Category::Integer; if (chopSignBitsPending) { const IntegerType& targetIntegerType = dynamic_cast(_targetType); chopSignBitsPending = targetIntegerType.isSigned(); } switch (stackTypeCategory) { case Type::Category::FixedBytes: { FixedBytesType const& typeOnStack = dynamic_cast(_typeOnStack); if (targetTypeCategory == Type::Category::Integer) { // conversion from bytes to integer. no need to clean the high bit // only to shift right because of opposite alignment IntegerType const& targetIntegerType = dynamic_cast(_targetType); rightShiftNumberOnStack(256 - typeOnStack.numBytes() * 8); if (targetIntegerType.numBits() < typeOnStack.numBytes() * 8) convertType(IntegerType(typeOnStack.numBytes() * 8), _targetType, _cleanupNeeded); } else if (targetTypeCategory == Type::Category::Address) { solAssert(typeOnStack.numBytes() * 8 == 160, ""); rightShiftNumberOnStack(256 - 160); } else { // clear for conversion to longer bytes solAssert(targetTypeCategory == Type::Category::FixedBytes, "Invalid type conversion requested."); FixedBytesType const& targetType = dynamic_cast(_targetType); if (typeOnStack.numBytes() == 0 || targetType.numBytes() == 0) m_context << Instruction::POP << u256(0); else if (targetType.numBytes() > typeOnStack.numBytes() || _cleanupNeeded) { unsigned bytes = min(typeOnStack.numBytes(), targetType.numBytes()); m_context << ((u256(1) << (256 - bytes * 8)) - 1); m_context << Instruction::NOT << Instruction::AND; } } break; } case Type::Category::Enum: solAssert(_targetType == _typeOnStack || targetTypeCategory == Type::Category::Integer, ""); if (enumOverflowCheckPending) { EnumType const& enumType = dynamic_cast(_typeOnStack); solAssert(enumType.numberOfMembers() > 0, "empty enum should have caused a parser error."); m_context << u256(enumType.numberOfMembers() - 1) << Instruction::DUP2 << Instruction::GT; if (_asPartOfArgumentDecoding) // TODO: error message? m_context.appendConditionalRevert(); else m_context.appendConditionalInvalid(); enumOverflowCheckPending = false; } break; case Type::Category::FixedPoint: solUnimplemented("Not yet implemented - FixedPointType."); case Type::Category::Address: case Type::Category::Integer: case Type::Category::Contract: case Type::Category::RationalNumber: if (targetTypeCategory == Type::Category::FixedBytes) { solAssert( stackTypeCategory == Type::Category::Address || stackTypeCategory == Type::Category::Integer || stackTypeCategory == Type::Category::RationalNumber, "Invalid conversion to FixedBytesType requested." ); // conversion from bytes to string. no need to clean the high bit // only to shift left because of opposite alignment FixedBytesType const& targetBytesType = dynamic_cast(_targetType); if (auto typeOnStack = dynamic_cast(&_typeOnStack)) { if (targetBytesType.numBytes() * 8 > typeOnStack->numBits()) cleanHigherOrderBits(*typeOnStack); } else if (stackTypeCategory == Type::Category::Address) solAssert(targetBytesType.numBytes() * 8 == 160, ""); leftShiftNumberOnStack(256 - targetBytesType.numBytes() * 8); } else if (targetTypeCategory == Type::Category::Enum) { solAssert(stackTypeCategory != Type::Category::Address, "Invalid conversion to EnumType requested."); solAssert(_typeOnStack.mobileType(), ""); // just clean convertType(_typeOnStack, *_typeOnStack.mobileType(), true); EnumType const& enumType = dynamic_cast(_targetType); solAssert(enumType.numberOfMembers() > 0, "empty enum should have caused a parser error."); m_context << u256(enumType.numberOfMembers() - 1) << Instruction::DUP2 << Instruction::GT; m_context.appendConditionalInvalid(); enumOverflowCheckPending = false; } else if (targetTypeCategory == Type::Category::FixedPoint) { solAssert( stackTypeCategory == Type::Category::Integer || stackTypeCategory == Type::Category::RationalNumber || stackTypeCategory == Type::Category::FixedPoint, "Invalid conversion to FixedMxNType requested." ); //shift all integer bits onto the left side of the fixed type FixedPointType const& targetFixedPointType = dynamic_cast(_targetType); if (auto typeOnStack = dynamic_cast(&_typeOnStack)) if (targetFixedPointType.numBits() > typeOnStack->numBits()) cleanHigherOrderBits(*typeOnStack); solUnimplemented("Not yet implemented - FixedPointType."); } else { solAssert(targetTypeCategory == Type::Category::Integer || targetTypeCategory == Type::Category::Contract || targetTypeCategory == Type::Category::Address, ""); IntegerType addressType(160); IntegerType const& targetType = targetTypeCategory == Type::Category::Integer ? dynamic_cast(_targetType) : addressType; if (stackTypeCategory == Type::Category::RationalNumber) { RationalNumberType const& constType = dynamic_cast(_typeOnStack); // We know that the stack is clean, we only have to clean for a narrowing conversion // where cleanup is forced. solUnimplementedAssert(!constType.isFractional(), "Not yet implemented - FixedPointType."); if (targetType.numBits() < constType.integerType()->numBits() && _cleanupNeeded) cleanHigherOrderBits(targetType); } else { IntegerType const& typeOnStack = stackTypeCategory == Type::Category::Integer ? dynamic_cast(_typeOnStack) : addressType; // Widening: clean up according to source type width // Non-widening and force: clean up according to target type bits if (targetType.numBits() > typeOnStack.numBits()) cleanHigherOrderBits(typeOnStack); else if (_cleanupNeeded) cleanHigherOrderBits(targetType); if (chopSignBitsPending) { if (typeOnStack.numBits() < 256) m_context << ((u256(1) << typeOnStack.numBits()) - 1) << Instruction::AND; chopSignBitsPending = false; } } } break; case Type::Category::StringLiteral: { auto const& literalType = dynamic_cast(_typeOnStack); string const& value = literalType.value(); bytesConstRef data(value); if (targetTypeCategory == Type::Category::FixedBytes) { unsigned const numBytes = dynamic_cast(_targetType).numBytes(); solAssert(data.size() <= 32, ""); m_context << (h256::Arith(h256(data, h256::AlignLeft)) & (~(u256(-1) >> (8 * numBytes)))); } else if (targetTypeCategory == Type::Category::Array) { auto const& arrayType = dynamic_cast(_targetType); solAssert(arrayType.isByteArray(), ""); u256 storageSize(32 + ((data.size() + 31) / 32) * 32); m_context << storageSize; allocateMemory(); // stack: mempos m_context << Instruction::DUP1 << u256(data.size()); storeInMemoryDynamic(IntegerType(256)); // stack: mempos datapos storeStringData(data); } else solAssert( false, "Invalid conversion from string literal to " + _targetType.toString(false) + " requested." ); break; } case Type::Category::Array: { solAssert(targetTypeCategory == stackTypeCategory, ""); ArrayType const& typeOnStack = dynamic_cast(_typeOnStack); ArrayType const& targetType = dynamic_cast(_targetType); switch (targetType.location()) { case DataLocation::Storage: // Other cases are done explicitly in LValue::storeValue, and only possible by assignment. solAssert( (targetType.isPointer() || (typeOnStack.isByteArray() && targetType.isByteArray())) && typeOnStack.location() == DataLocation::Storage, "Invalid conversion to storage type." ); break; case DataLocation::Memory: { // Copy the array to a free position in memory, unless it is already in memory. if (typeOnStack.location() != DataLocation::Memory) { // stack: (variably sized) unsigned stackSize = typeOnStack.sizeOnStack(); ArrayUtils(m_context).retrieveLength(typeOnStack); // allocate memory // stack: (variably sized) m_context << Instruction::DUP1; ArrayUtils(m_context).convertLengthToSize(targetType, true); // stack: (variably sized) if (targetType.isDynamicallySized()) m_context << u256(0x20) << Instruction::ADD; allocateMemory(); // stack: (variably sized) m_context << Instruction::DUP1; moveIntoStack(2 + stackSize); if (targetType.isDynamicallySized()) { m_context << Instruction::DUP2; storeInMemoryDynamic(IntegerType(256)); } // stack: (variably sized) if (targetType.baseType()->isValueType()) { solAssert(typeOnStack.baseType()->isValueType(), ""); copyToStackTop(2 + stackSize, stackSize); ArrayUtils(m_context).copyArrayToMemory(typeOnStack); } else { m_context << u256(0) << Instruction::SWAP1; // stack: (variably sized) auto repeat = m_context.newTag(); m_context << repeat; m_context << Instruction::DUP3 << Instruction::DUP3; m_context << Instruction::LT << Instruction::ISZERO; auto loopEnd = m_context.appendConditionalJump(); copyToStackTop(3 + stackSize, stackSize); copyToStackTop(2 + stackSize, 1); ArrayUtils(m_context).accessIndex(typeOnStack, false); if (typeOnStack.location() == DataLocation::Storage) StorageItem(m_context, *typeOnStack.baseType()).retrieveValue(SourceLocation(), true); convertType(*typeOnStack.baseType(), *targetType.baseType(), _cleanupNeeded); storeInMemoryDynamic(*targetType.baseType(), true); m_context << Instruction::SWAP1 << u256(1) << Instruction::ADD; m_context << Instruction::SWAP1; m_context.appendJumpTo(repeat); m_context << loopEnd; m_context << Instruction::POP; } // stack: (variably sized) popStackSlots(2 + stackSize); // Stack: } break; } case DataLocation::CallData: solAssert( targetType.isByteArray() && typeOnStack.isByteArray() && typeOnStack.location() == DataLocation::CallData, "Invalid conversion to calldata type."); break; } break; } case Type::Category::Struct: { solAssert(targetTypeCategory == stackTypeCategory, ""); auto& targetType = dynamic_cast(_targetType); auto& typeOnStack = dynamic_cast(_typeOnStack); solAssert( targetType.location() != DataLocation::CallData && typeOnStack.location() != DataLocation::CallData , ""); switch (targetType.location()) { case DataLocation::Storage: // Other cases are done explicitly in LValue::storeValue, and only possible by assignment. solAssert( targetType.isPointer() && typeOnStack.location() == DataLocation::Storage, "Invalid conversion to storage type." ); break; case DataLocation::Memory: // Copy the array to a free position in memory, unless it is already in memory. if (typeOnStack.location() != DataLocation::Memory) { solAssert(typeOnStack.location() == DataLocation::Storage, ""); // stack: m_context << typeOnStack.memorySize(); allocateMemory(); m_context << Instruction::SWAP1 << Instruction::DUP2; // stack: for (auto const& member: typeOnStack.members(nullptr)) { if (!member.type->canLiveOutsideStorage()) continue; pair const& offsets = typeOnStack.storageOffsetsOfMember(member.name); m_context << offsets.first << Instruction::DUP3 << Instruction::ADD; m_context << u256(offsets.second); StorageItem(m_context, *member.type).retrieveValue(SourceLocation(), true); TypePointer targetMemberType = targetType.memberType(member.name); solAssert(!!targetMemberType, "Member not found in target type."); convertType(*member.type, *targetMemberType, true); storeInMemoryDynamic(*targetMemberType, true); } m_context << Instruction::POP << Instruction::POP; } break; case DataLocation::CallData: solAssert(false, "Invalid type conversion target location CallData."); break; } break; } case Type::Category::Tuple: { TupleType const& sourceTuple = dynamic_cast(_typeOnStack); TupleType const& targetTuple = dynamic_cast(_targetType); solAssert(targetTuple.components().size() == sourceTuple.components().size(), ""); unsigned depth = sourceTuple.sizeOnStack(); for (size_t i = 0; i < sourceTuple.components().size(); ++i) { TypePointer sourceType = sourceTuple.components()[i]; TypePointer targetType = targetTuple.components()[i]; if (!sourceType) { solAssert(!targetType, ""); continue; } unsigned sourceSize = sourceType->sizeOnStack(); unsigned targetSize = targetType ? targetType->sizeOnStack() : 0; if (!targetType || *sourceType != *targetType || _cleanupNeeded) { if (targetType) { if (sourceSize > 0) copyToStackTop(depth, sourceSize); convertType(*sourceType, *targetType, _cleanupNeeded); } if (sourceSize > 0 || targetSize > 0) { // Move it back into its place. for (unsigned j = 0; j < min(sourceSize, targetSize); ++j) m_context << swapInstruction(depth + targetSize - sourceSize) << Instruction::POP; // Value shrank for (unsigned j = targetSize; j < sourceSize; ++j) { moveToStackTop(depth - 1, 1); m_context << Instruction::POP; } // Value grew if (targetSize > sourceSize) moveIntoStack(depth + targetSize - sourceSize - 1, targetSize - sourceSize); } } depth -= sourceSize; } break; } case Type::Category::Bool: solAssert(_targetType == _typeOnStack, "Invalid conversion for bool."); if (_cleanupNeeded) m_context << Instruction::ISZERO << Instruction::ISZERO; break; default: if (stackTypeCategory == Type::Category::Function && targetTypeCategory == Type::Category::Address) { FunctionType const& typeOnStack = dynamic_cast(_typeOnStack); solAssert(typeOnStack.kind() == FunctionType::Kind::External, "Only external function type can be converted."); // stack:
m_context << Instruction::POP; } else { if (stackTypeCategory == Type::Category::Function && targetTypeCategory == Type::Category::Function) { FunctionType const& typeOnStack = dynamic_cast(_typeOnStack); FunctionType const& targetType = dynamic_cast(_targetType); solAssert( typeOnStack.isImplicitlyConvertibleTo(targetType) && typeOnStack.sizeOnStack() == targetType.sizeOnStack() && (typeOnStack.kind() == FunctionType::Kind::Internal || typeOnStack.kind() == FunctionType::Kind::External) && typeOnStack.kind() == targetType.kind(), "Invalid function type conversion requested." ); } else // All other types should not be convertible to non-equal types. solAssert(_typeOnStack == _targetType, "Invalid type conversion requested."); if (_cleanupNeeded && _targetType.canBeStored() && _targetType.storageBytes() < 32) m_context << ((u256(1) << (8 * _targetType.storageBytes())) - 1) << Instruction::AND; } break; } solAssert(!enumOverflowCheckPending, "enum overflow checking missing."); solAssert(!chopSignBitsPending, "forgot to chop the sign bits."); } void CompilerUtils::pushZeroValue(Type const& _type) { if (auto const* funType = dynamic_cast(&_type)) { if (funType->kind() == FunctionType::Kind::Internal) { m_context << m_context.lowLevelFunctionTag("$invalidFunction", 0, 0, [](CompilerContext& _context) { _context.appendInvalid(); }); return; } } auto const* referenceType = dynamic_cast(&_type); if (!referenceType || referenceType->location() == DataLocation::Storage) { for (size_t i = 0; i < _type.sizeOnStack(); ++i) m_context << u256(0); return; } solAssert(referenceType->location() == DataLocation::Memory, ""); if (auto arrayType = dynamic_cast(&_type)) if (arrayType->isDynamicallySized()) { // Push a memory location that is (hopefully) always zero. pushZeroPointer(); return; } TypePointer type = _type.shared_from_this(); m_context.callLowLevelFunction( "$pushZeroValue_" + referenceType->identifier(), 0, 1, [type](CompilerContext& _context) { CompilerUtils utils(_context); _context << u256(max(32u, type->calldataEncodedSize())); utils.allocateMemory(); _context << Instruction::DUP1; if (auto structType = dynamic_cast(type.get())) for (auto const& member: structType->members(nullptr)) { utils.pushZeroValue(*member.type); utils.storeInMemoryDynamic(*member.type); } else if (auto arrayType = dynamic_cast(type.get())) { solAssert(!arrayType->isDynamicallySized(), ""); if (arrayType->length() > 0) { _context << arrayType->length() << Instruction::SWAP1; // stack: items_to_do memory_pos utils.zeroInitialiseMemoryArray(*arrayType); // stack: updated_memory_pos } } else solAssert(false, "Requested initialisation for unknown type: " + type->toString()); // remove the updated memory pointer _context << Instruction::POP; } ); } void CompilerUtils::pushZeroPointer() { m_context << u256(zeroPointer); } void CompilerUtils::moveToStackVariable(VariableDeclaration const& _variable) { unsigned const stackPosition = m_context.baseToCurrentStackOffset(m_context.baseStackOffsetOfVariable(_variable)); unsigned const size = _variable.annotation().type->sizeOnStack(); solAssert(stackPosition >= size, "Variable size and position mismatch."); // move variable starting from its top end in the stack if (stackPosition - size + 1 > 16) BOOST_THROW_EXCEPTION( CompilerError() << errinfo_sourceLocation(_variable.location()) << errinfo_comment("Stack too deep, try removing local variables.") ); for (unsigned i = 0; i < size; ++i) m_context << swapInstruction(stackPosition - size + 1) << Instruction::POP; } void CompilerUtils::copyToStackTop(unsigned _stackDepth, unsigned _itemSize) { solAssert(_stackDepth <= 16, "Stack too deep, try removing local variables."); for (unsigned i = 0; i < _itemSize; ++i) m_context << dupInstruction(_stackDepth); } void CompilerUtils::moveToStackTop(unsigned _stackDepth, unsigned _itemSize) { moveIntoStack(_itemSize, _stackDepth); } void CompilerUtils::moveIntoStack(unsigned _stackDepth, unsigned _itemSize) { if (_stackDepth <= _itemSize) for (unsigned i = 0; i < _stackDepth; ++i) rotateStackDown(_stackDepth + _itemSize); else for (unsigned i = 0; i < _itemSize; ++i) rotateStackUp(_stackDepth + _itemSize); } void CompilerUtils::rotateStackUp(unsigned _items) { solAssert(_items - 1 <= 16, "Stack too deep, try removing local variables."); for (unsigned i = 1; i < _items; ++i) m_context << swapInstruction(_items - i); } void CompilerUtils::rotateStackDown(unsigned _items) { solAssert(_items - 1 <= 16, "Stack too deep, try removing local variables."); for (unsigned i = 1; i < _items; ++i) m_context << swapInstruction(i); } void CompilerUtils::popStackElement(Type const& _type) { popStackSlots(_type.sizeOnStack()); } void CompilerUtils::popStackSlots(size_t _amount) { for (size_t i = 0; i < _amount; ++i) m_context << Instruction::POP; } void CompilerUtils::popAndJump(unsigned _toHeight, eth::AssemblyItem const& _jumpTo) { solAssert(m_context.stackHeight() >= _toHeight, ""); unsigned amount = m_context.stackHeight() - _toHeight; popStackSlots(amount); m_context.appendJumpTo(_jumpTo); m_context.adjustStackOffset(amount); } unsigned CompilerUtils::sizeOnStack(vector> const& _variableTypes) { unsigned size = 0; for (shared_ptr const& type: _variableTypes) size += type->sizeOnStack(); return size; } void CompilerUtils::computeHashStatic() { storeInMemory(0); m_context << u256(32) << u256(0) << Instruction::KECCAK256; } void CompilerUtils::storeStringData(bytesConstRef _data) { //@todo provide both alternatives to the optimiser // stack: mempos if (_data.size() <= 128) { for (unsigned i = 0; i < _data.size(); i += 32) { m_context << h256::Arith(h256(_data.cropped(i), h256::AlignLeft)); storeInMemoryDynamic(IntegerType(256)); } m_context << Instruction::POP; } else { // stack: mempos mempos_data m_context.appendData(_data.toBytes()); m_context << u256(_data.size()) << Instruction::SWAP2; m_context << Instruction::CODECOPY; } } unsigned CompilerUtils::loadFromMemoryHelper(Type const& _type, bool _fromCalldata, bool _padToWords) { unsigned numBytes = _type.calldataEncodedSize(_padToWords); bool isExternalFunctionType = false; if (auto const* funType = dynamic_cast(&_type)) if (funType->kind() == FunctionType::Kind::External) isExternalFunctionType = true; if (numBytes == 0) { m_context << Instruction::POP << u256(0); return numBytes; } solAssert(numBytes <= 32, "Static memory load of more than 32 bytes requested."); m_context << (_fromCalldata ? Instruction::CALLDATALOAD : Instruction::MLOAD); if (isExternalFunctionType) splitExternalFunctionType(true); else if (numBytes != 32) { bool leftAligned = _type.category() == Type::Category::FixedBytes; // add leading or trailing zeros by dividing/multiplying depending on alignment int shiftFactor = (32 - numBytes) * 8; rightShiftNumberOnStack(shiftFactor); if (leftAligned) leftShiftNumberOnStack(shiftFactor); } if (_fromCalldata) convertType(_type, _type, true, false, true); return numBytes; } void CompilerUtils::cleanHigherOrderBits(IntegerType const& _typeOnStack) { if (_typeOnStack.numBits() == 256) return; else if (_typeOnStack.isSigned()) m_context << u256(_typeOnStack.numBits() / 8 - 1) << Instruction::SIGNEXTEND; else m_context << ((u256(1) << _typeOnStack.numBits()) - 1) << Instruction::AND; } void CompilerUtils::leftShiftNumberOnStack(unsigned _bits) { solAssert(_bits < 256, ""); if (m_context.evmVersion().hasBitwiseShifting()) m_context << _bits << Instruction::SHL; else m_context << (u256(1) << _bits) << Instruction::MUL; } void CompilerUtils::rightShiftNumberOnStack(unsigned _bits) { solAssert(_bits < 256, ""); // NOTE: If we add signed right shift, SAR rounds differently than SDIV if (m_context.evmVersion().hasBitwiseShifting()) m_context << _bits << Instruction::SHR; else m_context << (u256(1) << _bits) << Instruction::SWAP1 << Instruction::DIV; } unsigned CompilerUtils::prepareMemoryStore(Type const& _type, bool _padToWords) { solAssert( _type.sizeOnStack() == 1, "Memory store of types with stack size != 1 not allowed (Type: " + _type.toString(true) + ")." ); unsigned numBytes = _type.calldataEncodedSize(_padToWords); solAssert( numBytes > 0, "Memory store of 0 bytes requested (Type: " + _type.toString(true) + ")." ); solAssert( numBytes <= 32, "Memory store of more than 32 bytes requested (Type: " + _type.toString(true) + ")." ); bool leftAligned = _type.category() == Type::Category::FixedBytes; convertType(_type, _type, true); if (numBytes != 32 && !leftAligned && !_padToWords) // shift the value accordingly before storing leftShiftNumberOnStack((32 - numBytes) * 8); return numBytes; } } }