/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** * @author Christian * @date 2014 * Solidity compiler. */ #include #include #include #include #include #include #include #include #include using namespace std; namespace dev { namespace solidity { void Compiler::compileContract(ContractDefinition const& _contract, map const& _contracts) { m_context = CompilerContext(); // clear it just in case initializeContext(_contract, _contracts); for (ContractDefinition const* contract: _contract.getLinearizedBaseContracts()) { for (ASTPointer const& function: contract->getDefinedFunctions()) if (!function->isConstructor()) m_context.addFunction(*function); for (ASTPointer const& vardecl: contract->getStateVariables()) if (vardecl->isPublic()) m_context.addFunction(*vardecl); for (ASTPointer const& modifier: contract->getFunctionModifiers()) m_context.addModifier(*modifier); } appendFunctionSelector(_contract); for (ContractDefinition const* contract: _contract.getLinearizedBaseContracts()) { for (ASTPointer const& function: contract->getDefinedFunctions()) if (!function->isConstructor()) function->accept(*this); for (ASTPointer const& vardecl: contract->getStateVariables()) if (vardecl->isPublic()) generateAccessorCode(*vardecl); } // Swap the runtime context with the creation-time context swap(m_context, m_runtimeContext); initializeContext(_contract, _contracts); packIntoContractCreator(_contract, m_runtimeContext); } void Compiler::initializeContext(ContractDefinition const& _contract, map const& _contracts) { m_context.setCompiledContracts(_contracts); registerStateVariables(_contract); } void Compiler::packIntoContractCreator(ContractDefinition const& _contract, CompilerContext const& _runtimeContext) { std::vector const& bases = _contract.getLinearizedBaseContracts(); // Make all modifiers known to the context. for (ContractDefinition const* contract: bases) for (ASTPointer const& modifier: contract->getFunctionModifiers()) m_context.addModifier(*modifier); // arguments for base constructors, filled in derived-to-base order map> const*> baseArguments; set neededFunctions; set nodesUsedInConstructors; // Determine the arguments that are used for the base constructors and also which functions // are needed at compile time. for (ContractDefinition const* contract: bases) { if (FunctionDefinition const* constructor = contract->getConstructor()) nodesUsedInConstructors.insert(constructor); for (ASTPointer const& base: contract->getBaseContracts()) { ContractDefinition const* baseContract = dynamic_cast( base->getName()->getReferencedDeclaration()); solAssert(baseContract, ""); if (baseArguments.count(baseContract) == 0) { baseArguments[baseContract] = &base->getArguments(); for (ASTPointer const& arg: base->getArguments()) nodesUsedInConstructors.insert(arg.get()); } } } auto functionOverrideResolver = [&](string const& _name) -> FunctionDefinition const* { for (ContractDefinition const* contract: bases) for (ASTPointer const& function: contract->getDefinedFunctions()) if (!function->isConstructor() && function->getName() == _name) return function.get(); return nullptr; }; auto modifierOverrideResolver = [&](string const& _name) -> ModifierDefinition const* { return &m_context.getFunctionModifier(_name); }; neededFunctions = getFunctionsCalled(nodesUsedInConstructors, functionOverrideResolver, modifierOverrideResolver); // First add all overrides (or the functions themselves if there is no override) for (FunctionDefinition const* fun: neededFunctions) { FunctionDefinition const* override = nullptr; if (!fun->isConstructor()) override = functionOverrideResolver(fun->getName()); if (!!override && neededFunctions.count(override)) m_context.addFunction(*override); } // now add the rest for (FunctionDefinition const* fun: neededFunctions) if (fun->isConstructor() || functionOverrideResolver(fun->getName()) != fun) m_context.addFunction(*fun); // Call constructors in base-to-derived order. // The Constructor for the most derived contract is called later. for (unsigned i = 1; i < bases.size(); i++) { ContractDefinition const* base = bases[bases.size() - i]; solAssert(base, ""); FunctionDefinition const* baseConstructor = base->getConstructor(); if (!baseConstructor) continue; solAssert(baseArguments[base], ""); appendBaseConstructorCall(*baseConstructor, *baseArguments[base]); } if (_contract.getConstructor()) appendConstructorCall(*_contract.getConstructor()); eth::AssemblyItem sub = m_context.addSubroutine(_runtimeContext.getAssembly()); // stack contains sub size m_context << eth::Instruction::DUP1 << sub << u256(0) << eth::Instruction::CODECOPY; m_context << u256(0) << eth::Instruction::RETURN; // note that we have to explicitly include all used functions because of absolute jump // labels for (FunctionDefinition const* fun: neededFunctions) fun->accept(*this); } void Compiler::appendBaseConstructorCall(FunctionDefinition const& _constructor, vector> const& _arguments) { FunctionType constructorType(_constructor); eth::AssemblyItem returnLabel = m_context.pushNewTag(); for (unsigned i = 0; i < _arguments.size(); ++i) compileExpression(*_arguments[i], constructorType.getParameterTypes()[i]); m_context.appendJumpTo(m_context.getFunctionEntryLabel(_constructor)); m_context << returnLabel; } void Compiler::appendConstructorCall(FunctionDefinition const& _constructor) { eth::AssemblyItem returnTag = m_context.pushNewTag(); // copy constructor arguments from code to memory and then to stack, they are supplied after the actual program unsigned argumentSize = 0; for (ASTPointer const& var: _constructor.getParameters()) argumentSize += CompilerUtils::getPaddedSize(var->getType()->getCalldataEncodedSize()); if (argumentSize > 0) { m_context << u256(argumentSize); m_context.appendProgramSize(); m_context << u256(CompilerUtils::dataStartOffset); // copy it to byte four as expected for ABI calls m_context << eth::Instruction::CODECOPY; appendCalldataUnpacker(FunctionType(_constructor).getParameterTypes(), true); } m_context.appendJumpTo(m_context.getFunctionEntryLabel(_constructor)); m_context << returnTag; } set Compiler::getFunctionsCalled(set const& _nodes, function const& _resolveFunctionOverrides, function const& _resolveModifierOverrides) { CallGraph callgraph(_resolveFunctionOverrides, _resolveModifierOverrides); for (ASTNode const* node: _nodes) callgraph.addNode(*node); return callgraph.getCalls(); } void Compiler::appendFunctionSelector(ContractDefinition const& _contract) { map, FunctionDescription> interfaceFunctions = _contract.getInterfaceFunctions(); map, const eth::AssemblyItem> callDataUnpackerEntryPoints; // retrieve the function signature hash from the calldata m_context << u256(1) << u256(0); CompilerUtils(m_context).loadFromMemory(0, 4, false, true); // stack now is: 1 0 for (auto const& it: interfaceFunctions) { callDataUnpackerEntryPoints.insert(std::make_pair(it.first, m_context.newTag())); m_context << eth::dupInstruction(1) << u256(FixedHash<4>::Arith(it.first)) << eth::Instruction::EQ; m_context.appendConditionalJumpTo(callDataUnpackerEntryPoints.at(it.first)); } m_context << eth::Instruction::STOP; // function not found for (auto const& it: interfaceFunctions) { FunctionType const* functionType = it.second.getFunctionType(); m_context << callDataUnpackerEntryPoints.at(it.first); eth::AssemblyItem returnTag = m_context.pushNewTag(); appendCalldataUnpacker(functionType->getParameterTypes()); m_context.appendJumpTo(m_context.getFunctionEntryLabel(*it.second.getDeclaration())); m_context << returnTag; appendReturnValuePacker(functionType->getReturnParameterTypes()); } } unsigned Compiler::appendCalldataUnpacker(TypePointers const& _typeParameters, bool _fromMemory) { // We do not check the calldata size, everything is zero-padded. unsigned dataOffset = CompilerUtils::dataStartOffset; // the 4 bytes of the function hash signature //@todo this can be done more efficiently, saving some CALLDATALOAD calls for (TypePointer const& type: _typeParameters) { unsigned const c_numBytes = type->getCalldataEncodedSize(); if (c_numBytes > 32) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Type " + type->toString() + " not yet supported.")); bool const c_leftAligned = type->getCategory() == Type::Category::STRING; bool const c_padToWords = true; dataOffset += CompilerUtils(m_context).loadFromMemory(dataOffset, c_numBytes, c_leftAligned, !_fromMemory, c_padToWords); } return dataOffset; } void Compiler::appendReturnValuePacker(TypePointers const& _typeParameters) { //@todo this can be also done more efficiently unsigned dataOffset = 0; unsigned stackDepth = 0; for (TypePointer const& type: _typeParameters) stackDepth += type->getSizeOnStack(); for (TypePointer const& type: _typeParameters) { unsigned numBytes = type->getCalldataEncodedSize(); if (numBytes > 32) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Type " + type->toString() + " not yet supported.")); CompilerUtils(m_context).copyToStackTop(stackDepth, *type); ExpressionCompiler::appendTypeConversion(m_context, *type, *type, true); bool const c_leftAligned = type->getCategory() == Type::Category::STRING; bool const c_padToWords = true; dataOffset += CompilerUtils(m_context).storeInMemory(dataOffset, numBytes, c_leftAligned, c_padToWords); stackDepth -= type->getSizeOnStack(); } // note that the stack is not cleaned up here m_context << u256(dataOffset) << u256(0) << eth::Instruction::RETURN; } void Compiler::registerStateVariables(ContractDefinition const& _contract) { for (ContractDefinition const* contract: boost::adaptors::reverse(_contract.getLinearizedBaseContracts())) for (ASTPointer const& variable: contract->getStateVariables()) m_context.addStateVariable(*variable); } bool Compiler::generateAccessorCode(VariableDeclaration const& _varDecl) { m_context.startNewFunction(); m_returnTag = m_context.newTag(); m_breakTags.clear(); m_continueTags.clear(); // TODO: Work in progress m_context << m_context.getFunctionEntryLabel(_varDecl); // CompilerUtils(m_context).moveToStackVariable(firstVariable); m_context.appendJumpTo(m_returnTag); m_context << m_returnTag; // TODO: perhaps return void if there are no checks? return true; } bool Compiler::visit(FunctionDefinition const& _function) { //@todo to simplify this, the calling convention could by changed such that // caller puts: [retarg0] ... [retargm] [return address] [arg0] ... [argn] // although note that this reduces the size of the visible stack m_context.startNewFunction(); m_returnTag = m_context.newTag(); m_breakTags.clear(); m_continueTags.clear(); m_stackCleanupForReturn = 0; m_currentFunction = &_function; m_modifierDepth = 0; m_context << m_context.getFunctionEntryLabel(_function); // stack upon entry: [return address] [arg0] [arg1] ... [argn] // reserve additional slots: [retarg0] ... [retargm] [localvar0] ... [localvarp] unsigned parametersSize = CompilerUtils::getSizeOnStack(_function.getParameters()); m_context.adjustStackOffset(parametersSize); for (ASTPointer const& variable: _function.getParameters()) { m_context.addVariable(*variable, parametersSize); parametersSize -= variable->getType()->getSizeOnStack(); } for (ASTPointer const& variable: _function.getReturnParameters()) m_context.addAndInitializeVariable(*variable); for (VariableDeclaration const* localVariable: _function.getLocalVariables()) m_context.addAndInitializeVariable(*localVariable); appendModifierOrFunctionCode(); m_context << m_returnTag; // Now we need to re-shuffle the stack. For this we keep a record of the stack layout // that shows the target positions of the elements, where "-1" denotes that this element needs // to be removed from the stack. // Note that the fact that the return arguments are of increasing index is vital for this // algorithm to work. unsigned const c_argumentsSize = CompilerUtils::getSizeOnStack(_function.getParameters()); unsigned const c_returnValuesSize = CompilerUtils::getSizeOnStack(_function.getReturnParameters()); unsigned const c_localVariablesSize = CompilerUtils::getSizeOnStack(_function.getLocalVariables()); vector stackLayout; stackLayout.push_back(c_returnValuesSize); // target of return address stackLayout += vector(c_argumentsSize, -1); // discard all arguments for (unsigned i = 0; i < c_returnValuesSize; ++i) stackLayout.push_back(i); stackLayout += vector(c_localVariablesSize, -1); while (stackLayout.back() != int(stackLayout.size() - 1)) if (stackLayout.back() < 0) { m_context << eth::Instruction::POP; stackLayout.pop_back(); } else { m_context << eth::swapInstruction(stackLayout.size() - stackLayout.back() - 1); swap(stackLayout[stackLayout.back()], stackLayout.back()); } //@todo assert that everything is in place now m_context << eth::Instruction::JUMP; return false; } bool Compiler::visit(IfStatement const& _ifStatement) { compileExpression(_ifStatement.getCondition()); eth::AssemblyItem trueTag = m_context.appendConditionalJump(); if (_ifStatement.getFalseStatement()) _ifStatement.getFalseStatement()->accept(*this); eth::AssemblyItem endTag = m_context.appendJumpToNew(); m_context << trueTag; _ifStatement.getTrueStatement().accept(*this); m_context << endTag; return false; } bool Compiler::visit(WhileStatement const& _whileStatement) { eth::AssemblyItem loopStart = m_context.newTag(); eth::AssemblyItem loopEnd = m_context.newTag(); m_continueTags.push_back(loopStart); m_breakTags.push_back(loopEnd); m_context << loopStart; compileExpression(_whileStatement.getCondition()); m_context << eth::Instruction::ISZERO; m_context.appendConditionalJumpTo(loopEnd); _whileStatement.getBody().accept(*this); m_context.appendJumpTo(loopStart); m_context << loopEnd; m_continueTags.pop_back(); m_breakTags.pop_back(); return false; } bool Compiler::visit(ForStatement const& _forStatement) { eth::AssemblyItem loopStart = m_context.newTag(); eth::AssemblyItem loopEnd = m_context.newTag(); m_continueTags.push_back(loopStart); m_breakTags.push_back(loopEnd); if (_forStatement.getInitializationExpression()) _forStatement.getInitializationExpression()->accept(*this); m_context << loopStart; // if there is no terminating condition in for, default is to always be true if (_forStatement.getCondition()) { compileExpression(*_forStatement.getCondition()); m_context << eth::Instruction::ISZERO; m_context.appendConditionalJumpTo(loopEnd); } _forStatement.getBody().accept(*this); // for's loop expression if existing if (_forStatement.getLoopExpression()) _forStatement.getLoopExpression()->accept(*this); m_context.appendJumpTo(loopStart); m_context << loopEnd; m_continueTags.pop_back(); m_breakTags.pop_back(); return false; } bool Compiler::visit(Continue const&) { if (!m_continueTags.empty()) m_context.appendJumpTo(m_continueTags.back()); return false; } bool Compiler::visit(Break const&) { if (!m_breakTags.empty()) m_context.appendJumpTo(m_breakTags.back()); return false; } bool Compiler::visit(Return const& _return) { //@todo modifications are needed to make this work with functions returning multiple values if (Expression const* expression = _return.getExpression()) { solAssert(_return.getFunctionReturnParameters(), "Invalid return parameters pointer."); VariableDeclaration const& firstVariable = *_return.getFunctionReturnParameters()->getParameters().front(); compileExpression(*expression, firstVariable.getType()); CompilerUtils(m_context).moveToStackVariable(firstVariable); } for (unsigned i = 0; i < m_stackCleanupForReturn; ++i) m_context << eth::Instruction::POP; m_context.appendJumpTo(m_returnTag); m_context.adjustStackOffset(m_stackCleanupForReturn); return false; } bool Compiler::visit(VariableDefinition const& _variableDefinition) { if (Expression const* expression = _variableDefinition.getExpression()) { compileExpression(*expression, _variableDefinition.getDeclaration().getType()); CompilerUtils(m_context).moveToStackVariable(_variableDefinition.getDeclaration()); } return false; } bool Compiler::visit(ExpressionStatement const& _expressionStatement) { Expression const& expression = _expressionStatement.getExpression(); compileExpression(expression); CompilerUtils(m_context).popStackElement(*expression.getType()); return false; } bool Compiler::visit(PlaceholderStatement const&) { ++m_modifierDepth; appendModifierOrFunctionCode(); --m_modifierDepth; return true; } void Compiler::appendModifierOrFunctionCode() { solAssert(m_currentFunction, ""); if (m_modifierDepth >= m_currentFunction->getModifiers().size()) m_currentFunction->getBody().accept(*this); else { ASTPointer const& modifierInvocation = m_currentFunction->getModifiers()[m_modifierDepth]; ModifierDefinition const& modifier = m_context.getFunctionModifier(modifierInvocation->getName()->getName()); solAssert(modifier.getParameters().size() == modifierInvocation->getArguments().size(), ""); for (unsigned i = 0; i < modifier.getParameters().size(); ++i) { m_context.addVariable(*modifier.getParameters()[i]); compileExpression(*modifierInvocation->getArguments()[i], modifier.getParameters()[i]->getType()); } for (VariableDeclaration const* localVariable: modifier.getLocalVariables()) m_context.addAndInitializeVariable(*localVariable); unsigned const c_stackSurplus = CompilerUtils::getSizeOnStack(modifier.getParameters()) + CompilerUtils::getSizeOnStack(modifier.getLocalVariables()); m_stackCleanupForReturn += c_stackSurplus; modifier.getBody().accept(*this); for (unsigned i = 0; i < c_stackSurplus; ++i) m_context << eth::Instruction::POP; m_stackCleanupForReturn -= c_stackSurplus; } } void Compiler::compileExpression(Expression const& _expression, TypePointer const& _targetType) { ExpressionCompiler::compileExpression(m_context, _expression, m_optimize); if (_targetType) ExpressionCompiler::appendTypeConversion(m_context, *_expression.getType(), *_targetType); } } }