#pragma once #include #include #include #include #include #ifdef __INTEL_COMPILER #pragma warning(disable:597) // will not be called for implicit or explicit conversions #endif namespace solidity::util { /** * A modifiable reference to an existing object or vector in memory. */ template class vector_ref { public: using value_type = T; using element_type = T; using mutable_value_type = typename std::conditional::value, typename std::remove_const::type, T>::type; using string_type = typename std::conditional::value, std::string const, std::string>::type; using vector_type = typename std::conditional::value, std::vector::type> const, std::vector>::type; using iterator = T*; using const_iterator = T const*; static_assert(std::is_pod::value, "vector_ref can only be used with PODs due to its low-level treatment of data."); vector_ref(): m_data(nullptr), m_count(0) {} /// Creates a new vector_ref to point to @a _count elements starting at @a _data. vector_ref(T* _data, size_t _count): m_data(_data), m_count(_count) {} /// Creates a new vector_ref pointing to the data part of a string (given as pointer). vector_ref(string_type* _data): m_data(reinterpret_cast(_data->data())), m_count(_data->size() / sizeof(T)) {} /// Creates a new vector_ref pointing to the data part of a string (given as reference). vector_ref(string_type& _data): vector_ref(&_data) {} /// Creates a new vector_ref pointing to the data part of a vector (given as pointer). vector_ref(vector_type* _data): m_data(_data->data()), m_count(_data->size()) {} explicit operator bool() const { return m_data && m_count; } std::vector toBytes() const { return std::vector(reinterpret_cast(m_data), reinterpret_cast(m_data) + m_count * sizeof(T)); } std::string toString() const { return std::string((char const*)m_data, ((char const*)m_data) + m_count * sizeof(T)); } template explicit operator vector_ref() const { assert(m_count * sizeof(T) / sizeof(T2) * sizeof(T2) / sizeof(T) == m_count); return vector_ref(reinterpret_cast(m_data), m_count * sizeof(T) / sizeof(T2)); } operator vector_ref() const { return vector_ref(m_data, m_count); } T* data() const { return m_data; } /// @returns the number of elements referenced (not necessarily number of bytes). size_t size() const { return m_count; } bool empty() const { return !m_count; } /// @returns a new vector_ref which is a shifted and shortened view of the original data. /// If this goes out of bounds in any way, returns an empty vector_ref. /// If @a _count is ~size_t(0), extends the view to the end of the data. vector_ref cropped(size_t _begin, size_t _count) const { if (m_data && _begin <= m_count && _count <= m_count && _begin + _count <= m_count) return vector_ref(m_data + _begin, _count == ~size_t(0) ? m_count - _begin : _count); else return vector_ref(); } /// @returns a new vector_ref which is a shifted view of the original data (not going beyond it). vector_ref cropped(size_t _begin) const { if (m_data && _begin <= m_count) return vector_ref(m_data + _begin, m_count - _begin); else return vector_ref(); } T* begin() { return m_data; } T* end() { return m_data + m_count; } T const* begin() const { return m_data; } T const* end() const { return m_data + m_count; } T& operator[](size_t _i) { assert(m_data); assert(_i < m_count); return m_data[_i]; } T const& operator[](size_t _i) const { assert(m_data); assert(_i < m_count); return m_data[_i]; } bool operator==(vector_ref const& _cmp) const { return m_data == _cmp.m_data && m_count == _cmp.m_count; } bool operator!=(vector_ref const& _cmp) const { return !operator==(_cmp); } void reset() { m_data = nullptr; m_count = 0; } private: T* m_data = nullptr; size_t m_count = 0; }; }