/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** * @author Christian * @date 2014 * Solidity AST to EVM bytecode compiler for expressions. */ #include #include #include #include #include #include #include #include #include #include #include using namespace std; namespace dev { namespace solidity { void ExpressionCompiler::compile(Expression const& _expression) { _expression.accept(*this); } void ExpressionCompiler::appendStateVariableInitialization(VariableDeclaration const& _varDecl) { if (!_varDecl.getValue()) return; TypePointer type = _varDecl.getValue()->getType(); solAssert(!!type, "Type information not available."); CompilerContext::LocationSetter locationSetter(m_context, _varDecl); _varDecl.getValue()->accept(*this); if (_varDecl.getType()->dataStoredIn(DataLocation::Storage)) { // reference type, only convert value to mobile type and do final conversion in storeValue. utils().convertType(*type, *type->mobileType()); type = type->mobileType(); } else { utils().convertType(*type, *_varDecl.getType()); type = _varDecl.getType(); } StorageItem(m_context, _varDecl).storeValue(*type, _varDecl.getLocation(), true); } void ExpressionCompiler::appendStateVariableAccessor(VariableDeclaration const& _varDecl) { CompilerContext::LocationSetter locationSetter(m_context, _varDecl); FunctionType accessorType(_varDecl); TypePointers const& paramTypes = accessorType.getParameterTypes(); // retrieve the position of the variable auto const& location = m_context.getStorageLocationOfVariable(_varDecl); m_context << location.first << u256(location.second); TypePointer returnType = _varDecl.getType(); for (size_t i = 0; i < paramTypes.size(); ++i) { if (auto mappingType = dynamic_cast(returnType.get())) { solAssert(CompilerUtils::freeMemoryPointer >= 0x40, ""); solAssert( !paramTypes[i]->isDynamicallySized(), "Accessors for mapping with dynamically-sized keys not yet implemented." ); // pop offset m_context << eth::Instruction::POP; // move storage offset to memory. utils().storeInMemory(32); // move key to memory. utils().copyToStackTop(paramTypes.size() - i, 1); utils().storeInMemory(0); m_context << u256(64) << u256(0) << eth::Instruction::SHA3; // push offset m_context << u256(0); returnType = mappingType->getValueType(); } else if (auto arrayType = dynamic_cast(returnType.get())) { // pop offset m_context << eth::Instruction::POP; utils().copyToStackTop(paramTypes.size() - i + 1, 1); ArrayUtils(m_context).accessIndex(*arrayType); returnType = arrayType->getBaseType(); } else solAssert(false, "Index access is allowed only for \"mapping\" and \"array\" types."); } // remove index arguments. if (paramTypes.size() == 1) m_context << eth::Instruction::SWAP2 << eth::Instruction::POP << eth::Instruction::SWAP1; else if (paramTypes.size() >= 2) { m_context << eth::swapInstruction(paramTypes.size()); m_context << eth::Instruction::POP; m_context << eth::swapInstruction(paramTypes.size()); utils().popStackSlots(paramTypes.size() - 1); } unsigned retSizeOnStack = 0; solAssert(accessorType.getReturnParameterTypes().size() >= 1, ""); auto const& returnTypes = accessorType.getReturnParameterTypes(); if (StructType const* structType = dynamic_cast(returnType.get())) { // remove offset m_context << eth::Instruction::POP; auto const& names = accessorType.getReturnParameterNames(); // struct for (size_t i = 0; i < names.size(); ++i) { if (returnTypes[i]->getCategory() == Type::Category::Mapping) continue; if (auto arrayType = dynamic_cast(returnTypes[i].get())) if (!arrayType->isByteArray()) continue; pair const& offsets = structType->getStorageOffsetsOfMember(names[i]); m_context << eth::Instruction::DUP1 << u256(offsets.first) << eth::Instruction::ADD << u256(offsets.second); TypePointer memberType = structType->getMemberType(names[i]); StorageItem(m_context, *memberType).retrieveValue(SourceLocation(), true); utils().convertType(*memberType, *returnTypes[i]); utils().moveToStackTop(returnTypes[i]->getSizeOnStack()); retSizeOnStack += returnTypes[i]->getSizeOnStack(); } // remove slot m_context << eth::Instruction::POP; } else { // simple value or array solAssert(returnTypes.size() == 1, ""); StorageItem(m_context, *returnType).retrieveValue(SourceLocation(), true); utils().convertType(*returnType, *returnTypes.front()); retSizeOnStack = returnTypes.front()->getSizeOnStack(); } solAssert(retSizeOnStack == utils().getSizeOnStack(returnTypes), ""); solAssert(retSizeOnStack <= 15, "Stack is too deep."); m_context << eth::dupInstruction(retSizeOnStack + 1); m_context.appendJump(eth::AssemblyItem::JumpType::OutOfFunction); } bool ExpressionCompiler::visit(Assignment const& _assignment) { CompilerContext::LocationSetter locationSetter(m_context, _assignment); _assignment.getRightHandSide().accept(*this); TypePointer type = _assignment.getRightHandSide().getType(); if (!_assignment.getType()->dataStoredIn(DataLocation::Storage)) { utils().convertType(*type, *_assignment.getType()); type = _assignment.getType(); } else { utils().convertType(*type, *type->mobileType()); type = type->mobileType(); } _assignment.getLeftHandSide().accept(*this); solAssert(!!m_currentLValue, "LValue not retrieved."); Token::Value op = _assignment.getAssignmentOperator(); if (op != Token::Assign) // compound assignment { solAssert(_assignment.getType()->isValueType(), "Compound operators not implemented for non-value types."); unsigned lvalueSize = m_currentLValue->sizeOnStack(); unsigned itemSize = _assignment.getType()->getSizeOnStack(); if (lvalueSize > 0) { utils().copyToStackTop(lvalueSize + itemSize, itemSize); utils().copyToStackTop(itemSize + lvalueSize, lvalueSize); // value lvalue_ref value lvalue_ref } m_currentLValue->retrieveValue(_assignment.getLocation(), true); appendOrdinaryBinaryOperatorCode(Token::AssignmentToBinaryOp(op), *_assignment.getType()); if (lvalueSize > 0) { solAssert(itemSize + lvalueSize <= 16, "Stack too deep, try removing local variables."); // value [lvalue_ref] updated_value for (unsigned i = 0; i < itemSize; ++i) m_context << eth::swapInstruction(itemSize + lvalueSize) << eth::Instruction::POP; } } m_currentLValue->storeValue(*type, _assignment.getLocation()); m_currentLValue.reset(); return false; } bool ExpressionCompiler::visit(UnaryOperation const& _unaryOperation) { CompilerContext::LocationSetter locationSetter(m_context, _unaryOperation); //@todo type checking and creating code for an operator should be in the same place: // the operator should know how to convert itself and to which types it applies, so // put this code together with "Type::acceptsBinary/UnaryOperator" into a class that // represents the operator if (_unaryOperation.getType()->getCategory() == Type::Category::IntegerConstant) { m_context << _unaryOperation.getType()->literalValue(nullptr); return false; } _unaryOperation.getSubExpression().accept(*this); switch (_unaryOperation.getOperator()) { case Token::Not: // ! m_context << eth::Instruction::ISZERO; break; case Token::BitNot: // ~ m_context << eth::Instruction::NOT; break; case Token::After: // after m_context << eth::Instruction::TIMESTAMP << eth::Instruction::ADD; break; case Token::Delete: // delete solAssert(!!m_currentLValue, "LValue not retrieved."); m_currentLValue->setToZero(_unaryOperation.getLocation()); m_currentLValue.reset(); break; case Token::Inc: // ++ (pre- or postfix) case Token::Dec: // -- (pre- or postfix) solAssert(!!m_currentLValue, "LValue not retrieved."); m_currentLValue->retrieveValue(_unaryOperation.getLocation()); if (!_unaryOperation.isPrefixOperation()) { // store value for later solAssert(_unaryOperation.getType()->getSizeOnStack() == 1, "Stack size != 1 not implemented."); m_context << eth::Instruction::DUP1; if (m_currentLValue->sizeOnStack() > 0) for (unsigned i = 1 + m_currentLValue->sizeOnStack(); i > 0; --i) m_context << eth::swapInstruction(i); } m_context << u256(1); if (_unaryOperation.getOperator() == Token::Inc) m_context << eth::Instruction::ADD; else m_context << eth::Instruction::SWAP1 << eth::Instruction::SUB; // Stack for prefix: [ref...] (*ref)+-1 // Stack for postfix: *ref [ref...] (*ref)+-1 for (unsigned i = m_currentLValue->sizeOnStack(); i > 0; --i) m_context << eth::swapInstruction(i); m_currentLValue->storeValue( *_unaryOperation.getType(), _unaryOperation.getLocation(), !_unaryOperation.isPrefixOperation()); m_currentLValue.reset(); break; case Token::Add: // + // unary add, so basically no-op break; case Token::Sub: // - m_context << u256(0) << eth::Instruction::SUB; break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Invalid unary operator: " + string(Token::toString(_unaryOperation.getOperator())))); } return false; } bool ExpressionCompiler::visit(BinaryOperation const& _binaryOperation) { CompilerContext::LocationSetter locationSetter(m_context, _binaryOperation); Expression const& leftExpression = _binaryOperation.getLeftExpression(); Expression const& rightExpression = _binaryOperation.getRightExpression(); Type const& commonType = _binaryOperation.getCommonType(); Token::Value const c_op = _binaryOperation.getOperator(); if (c_op == Token::And || c_op == Token::Or) // special case: short-circuiting appendAndOrOperatorCode(_binaryOperation); else if (commonType.getCategory() == Type::Category::IntegerConstant) m_context << commonType.literalValue(nullptr); else { bool cleanupNeeded = commonType.getCategory() == Type::Category::Integer && (Token::isCompareOp(c_op) || c_op == Token::Div || c_op == Token::Mod); // for commutative operators, push the literal as late as possible to allow improved optimization auto isLiteral = [](Expression const& _e) { return dynamic_cast(&_e) || _e.getType()->getCategory() == Type::Category::IntegerConstant; }; bool swap = m_optimize && Token::isCommutativeOp(c_op) && isLiteral(rightExpression) && !isLiteral(leftExpression); if (swap) { leftExpression.accept(*this); utils().convertType(*leftExpression.getType(), commonType, cleanupNeeded); rightExpression.accept(*this); utils().convertType(*rightExpression.getType(), commonType, cleanupNeeded); } else { rightExpression.accept(*this); utils().convertType(*rightExpression.getType(), commonType, cleanupNeeded); leftExpression.accept(*this); utils().convertType(*leftExpression.getType(), commonType, cleanupNeeded); } if (Token::isCompareOp(c_op)) appendCompareOperatorCode(c_op, commonType); else appendOrdinaryBinaryOperatorCode(c_op, commonType); } // do not visit the child nodes, we already did that explicitly return false; } bool ExpressionCompiler::visit(FunctionCall const& _functionCall) { CompilerContext::LocationSetter locationSetter(m_context, _functionCall); using Location = FunctionType::Location; if (_functionCall.isTypeConversion()) { solAssert(_functionCall.getArguments().size() == 1, ""); solAssert(_functionCall.getNames().empty(), ""); Expression const& firstArgument = *_functionCall.getArguments().front(); firstArgument.accept(*this); utils().convertType(*firstArgument.getType(), *_functionCall.getType()); return false; } FunctionTypePointer functionType; if (_functionCall.isStructConstructorCall()) { auto const& type = dynamic_cast(*_functionCall.getExpression().getType()); auto const& structType = dynamic_cast(*type.getActualType()); functionType = structType.constructorType(); } else functionType = dynamic_pointer_cast(_functionCall.getExpression().getType()); TypePointers const& parameterTypes = functionType->getParameterTypes(); vector> const& callArguments = _functionCall.getArguments(); vector> const& callArgumentNames = _functionCall.getNames(); if (!functionType->takesArbitraryParameters()) solAssert(callArguments.size() == parameterTypes.size(), ""); vector> arguments; if (callArgumentNames.empty()) // normal arguments arguments = callArguments; else // named arguments for (auto const& parameterName: functionType->getParameterNames()) { bool found = false; for (size_t j = 0; j < callArgumentNames.size() && !found; j++) if ((found = (parameterName == *callArgumentNames[j]))) // we found the actual parameter position arguments.push_back(callArguments[j]); solAssert(found, ""); } if (_functionCall.isStructConstructorCall()) { TypeType const& type = dynamic_cast(*_functionCall.getExpression().getType()); auto const& structType = dynamic_cast(*type.getActualType()); m_context << u256(max(32u, structType.getCalldataEncodedSize(true))); utils().allocateMemory(); m_context << eth::Instruction::DUP1; for (unsigned i = 0; i < arguments.size(); ++i) { arguments[i]->accept(*this); utils().convertType(*arguments[i]->getType(), *functionType->getParameterTypes()[i]); utils().storeInMemoryDynamic(*functionType->getParameterTypes()[i]); } m_context << eth::Instruction::POP; } else { FunctionType const& function = *functionType; switch (function.getLocation()) { case Location::Internal: { // Calling convention: Caller pushes return address and arguments // Callee removes them and pushes return values eth::AssemblyItem returnLabel = m_context.pushNewTag(); for (unsigned i = 0; i < arguments.size(); ++i) { arguments[i]->accept(*this); utils().convertType(*arguments[i]->getType(), *function.getParameterTypes()[i]); } _functionCall.getExpression().accept(*this); m_context.appendJump(eth::AssemblyItem::JumpType::IntoFunction); m_context << returnLabel; unsigned returnParametersSize = CompilerUtils::getSizeOnStack(function.getReturnParameterTypes()); // callee adds return parameters, but removes arguments and return label m_context.adjustStackOffset(returnParametersSize - CompilerUtils::getSizeOnStack(function.getParameterTypes()) - 1); // @todo for now, the return value of a function is its first return value, so remove // all others for (unsigned i = 1; i < function.getReturnParameterTypes().size(); ++i) utils().popStackElement(*function.getReturnParameterTypes()[i]); break; } case Location::External: case Location::CallCode: case Location::Bare: case Location::BareCallCode: _functionCall.getExpression().accept(*this); appendExternalFunctionCall(function, arguments); break; case Location::Creation: { _functionCall.getExpression().accept(*this); solAssert(!function.gasSet(), "Gas limit set for contract creation."); solAssert(function.getReturnParameterTypes().size() == 1, ""); TypePointers argumentTypes; for (auto const& arg: arguments) { arg->accept(*this); argumentTypes.push_back(arg->getType()); } ContractDefinition const& contract = dynamic_cast( *function.getReturnParameterTypes().front()).getContractDefinition(); // copy the contract's code into memory bytes const& bytecode = m_context.getCompiledContract(contract); utils().fetchFreeMemoryPointer(); m_context << u256(bytecode.size()) << eth::Instruction::DUP1; //@todo could be done by actually appending the Assembly, but then we probably need to compile // multiple times. Will revisit once external fuctions are inlined. m_context.appendData(bytecode); m_context << eth::Instruction::DUP4 << eth::Instruction::CODECOPY; m_context << eth::Instruction::ADD; utils().encodeToMemory(argumentTypes, function.getParameterTypes()); // now on stack: memory_end_ptr // need: size, offset, endowment utils().toSizeAfterFreeMemoryPointer(); if (function.valueSet()) m_context << eth::dupInstruction(3); else m_context << u256(0); m_context << eth::Instruction::CREATE; if (function.valueSet()) m_context << eth::swapInstruction(1) << eth::Instruction::POP; break; } case Location::SetGas: { // stack layout: contract_address function_id [gas] [value] _functionCall.getExpression().accept(*this); arguments.front()->accept(*this); utils().convertType(*arguments.front()->getType(), IntegerType(256), true); // Note that function is not the original function, but the ".gas" function. // Its values of gasSet and valueSet is equal to the original function's though. unsigned stackDepth = (function.gasSet() ? 1 : 0) + (function.valueSet() ? 1 : 0); if (stackDepth > 0) m_context << eth::swapInstruction(stackDepth); if (function.gasSet()) m_context << eth::Instruction::POP; break; } case Location::SetValue: // stack layout: contract_address function_id [gas] [value] _functionCall.getExpression().accept(*this); // Note that function is not the original function, but the ".value" function. // Its values of gasSet and valueSet is equal to the original function's though. if (function.valueSet()) m_context << eth::Instruction::POP; arguments.front()->accept(*this); break; case Location::Send: _functionCall.getExpression().accept(*this); m_context << u256(0); // do not send gas (there still is the stipend) arguments.front()->accept(*this); utils().convertType( *arguments.front()->getType(), *function.getParameterTypes().front(), true ); appendExternalFunctionCall( FunctionType( TypePointers{}, TypePointers{}, strings(), strings(), Location::Bare, false, nullptr, true, true ), {} ); break; case Location::Suicide: arguments.front()->accept(*this); utils().convertType(*arguments.front()->getType(), *function.getParameterTypes().front(), true); m_context << eth::Instruction::SUICIDE; break; case Location::SHA3: { TypePointers argumentTypes; for (auto const& arg: arguments) { arg->accept(*this); argumentTypes.push_back(arg->getType()); } utils().fetchFreeMemoryPointer(); utils().encodeToMemory(argumentTypes, TypePointers(), function.padArguments(), true); utils().toSizeAfterFreeMemoryPointer(); m_context << eth::Instruction::SHA3; break; } case Location::Log0: case Location::Log1: case Location::Log2: case Location::Log3: case Location::Log4: { unsigned logNumber = int(function.getLocation()) - int(Location::Log0); for (unsigned arg = logNumber; arg > 0; --arg) { arguments[arg]->accept(*this); utils().convertType(*arguments[arg]->getType(), *function.getParameterTypes()[arg], true); } arguments.front()->accept(*this); utils().fetchFreeMemoryPointer(); utils().encodeToMemory( {arguments.front()->getType()}, {function.getParameterTypes().front()}, false, true); utils().toSizeAfterFreeMemoryPointer(); m_context << eth::logInstruction(logNumber); break; } case Location::Event: { _functionCall.getExpression().accept(*this); auto const& event = dynamic_cast(function.getDeclaration()); unsigned numIndexed = 0; // All indexed arguments go to the stack for (unsigned arg = arguments.size(); arg > 0; --arg) if (event.getParameters()[arg - 1]->isIndexed()) { ++numIndexed; arguments[arg - 1]->accept(*this); utils().convertType( *arguments[arg - 1]->getType(), *function.getParameterTypes()[arg - 1], true ); } if (!event.isAnonymous()) { m_context << u256(h256::Arith(dev::sha3(function.externalSignature(event.getName())))); ++numIndexed; } solAssert(numIndexed <= 4, "Too many indexed arguments."); // Copy all non-indexed arguments to memory (data) // Memory position is only a hack and should be removed once we have free memory pointer. TypePointers nonIndexedArgTypes; TypePointers nonIndexedParamTypes; for (unsigned arg = 0; arg < arguments.size(); ++arg) if (!event.getParameters()[arg]->isIndexed()) { arguments[arg]->accept(*this); nonIndexedArgTypes.push_back(arguments[arg]->getType()); nonIndexedParamTypes.push_back(function.getParameterTypes()[arg]); } utils().fetchFreeMemoryPointer(); utils().encodeToMemory(nonIndexedArgTypes, nonIndexedParamTypes); // need: topic1 ... topicn memsize memstart utils().toSizeAfterFreeMemoryPointer(); m_context << eth::logInstruction(numIndexed); break; } case Location::BlockHash: { arguments[0]->accept(*this); utils().convertType(*arguments[0]->getType(), *function.getParameterTypes()[0], true); m_context << eth::Instruction::BLOCKHASH; break; } case Location::ECRecover: case Location::SHA256: case Location::RIPEMD160: { _functionCall.getExpression().accept(*this); static const map contractAddresses{{Location::ECRecover, 1}, {Location::SHA256, 2}, {Location::RIPEMD160, 3}}; m_context << contractAddresses.find(function.getLocation())->second; for (unsigned i = function.getSizeOnStack(); i > 0; --i) m_context << eth::swapInstruction(i); appendExternalFunctionCall(function, arguments); break; } default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Invalid function type.")); } } return false; } bool ExpressionCompiler::visit(NewExpression const&) { // code is created for the function call (CREATION) only return false; } void ExpressionCompiler::endVisit(MemberAccess const& _memberAccess) { CompilerContext::LocationSetter locationSetter(m_context, _memberAccess); ASTString const& member = _memberAccess.getMemberName(); switch (_memberAccess.getExpression().getType()->getCategory()) { case Type::Category::Contract: { bool alsoSearchInteger = false; ContractType const& type = dynamic_cast(*_memberAccess.getExpression().getType()); if (type.isSuper()) { solAssert(!!_memberAccess.referencedDeclaration(), "Referenced declaration not resolved."); m_context << m_context.getSuperFunctionEntryLabel( dynamic_cast(*_memberAccess.referencedDeclaration()), type.getContractDefinition() ).pushTag(); } else { // ordinary contract type if (Declaration const* declaration = _memberAccess.referencedDeclaration()) { u256 identifier; if (auto const* variable = dynamic_cast(declaration)) identifier = FunctionType(*variable).externalIdentifier(); else if (auto const* function = dynamic_cast(declaration)) identifier = FunctionType(*function).externalIdentifier(); else solAssert(false, "Contract member is neither variable nor function."); utils().convertType(type, IntegerType(0, IntegerType::Modifier::Address), true); m_context << identifier; } else // not found in contract, search in members inherited from address alsoSearchInteger = true; } if (!alsoSearchInteger) break; } case Type::Category::Integer: if (member == "balance") { utils().convertType( *_memberAccess.getExpression().getType(), IntegerType(0, IntegerType::Modifier::Address), true ); m_context << eth::Instruction::BALANCE; } else if ((set{"send", "call", "callcode"}).count(member)) utils().convertType( *_memberAccess.getExpression().getType(), IntegerType(0, IntegerType::Modifier::Address), true ); else BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Invalid member access to integer.")); break; case Type::Category::Function: solAssert(!!_memberAccess.getExpression().getType()->getMemberType(member), "Invalid member access to function."); break; case Type::Category::Magic: // we can ignore the kind of magic and only look at the name of the member if (member == "coinbase") m_context << eth::Instruction::COINBASE; else if (member == "timestamp") m_context << eth::Instruction::TIMESTAMP; else if (member == "difficulty") m_context << eth::Instruction::DIFFICULTY; else if (member == "number") m_context << eth::Instruction::NUMBER; else if (member == "gaslimit") m_context << eth::Instruction::GASLIMIT; else if (member == "sender") m_context << eth::Instruction::CALLER; else if (member == "value") m_context << eth::Instruction::CALLVALUE; else if (member == "origin") m_context << eth::Instruction::ORIGIN; else if (member == "gas") m_context << eth::Instruction::GAS; else if (member == "gasprice") m_context << eth::Instruction::GASPRICE; else if (member == "data") m_context << u256(0) << eth::Instruction::CALLDATASIZE; else if (member == "sig") m_context << u256(0) << eth::Instruction::CALLDATALOAD << (u256(0xffffffff) << (256 - 32)) << eth::Instruction::AND; else BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown magic member.")); break; case Type::Category::Struct: { StructType const& type = dynamic_cast(*_memberAccess.getExpression().getType()); switch (type.location()) { case DataLocation::Storage: { pair const& offsets = type.getStorageOffsetsOfMember(member); m_context << offsets.first << eth::Instruction::ADD << u256(offsets.second); setLValueToStorageItem(_memberAccess); break; } case DataLocation::Memory: { m_context << type.memoryOffsetOfMember(member) << eth::Instruction::ADD; setLValue(_memberAccess, *_memberAccess.getType()); break; } default: solAssert(false, "Illegal data location for struct."); } break; } case Type::Category::Enum: { EnumType const& type = dynamic_cast(*_memberAccess.getExpression().getType()); m_context << type.getMemberValue(_memberAccess.getMemberName()); break; } case Type::Category::TypeType: { TypeType const& type = dynamic_cast(*_memberAccess.getExpression().getType()); solAssert( !type.getMembers().membersByName(_memberAccess.getMemberName()).empty(), "Invalid member access to " + type.toString(false) ); if (dynamic_cast(type.getActualType().get())) { auto const* function = dynamic_cast(_memberAccess.referencedDeclaration()); solAssert(!!function, "Function not found in member access"); m_context << m_context.getFunctionEntryLabel(*function).pushTag(); } else if (auto enumType = dynamic_cast(type.getActualType().get())) m_context << enumType->getMemberValue(_memberAccess.getMemberName()); break; } case Type::Category::Array: { solAssert(member == "length", "Illegal array member."); auto const& type = dynamic_cast(*_memberAccess.getExpression().getType()); if (!type.isDynamicallySized()) { utils().popStackElement(type); m_context << type.getLength(); } else switch (type.location()) { case DataLocation::CallData: m_context << eth::Instruction::SWAP1 << eth::Instruction::POP; break; case DataLocation::Storage: setLValue(_memberAccess, type); break; case DataLocation::Memory: m_context << eth::Instruction::MLOAD; break; } break; } default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Member access to unknown type.")); } } bool ExpressionCompiler::visit(IndexAccess const& _indexAccess) { CompilerContext::LocationSetter locationSetter(m_context, _indexAccess); _indexAccess.getBaseExpression().accept(*this); Type const& baseType = *_indexAccess.getBaseExpression().getType(); if (baseType.getCategory() == Type::Category::Mapping) { // stack: storage_base_ref auto const& mapping = dynamic_cast(baseType); Type const& keyType = *mapping.getKeyType(); solAssert(_indexAccess.getIndexExpression(), "Index expression expected."); if (keyType.isDynamicallySized()) { _indexAccess.getIndexExpression()->accept(*this); utils().fetchFreeMemoryPointer(); // stack: base index mem // note: the following operations must not allocate memory! utils().encodeToMemory(TypePointers{mapping.getKeyType()}, TypePointers(), false, true); m_context << eth::Instruction::SWAP1; utils().storeInMemoryDynamic(IntegerType(256)); utils().toSizeAfterFreeMemoryPointer(); } else { m_context << u256(0); // memory position appendExpressionCopyToMemory(keyType, *_indexAccess.getIndexExpression()); m_context << eth::Instruction::SWAP1; solAssert(CompilerUtils::freeMemoryPointer >= 0x40, ""); utils().storeInMemoryDynamic(IntegerType(256)); m_context << u256(0); } m_context << eth::Instruction::SHA3; m_context << u256(0); setLValueToStorageItem(_indexAccess); } else if (baseType.getCategory() == Type::Category::Array) { ArrayType const& arrayType = dynamic_cast(baseType); solAssert(_indexAccess.getIndexExpression(), "Index expression expected."); _indexAccess.getIndexExpression()->accept(*this); // stack layout: [] ArrayUtils(m_context).accessIndex(arrayType); switch (arrayType.location()) { case DataLocation::Storage: if (arrayType.isByteArray()) { solAssert(!arrayType.isString(), "Index access to string is not allowed."); setLValue(_indexAccess); } else setLValueToStorageItem(_indexAccess); break; case DataLocation::Memory: setLValue(_indexAccess, *_indexAccess.getType(), !arrayType.isByteArray()); break; case DataLocation::CallData: //@todo if we implement this, the value in calldata has to be added to the base offset solAssert(!arrayType.getBaseType()->isDynamicallySized(), "Nested arrays not yet implemented."); if (arrayType.getBaseType()->isValueType()) CompilerUtils(m_context).loadFromMemoryDynamic( *arrayType.getBaseType(), true, !arrayType.isByteArray(), false ); break; } } else solAssert(false, "Index access only allowed for mappings or arrays."); return false; } void ExpressionCompiler::endVisit(Identifier const& _identifier) { CompilerContext::LocationSetter locationSetter(m_context, _identifier); Declaration const* declaration = &_identifier.getReferencedDeclaration(); if (MagicVariableDeclaration const* magicVar = dynamic_cast(declaration)) { switch (magicVar->getType()->getCategory()) { case Type::Category::Contract: // "this" or "super" if (!dynamic_cast(*magicVar->getType()).isSuper()) m_context << eth::Instruction::ADDRESS; break; case Type::Category::Integer: // "now" m_context << eth::Instruction::TIMESTAMP; break; default: break; } } else if (FunctionDefinition const* functionDef = dynamic_cast(declaration)) m_context << m_context.getVirtualFunctionEntryLabel(*functionDef).pushTag(); else if (auto variable = dynamic_cast(declaration)) { if (!variable->isConstant()) setLValueFromDeclaration(*declaration, _identifier); else variable->getValue()->accept(*this); } else if (dynamic_cast(declaration)) { // no-op } else if (dynamic_cast(declaration)) { // no-op } else if (dynamic_cast(declaration)) { // no-op } else { BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Identifier type not expected in expression context.")); } } void ExpressionCompiler::endVisit(Literal const& _literal) { CompilerContext::LocationSetter locationSetter(m_context, _literal); TypePointer type = _literal.getType(); switch (type->getCategory()) { case Type::Category::IntegerConstant: case Type::Category::Bool: m_context << type->literalValue(&_literal); break; case Type::Category::StringLiteral: break; // will be done during conversion default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Only integer, boolean and string literals implemented for now.")); } } void ExpressionCompiler::appendAndOrOperatorCode(BinaryOperation const& _binaryOperation) { Token::Value const c_op = _binaryOperation.getOperator(); solAssert(c_op == Token::Or || c_op == Token::And, ""); _binaryOperation.getLeftExpression().accept(*this); m_context << eth::Instruction::DUP1; if (c_op == Token::And) m_context << eth::Instruction::ISZERO; eth::AssemblyItem endLabel = m_context.appendConditionalJump(); m_context << eth::Instruction::POP; _binaryOperation.getRightExpression().accept(*this); m_context << endLabel; } void ExpressionCompiler::appendCompareOperatorCode(Token::Value _operator, Type const& _type) { if (_operator == Token::Equal || _operator == Token::NotEqual) { m_context << eth::Instruction::EQ; if (_operator == Token::NotEqual) m_context << eth::Instruction::ISZERO; } else { bool isSigned = false; if (auto type = dynamic_cast(&_type)) isSigned = type->isSigned(); switch (_operator) { case Token::GreaterThanOrEqual: m_context << (isSigned ? eth::Instruction::SLT : eth::Instruction::LT) << eth::Instruction::ISZERO; break; case Token::LessThanOrEqual: m_context << (isSigned ? eth::Instruction::SGT : eth::Instruction::GT) << eth::Instruction::ISZERO; break; case Token::GreaterThan: m_context << (isSigned ? eth::Instruction::SGT : eth::Instruction::GT); break; case Token::LessThan: m_context << (isSigned ? eth::Instruction::SLT : eth::Instruction::LT); break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown comparison operator.")); } } } void ExpressionCompiler::appendOrdinaryBinaryOperatorCode(Token::Value _operator, Type const& _type) { if (Token::isArithmeticOp(_operator)) appendArithmeticOperatorCode(_operator, _type); else if (Token::isBitOp(_operator)) appendBitOperatorCode(_operator); else if (Token::isShiftOp(_operator)) appendShiftOperatorCode(_operator); else BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown binary operator.")); } void ExpressionCompiler::appendArithmeticOperatorCode(Token::Value _operator, Type const& _type) { IntegerType const& type = dynamic_cast(_type); bool const c_isSigned = type.isSigned(); switch (_operator) { case Token::Add: m_context << eth::Instruction::ADD; break; case Token::Sub: m_context << eth::Instruction::SUB; break; case Token::Mul: m_context << eth::Instruction::MUL; break; case Token::Div: m_context << (c_isSigned ? eth::Instruction::SDIV : eth::Instruction::DIV); break; case Token::Mod: m_context << (c_isSigned ? eth::Instruction::SMOD : eth::Instruction::MOD); break; case Token::Exp: m_context << eth::Instruction::EXP; break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown arithmetic operator.")); } } void ExpressionCompiler::appendBitOperatorCode(Token::Value _operator) { switch (_operator) { case Token::BitOr: m_context << eth::Instruction::OR; break; case Token::BitAnd: m_context << eth::Instruction::AND; break; case Token::BitXor: m_context << eth::Instruction::XOR; break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown bit operator.")); } } void ExpressionCompiler::appendShiftOperatorCode(Token::Value _operator) { BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Shift operators not yet implemented.")); switch (_operator) { case Token::SHL: break; case Token::SAR: break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown shift operator.")); } } void ExpressionCompiler::appendExternalFunctionCall( FunctionType const& _functionType, vector> const& _arguments ) { solAssert(_functionType.takesArbitraryParameters() || _arguments.size() == _functionType.getParameterTypes().size(), ""); // Assumed stack content here: // // value [if _functionType.valueSet()] // gas [if _functionType.gasSet()] // function identifier [unless bare] // contract address unsigned gasValueSize = (_functionType.gasSet() ? 1 : 0) + (_functionType.valueSet() ? 1 : 0); unsigned contractStackPos = m_context.currentToBaseStackOffset(1 + gasValueSize + (_functionType.isBareCall() ? 0 : 1)); unsigned gasStackPos = m_context.currentToBaseStackOffset(gasValueSize); unsigned valueStackPos = m_context.currentToBaseStackOffset(1); using FunctionKind = FunctionType::Location; FunctionKind funKind = _functionType.getLocation(); bool returnSuccessCondition = funKind == FunctionKind::Bare || funKind == FunctionKind::BareCallCode; bool isCallCode = funKind == FunctionKind::BareCallCode || funKind == FunctionKind::CallCode; //@todo only return the first return value for now Type const* firstReturnType = _functionType.getReturnParameterTypes().empty() ? nullptr : _functionType.getReturnParameterTypes().front().get(); unsigned retSize = 0; if (returnSuccessCondition) retSize = 0; // return value actually is success condition else if (firstReturnType) { retSize = firstReturnType->getCalldataEncodedSize(); solAssert(retSize > 0, "Unable to return dynamic type from external call."); } // Evaluate arguments. TypePointers argumentTypes; bool manualFunctionId = (funKind == FunctionKind::Bare || funKind == FunctionKind::BareCallCode) && !_arguments.empty() && _arguments.front()->getType()->mobileType()->getCalldataEncodedSize(false) == CompilerUtils::dataStartOffset; if (manualFunctionId) { // If we have a BareCall or BareCallCode and the first type has exactly 4 bytes, use it as // function identifier. _arguments.front()->accept(*this); utils().convertType( *_arguments.front()->getType(), IntegerType(8 * CompilerUtils::dataStartOffset), true ); for (unsigned i = 0; i < gasValueSize; ++i) m_context << eth::swapInstruction(gasValueSize - i); gasStackPos++; valueStackPos++; } for (size_t i = manualFunctionId ? 1 : 0; i < _arguments.size(); ++i) { _arguments[i]->accept(*this); argumentTypes.push_back(_arguments[i]->getType()); } // Copy function identifier to memory. utils().fetchFreeMemoryPointer(); if (!_functionType.isBareCall() || manualFunctionId) { m_context << eth::dupInstruction(2 + gasValueSize + CompilerUtils::getSizeOnStack(argumentTypes)); utils().storeInMemoryDynamic(IntegerType(8 * CompilerUtils::dataStartOffset), false); } // If the function takes arbitrary parameters, copy dynamic length data in place. // Move argumenst to memory, will not update the free memory pointer (but will update the memory // pointer on the stack). utils().encodeToMemory( argumentTypes, _functionType.getParameterTypes(), _functionType.padArguments(), _functionType.takesArbitraryParameters() ); // Stack now: // // input_memory_end // value [if _functionType.valueSet()] // gas [if _functionType.gasSet()] // function identifier [unless bare] // contract address // Output data will replace input data. // put on stack: m_context << u256(retSize); utils().fetchFreeMemoryPointer(); m_context << eth::Instruction::DUP1 << eth::Instruction::DUP4 << eth::Instruction::SUB; m_context << eth::Instruction::DUP2; // CALL arguments: outSize, outOff, inSize, inOff (already present up to here) // value, addr, gas (stack top) if (_functionType.valueSet()) m_context << eth::dupInstruction(m_context.baseToCurrentStackOffset(valueStackPos)); else m_context << u256(0); m_context << eth::dupInstruction(m_context.baseToCurrentStackOffset(contractStackPos)); if (_functionType.gasSet()) m_context << eth::dupInstruction(m_context.baseToCurrentStackOffset(gasStackPos)); else { // send all gas except the amount needed to execute "SUB" and "CALL" // @todo this retains too much gas for now, needs to be fine-tuned. u256 gasNeededByCaller = eth::c_callGas + 10; if (_functionType.valueSet()) gasNeededByCaller += eth::c_callValueTransferGas; if (!isCallCode) gasNeededByCaller += eth::c_callNewAccountGas; // we never know m_context << gasNeededByCaller << eth::Instruction::GAS << eth::Instruction::SUB; } if (isCallCode) m_context << eth::Instruction::CALLCODE; else m_context << eth::Instruction::CALL; unsigned remainsSize = 2 + // contract address, input_memory_end _functionType.valueSet() + _functionType.gasSet() + (!_functionType.isBareCall() || manualFunctionId); if (returnSuccessCondition) m_context << eth::swapInstruction(remainsSize); else { //Propagate error condition (if CALL pushes 0 on stack). m_context << eth::Instruction::ISZERO; m_context.appendConditionalJumpTo(m_context.errorTag()); } utils().popStackSlots(remainsSize); if (returnSuccessCondition) { // already there } else if (funKind == FunctionKind::RIPEMD160) { // fix: built-in contract returns right-aligned data utils().fetchFreeMemoryPointer(); utils().loadFromMemoryDynamic(IntegerType(160), false, true, false); utils().convertType(IntegerType(160), FixedBytesType(20)); } else if (firstReturnType) { //@todo manually update free memory pointer if we accept returning memory-stored objects utils().fetchFreeMemoryPointer(); utils().loadFromMemoryDynamic(*firstReturnType, false, true, false); } } void ExpressionCompiler::appendExpressionCopyToMemory(Type const& _expectedType, Expression const& _expression) { solAssert(_expectedType.isValueType(), "Not implemented for non-value types."); _expression.accept(*this); utils().convertType(*_expression.getType(), _expectedType, true); utils().storeInMemoryDynamic(_expectedType); } void ExpressionCompiler::setLValueFromDeclaration(Declaration const& _declaration, Expression const& _expression) { if (m_context.isLocalVariable(&_declaration)) setLValue(_expression, _declaration); else if (m_context.isStateVariable(&_declaration)) setLValue(_expression, _declaration); else BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_sourceLocation(_expression.getLocation()) << errinfo_comment("Identifier type not supported or identifier not found.")); } void ExpressionCompiler::setLValueToStorageItem(Expression const& _expression) { setLValue(_expression, *_expression.getType()); } CompilerUtils ExpressionCompiler::utils() { return CompilerUtils(m_context); } } }