/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * @author Christian * @date 2014 * Solidity AST to EVM bytecode compiler for expressions. */ #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace langutil; namespace dev { namespace solidity { void ExpressionCompiler::compile(Expression const& _expression) { _expression.accept(*this); } void ExpressionCompiler::appendStateVariableInitialization(VariableDeclaration const& _varDecl) { if (!_varDecl.value()) return; TypePointer type = _varDecl.value()->annotation().type; solAssert(!!type, "Type information not available."); CompilerContext::LocationSetter locationSetter(m_context, _varDecl); _varDecl.value()->accept(*this); if (_varDecl.annotation().type->dataStoredIn(DataLocation::Storage)) { // reference type, only convert value to mobile type and do final conversion in storeValue. auto mt = type->mobileType(); solAssert(mt, ""); utils().convertType(*type, *mt); type = mt; } else { utils().convertType(*type, *_varDecl.annotation().type); type = _varDecl.annotation().type; } StorageItem(m_context, _varDecl).storeValue(*type, _varDecl.location(), true); } void ExpressionCompiler::appendConstStateVariableAccessor(VariableDeclaration const& _varDecl) { solAssert(_varDecl.isConstant(), ""); _varDecl.value()->accept(*this); utils().convertType(*_varDecl.value()->annotation().type, *_varDecl.annotation().type); // append return m_context << dupInstruction(_varDecl.annotation().type->sizeOnStack() + 1); m_context.appendJump(eth::AssemblyItem::JumpType::OutOfFunction); } void ExpressionCompiler::appendStateVariableAccessor(VariableDeclaration const& _varDecl) { solAssert(!_varDecl.isConstant(), ""); CompilerContext::LocationSetter locationSetter(m_context, _varDecl); FunctionType accessorType(_varDecl); TypePointers paramTypes = accessorType.parameterTypes(); m_context.adjustStackOffset(1 + CompilerUtils::sizeOnStack(paramTypes)); // retrieve the position of the variable auto const& location = m_context.storageLocationOfVariable(_varDecl); m_context << location.first << u256(location.second); TypePointer returnType = _varDecl.annotation().type; for (size_t i = 0; i < paramTypes.size(); ++i) { if (auto mappingType = dynamic_cast(returnType.get())) { solAssert(CompilerUtils::freeMemoryPointer >= 0x40, ""); // pop offset m_context << Instruction::POP; if (paramTypes[i]->isDynamicallySized()) { solAssert( dynamic_cast(*paramTypes[i]).isByteArray(), "Expected string or byte array for mapping key type" ); // stack: // copy key[i] to top. utils().copyToStackTop(paramTypes.size() - i + 1, 1); m_context.appendInlineAssembly(R"({ let key_len := mload(key_ptr) // Temp. use the memory after the array data for the slot // position let post_data_ptr := add(key_ptr, add(key_len, 0x20)) let orig_data := mload(post_data_ptr) mstore(post_data_ptr, slot_pos) let hash := keccak256(add(key_ptr, 0x20), add(key_len, 0x20)) mstore(post_data_ptr, orig_data) slot_pos := hash })", {"slot_pos", "key_ptr"}); m_context << Instruction::POP; } else { solAssert(paramTypes[i]->isValueType(), "Expected value type for mapping key"); // move storage offset to memory. utils().storeInMemory(32); // move key to memory. utils().copyToStackTop(paramTypes.size() - i, 1); utils().storeInMemory(0); m_context << u256(64) << u256(0); m_context << Instruction::KECCAK256; } // push offset m_context << u256(0); returnType = mappingType->valueType(); } else if (auto arrayType = dynamic_cast(returnType.get())) { // pop offset m_context << Instruction::POP; utils().copyToStackTop(paramTypes.size() - i + 1, 1); ArrayUtils(m_context).accessIndex(*arrayType); returnType = arrayType->baseType(); } else solAssert(false, "Index access is allowed only for \"mapping\" and \"array\" types."); } // remove index arguments. if (paramTypes.size() == 1) m_context << Instruction::SWAP2 << Instruction::POP << Instruction::SWAP1; else if (paramTypes.size() >= 2) { m_context << swapInstruction(paramTypes.size()); m_context << Instruction::POP; m_context << swapInstruction(paramTypes.size()); utils().popStackSlots(paramTypes.size() - 1); } unsigned retSizeOnStack = 0; auto returnTypes = accessorType.returnParameterTypes(); solAssert(returnTypes.size() >= 1, ""); if (StructType const* structType = dynamic_cast(returnType.get())) { // remove offset m_context << Instruction::POP; auto const& names = accessorType.returnParameterNames(); // struct for (size_t i = 0; i < names.size(); ++i) { if (returnTypes[i]->category() == Type::Category::Mapping) continue; if (auto arrayType = dynamic_cast(returnTypes[i].get())) if (!arrayType->isByteArray()) continue; pair const& offsets = structType->storageOffsetsOfMember(names[i]); m_context << Instruction::DUP1 << u256(offsets.first) << Instruction::ADD << u256(offsets.second); TypePointer memberType = structType->memberType(names[i]); StorageItem(m_context, *memberType).retrieveValue(SourceLocation(), true); utils().convertType(*memberType, *returnTypes[i]); utils().moveToStackTop(returnTypes[i]->sizeOnStack()); retSizeOnStack += returnTypes[i]->sizeOnStack(); } // remove slot m_context << Instruction::POP; } else { // simple value or array solAssert(returnTypes.size() == 1, ""); StorageItem(m_context, *returnType).retrieveValue(SourceLocation(), true); utils().convertType(*returnType, *returnTypes.front()); retSizeOnStack = returnTypes.front()->sizeOnStack(); } solAssert(retSizeOnStack == utils().sizeOnStack(returnTypes), ""); if (retSizeOnStack > 15) BOOST_THROW_EXCEPTION( CompilerError() << errinfo_sourceLocation(_varDecl.location()) << errinfo_comment("Stack too deep.") ); m_context << dupInstruction(retSizeOnStack + 1); m_context.appendJump(eth::AssemblyItem::JumpType::OutOfFunction); } bool ExpressionCompiler::visit(Conditional const& _condition) { CompilerContext::LocationSetter locationSetter(m_context, _condition); _condition.condition().accept(*this); eth::AssemblyItem trueTag = m_context.appendConditionalJump(); _condition.falseExpression().accept(*this); utils().convertType(*_condition.falseExpression().annotation().type, *_condition.annotation().type); eth::AssemblyItem endTag = m_context.appendJumpToNew(); m_context << trueTag; int offset = _condition.annotation().type->sizeOnStack(); m_context.adjustStackOffset(-offset); _condition.trueExpression().accept(*this); utils().convertType(*_condition.trueExpression().annotation().type, *_condition.annotation().type); m_context << endTag; return false; } bool ExpressionCompiler::visit(Assignment const& _assignment) { CompilerContext::LocationSetter locationSetter(m_context, _assignment); Token op = _assignment.assignmentOperator(); Token binOp = op == Token::Assign ? op : TokenTraits::AssignmentToBinaryOp(op); Type const& leftType = *_assignment.leftHandSide().annotation().type; if (leftType.category() == Type::Category::Tuple) { solAssert(*_assignment.annotation().type == TupleType(), ""); solAssert(op == Token::Assign, ""); } else solAssert(*_assignment.annotation().type == leftType, ""); bool cleanupNeeded = false; if (op != Token::Assign) cleanupNeeded = cleanupNeededForOp(leftType.category(), binOp); _assignment.rightHandSide().accept(*this); // Perform some conversion already. This will convert storage types to memory and literals // to their actual type, but will not convert e.g. memory to storage. TypePointer rightIntermediateType; if (op != Token::Assign && TokenTraits::isShiftOp(binOp)) rightIntermediateType = _assignment.rightHandSide().annotation().type->mobileType(); else rightIntermediateType = _assignment.rightHandSide().annotation().type->closestTemporaryType( _assignment.leftHandSide().annotation().type ); solAssert(rightIntermediateType, ""); utils().convertType(*_assignment.rightHandSide().annotation().type, *rightIntermediateType, cleanupNeeded); _assignment.leftHandSide().accept(*this); solAssert(!!m_currentLValue, "LValue not retrieved."); if (op == Token::Assign) m_currentLValue->storeValue(*rightIntermediateType, _assignment.location()); else // compound assignment { solAssert(leftType.isValueType(), "Compound operators only available for value types."); unsigned lvalueSize = m_currentLValue->sizeOnStack(); unsigned itemSize = _assignment.annotation().type->sizeOnStack(); if (lvalueSize > 0) { utils().copyToStackTop(lvalueSize + itemSize, itemSize); utils().copyToStackTop(itemSize + lvalueSize, lvalueSize); // value lvalue_ref value lvalue_ref } m_currentLValue->retrieveValue(_assignment.location(), true); utils().convertType(leftType, leftType, cleanupNeeded); if (TokenTraits::isShiftOp(binOp)) appendShiftOperatorCode(binOp, leftType, *rightIntermediateType); else { solAssert(leftType == *rightIntermediateType, ""); appendOrdinaryBinaryOperatorCode(binOp, leftType); } if (lvalueSize > 0) { if (itemSize + lvalueSize > 16) BOOST_THROW_EXCEPTION( CompilerError() << errinfo_sourceLocation(_assignment.location()) << errinfo_comment("Stack too deep, try removing local variables.") ); // value [lvalue_ref] updated_value for (unsigned i = 0; i < itemSize; ++i) m_context << swapInstruction(itemSize + lvalueSize) << Instruction::POP; } m_currentLValue->storeValue(*_assignment.annotation().type, _assignment.location()); } m_currentLValue.reset(); return false; } bool ExpressionCompiler::visit(TupleExpression const& _tuple) { if (_tuple.isInlineArray()) { ArrayType const& arrayType = dynamic_cast(*_tuple.annotation().type); solAssert(!arrayType.isDynamicallySized(), "Cannot create dynamically sized inline array."); m_context << max(u256(32u), arrayType.memorySize()); utils().allocateMemory(); m_context << Instruction::DUP1; for (auto const& component: _tuple.components()) { component->accept(*this); utils().convertType(*component->annotation().type, *arrayType.baseType(), true); utils().storeInMemoryDynamic(*arrayType.baseType(), true); } m_context << Instruction::POP; } else { vector> lvalues; for (auto const& component: _tuple.components()) if (component) { component->accept(*this); if (_tuple.annotation().lValueRequested) { solAssert(!!m_currentLValue, ""); lvalues.push_back(move(m_currentLValue)); } } else if (_tuple.annotation().lValueRequested) lvalues.push_back(unique_ptr()); if (_tuple.annotation().lValueRequested) { if (_tuple.components().size() == 1) m_currentLValue = move(lvalues[0]); else m_currentLValue.reset(new TupleObject(m_context, move(lvalues))); } } return false; } bool ExpressionCompiler::visit(UnaryOperation const& _unaryOperation) { CompilerContext::LocationSetter locationSetter(m_context, _unaryOperation); if (_unaryOperation.annotation().type->category() == Type::Category::RationalNumber) { m_context << _unaryOperation.annotation().type->literalValue(nullptr); return false; } _unaryOperation.subExpression().accept(*this); switch (_unaryOperation.getOperator()) { case Token::Not: // ! m_context << Instruction::ISZERO; break; case Token::BitNot: // ~ m_context << Instruction::NOT; break; case Token::Delete: // delete solAssert(!!m_currentLValue, "LValue not retrieved."); m_currentLValue->setToZero(_unaryOperation.location()); m_currentLValue.reset(); break; case Token::Inc: // ++ (pre- or postfix) case Token::Dec: // -- (pre- or postfix) solAssert(!!m_currentLValue, "LValue not retrieved."); solUnimplementedAssert( _unaryOperation.annotation().type->category() != Type::Category::FixedPoint, "Not yet implemented - FixedPointType." ); m_currentLValue->retrieveValue(_unaryOperation.location()); if (!_unaryOperation.isPrefixOperation()) { // store value for later solUnimplementedAssert(_unaryOperation.annotation().type->sizeOnStack() == 1, "Stack size != 1 not implemented."); m_context << Instruction::DUP1; if (m_currentLValue->sizeOnStack() > 0) for (unsigned i = 1 + m_currentLValue->sizeOnStack(); i > 0; --i) m_context << swapInstruction(i); } m_context << u256(1); if (_unaryOperation.getOperator() == Token::Inc) m_context << Instruction::ADD; else m_context << Instruction::SWAP1 << Instruction::SUB; // Stack for prefix: [ref...] (*ref)+-1 // Stack for postfix: *ref [ref...] (*ref)+-1 for (unsigned i = m_currentLValue->sizeOnStack(); i > 0; --i) m_context << swapInstruction(i); m_currentLValue->storeValue( *_unaryOperation.annotation().type, _unaryOperation.location(), !_unaryOperation.isPrefixOperation()); m_currentLValue.reset(); break; case Token::Add: // + // unary add, so basically no-op break; case Token::Sub: // - m_context << u256(0) << Instruction::SUB; break; default: solAssert(false, "Invalid unary operator: " + string(TokenTraits::toString(_unaryOperation.getOperator()))); } return false; } bool ExpressionCompiler::visit(BinaryOperation const& _binaryOperation) { CompilerContext::LocationSetter locationSetter(m_context, _binaryOperation); Expression const& leftExpression = _binaryOperation.leftExpression(); Expression const& rightExpression = _binaryOperation.rightExpression(); solAssert(!!_binaryOperation.annotation().commonType, ""); TypePointer const& commonType = _binaryOperation.annotation().commonType; Token const c_op = _binaryOperation.getOperator(); if (c_op == Token::And || c_op == Token::Or) // special case: short-circuiting appendAndOrOperatorCode(_binaryOperation); else if (commonType->category() == Type::Category::RationalNumber) m_context << commonType->literalValue(nullptr); else { bool cleanupNeeded = cleanupNeededForOp(commonType->category(), c_op); TypePointer leftTargetType = commonType; TypePointer rightTargetType = TokenTraits::isShiftOp(c_op) ? rightExpression.annotation().type->mobileType() : commonType; solAssert(rightTargetType, ""); // for commutative operators, push the literal as late as possible to allow improved optimization auto isLiteral = [](Expression const& _e) { return dynamic_cast(&_e) || _e.annotation().type->category() == Type::Category::RationalNumber; }; bool swap = m_optimize && TokenTraits::isCommutativeOp(c_op) && isLiteral(rightExpression) && !isLiteral(leftExpression); if (swap) { leftExpression.accept(*this); utils().convertType(*leftExpression.annotation().type, *leftTargetType, cleanupNeeded); rightExpression.accept(*this); utils().convertType(*rightExpression.annotation().type, *rightTargetType, cleanupNeeded); } else { rightExpression.accept(*this); utils().convertType(*rightExpression.annotation().type, *rightTargetType, cleanupNeeded); leftExpression.accept(*this); utils().convertType(*leftExpression.annotation().type, *leftTargetType, cleanupNeeded); } if (TokenTraits::isShiftOp(c_op)) // shift only cares about the signedness of both sides appendShiftOperatorCode(c_op, *leftTargetType, *rightTargetType); else if (TokenTraits::isCompareOp(c_op)) appendCompareOperatorCode(c_op, *commonType); else appendOrdinaryBinaryOperatorCode(c_op, *commonType); } // do not visit the child nodes, we already did that explicitly return false; } bool ExpressionCompiler::visit(FunctionCall const& _functionCall) { CompilerContext::LocationSetter locationSetter(m_context, _functionCall); if (_functionCall.annotation().kind == FunctionCallKind::TypeConversion) { solAssert(_functionCall.arguments().size() == 1, ""); solAssert(_functionCall.names().empty(), ""); Expression const& firstArgument = *_functionCall.arguments().front(); firstArgument.accept(*this); utils().convertType(*firstArgument.annotation().type, *_functionCall.annotation().type); return false; } FunctionTypePointer functionType; if (_functionCall.annotation().kind == FunctionCallKind::StructConstructorCall) { auto const& type = dynamic_cast(*_functionCall.expression().annotation().type); auto const& structType = dynamic_cast(*type.actualType()); functionType = structType.constructorType(); } else functionType = dynamic_pointer_cast(_functionCall.expression().annotation().type); TypePointers parameterTypes = functionType->parameterTypes(); vector> const& callArguments = _functionCall.arguments(); vector> const& callArgumentNames = _functionCall.names(); if (!functionType->takesArbitraryParameters()) solAssert(callArguments.size() == parameterTypes.size(), ""); vector> arguments; if (callArgumentNames.empty()) // normal arguments arguments = callArguments; else // named arguments for (auto const& parameterName: functionType->parameterNames()) { bool found = false; for (size_t j = 0; j < callArgumentNames.size() && !found; j++) if ((found = (parameterName == *callArgumentNames[j]))) // we found the actual parameter position arguments.push_back(callArguments[j]); solAssert(found, ""); } if (_functionCall.annotation().kind == FunctionCallKind::StructConstructorCall) { TypeType const& type = dynamic_cast(*_functionCall.expression().annotation().type); auto const& structType = dynamic_cast(*type.actualType()); m_context << max(u256(32u), structType.memorySize()); utils().allocateMemory(); m_context << Instruction::DUP1; for (unsigned i = 0; i < arguments.size(); ++i) { arguments[i]->accept(*this); utils().convertType(*arguments[i]->annotation().type, *functionType->parameterTypes()[i]); utils().storeInMemoryDynamic(*functionType->parameterTypes()[i]); } m_context << Instruction::POP; } else { FunctionType const& function = *functionType; if (function.bound()) // Only delegatecall and internal functions can be bound, this might be lifted later. solAssert(function.kind() == FunctionType::Kind::DelegateCall || function.kind() == FunctionType::Kind::Internal, ""); switch (function.kind()) { case FunctionType::Kind::Internal: { // Calling convention: Caller pushes return address and arguments // Callee removes them and pushes return values eth::AssemblyItem returnLabel = m_context.pushNewTag(); for (unsigned i = 0; i < arguments.size(); ++i) { arguments[i]->accept(*this); utils().convertType(*arguments[i]->annotation().type, *function.parameterTypes()[i]); } { bool shortcutTaken = false; if (auto identifier = dynamic_cast(&_functionCall.expression())) { solAssert(!function.bound(), ""); if (auto functionDef = dynamic_cast(identifier->annotation().referencedDeclaration)) { // Do not directly visit the identifier, because this way, we can avoid // the runtime entry label to be created at the creation time context. CompilerContext::LocationSetter locationSetter2(m_context, *identifier); utils().pushCombinedFunctionEntryLabel(m_context.resolveVirtualFunction(*functionDef), false); shortcutTaken = true; } } if (!shortcutTaken) _functionCall.expression().accept(*this); } unsigned parameterSize = CompilerUtils::sizeOnStack(function.parameterTypes()); if (function.bound()) { // stack: arg2, ..., argn, label, arg1 unsigned depth = parameterSize + 1; utils().moveIntoStack(depth, function.selfType()->sizeOnStack()); parameterSize += function.selfType()->sizeOnStack(); } if (m_context.runtimeContext()) // We have a runtime context, so we need the creation part. utils().rightShiftNumberOnStack(32); else // Extract the runtime part. m_context << ((u256(1) << 32) - 1) << Instruction::AND; m_context.appendJump(eth::AssemblyItem::JumpType::IntoFunction); m_context << returnLabel; unsigned returnParametersSize = CompilerUtils::sizeOnStack(function.returnParameterTypes()); // callee adds return parameters, but removes arguments and return label m_context.adjustStackOffset(returnParametersSize - parameterSize - 1); break; } case FunctionType::Kind::External: case FunctionType::Kind::DelegateCall: case FunctionType::Kind::BareCall: case FunctionType::Kind::BareDelegateCall: case FunctionType::Kind::BareStaticCall: _functionCall.expression().accept(*this); appendExternalFunctionCall(function, arguments); break; case FunctionType::Kind::BareCallCode: solAssert(false, "Callcode has been removed."); case FunctionType::Kind::Creation: { _functionCall.expression().accept(*this); solAssert(!function.gasSet(), "Gas limit set for contract creation."); solAssert(function.returnParameterTypes().size() == 1, ""); TypePointers argumentTypes; for (auto const& arg: arguments) { arg->accept(*this); argumentTypes.push_back(arg->annotation().type); } ContractDefinition const* contract = &dynamic_cast(*function.returnParameterTypes().front()).contractDefinition(); utils().fetchFreeMemoryPointer(); utils().copyContractCodeToMemory(*contract, true); utils().abiEncode(argumentTypes, function.parameterTypes()); // now on stack: memory_end_ptr // need: size, offset, endowment utils().toSizeAfterFreeMemoryPointer(); if (function.valueSet()) m_context << dupInstruction(3); else m_context << u256(0); m_context << Instruction::CREATE; // Check if zero (out of stack or not enough balance). m_context << Instruction::DUP1 << Instruction::ISZERO; // TODO: Can we bubble up here? There might be different reasons for failure, I think. m_context.appendConditionalRevert(true); if (function.valueSet()) m_context << swapInstruction(1) << Instruction::POP; break; } case FunctionType::Kind::SetGas: { // stack layout: contract_address function_id [gas] [value] _functionCall.expression().accept(*this); arguments.front()->accept(*this); utils().convertType(*arguments.front()->annotation().type, IntegerType::uint256(), true); // Note that function is not the original function, but the ".gas" function. // Its values of gasSet and valueSet is equal to the original function's though. unsigned stackDepth = (function.gasSet() ? 1 : 0) + (function.valueSet() ? 1 : 0); if (stackDepth > 0) m_context << swapInstruction(stackDepth); if (function.gasSet()) m_context << Instruction::POP; break; } case FunctionType::Kind::SetValue: // stack layout: contract_address function_id [gas] [value] _functionCall.expression().accept(*this); // Note that function is not the original function, but the ".value" function. // Its values of gasSet and valueSet is equal to the original function's though. if (function.valueSet()) m_context << Instruction::POP; arguments.front()->accept(*this); break; case FunctionType::Kind::Send: case FunctionType::Kind::Transfer: _functionCall.expression().accept(*this); // Provide the gas stipend manually at first because we may send zero ether. // Will be zeroed if we send more than zero ether. m_context << u256(eth::GasCosts::callStipend); arguments.front()->accept(*this); utils().convertType( *arguments.front()->annotation().type, *function.parameterTypes().front(), true ); // gas <- gas * !value m_context << Instruction::SWAP1 << Instruction::DUP2; m_context << Instruction::ISZERO << Instruction::MUL << Instruction::SWAP1; appendExternalFunctionCall( FunctionType( TypePointers{}, TypePointers{}, strings(), strings(), FunctionType::Kind::BareCall, false, StateMutability::NonPayable, nullptr, true, true ), {} ); if (function.kind() == FunctionType::Kind::Transfer) { // Check if zero (out of stack or not enough balance). // TODO: bubble up here, but might also be different error. m_context << Instruction::ISZERO; m_context.appendConditionalRevert(true); } break; case FunctionType::Kind::Selfdestruct: arguments.front()->accept(*this); utils().convertType(*arguments.front()->annotation().type, *function.parameterTypes().front(), true); m_context << Instruction::SELFDESTRUCT; break; case FunctionType::Kind::Revert: { if (!arguments.empty()) { // function-sel(Error(string)) + encoding solAssert(arguments.size() == 1, ""); solAssert(function.parameterTypes().size() == 1, ""); arguments.front()->accept(*this); utils().revertWithStringData(*arguments.front()->annotation().type); } else m_context.appendRevert(); break; } case FunctionType::Kind::KECCAK256: { solAssert(arguments.size() == 1, ""); solAssert(!function.padArguments(), ""); TypePointer const& argType = arguments.front()->annotation().type; solAssert(argType, ""); arguments.front()->accept(*this); // Optimization: If type is bytes or string, then do not encode, // but directly compute keccak256 on memory. if (*argType == ArrayType::bytesMemory() || *argType == ArrayType::stringMemory()) { ArrayUtils(m_context).retrieveLength(ArrayType::bytesMemory()); m_context << Instruction::SWAP1 << u256(0x20) << Instruction::ADD; } else { utils().fetchFreeMemoryPointer(); utils().packedEncode({argType}, TypePointers()); utils().toSizeAfterFreeMemoryPointer(); } m_context << Instruction::KECCAK256; break; } case FunctionType::Kind::Log0: case FunctionType::Kind::Log1: case FunctionType::Kind::Log2: case FunctionType::Kind::Log3: case FunctionType::Kind::Log4: { unsigned logNumber = int(function.kind()) - int(FunctionType::Kind::Log0); for (unsigned arg = logNumber; arg > 0; --arg) { arguments[arg]->accept(*this); utils().convertType(*arguments[arg]->annotation().type, *function.parameterTypes()[arg], true); } arguments.front()->accept(*this); utils().fetchFreeMemoryPointer(); solAssert(function.parameterTypes().front()->isValueType(), ""); utils().packedEncode( {arguments.front()->annotation().type}, {function.parameterTypes().front()} ); utils().toSizeAfterFreeMemoryPointer(); m_context << logInstruction(logNumber); break; } case FunctionType::Kind::Event: { _functionCall.expression().accept(*this); auto const& event = dynamic_cast(function.declaration()); unsigned numIndexed = 0; TypePointers paramTypes = function.parameterTypes(); // All indexed arguments go to the stack for (unsigned arg = arguments.size(); arg > 0; --arg) if (event.parameters()[arg - 1]->isIndexed()) { ++numIndexed; arguments[arg - 1]->accept(*this); if (auto const& referenceType = dynamic_pointer_cast(paramTypes[arg - 1])) { utils().fetchFreeMemoryPointer(); utils().packedEncode( {arguments[arg - 1]->annotation().type}, {referenceType} ); utils().toSizeAfterFreeMemoryPointer(); m_context << Instruction::KECCAK256; } else { solAssert(paramTypes[arg - 1]->isValueType(), ""); utils().convertType( *arguments[arg - 1]->annotation().type, *paramTypes[arg - 1], true ); } } if (!event.isAnonymous()) { m_context << u256(h256::Arith(dev::keccak256(function.externalSignature()))); ++numIndexed; } solAssert(numIndexed <= 4, "Too many indexed arguments."); // Copy all non-indexed arguments to memory (data) // Memory position is only a hack and should be removed once we have free memory pointer. TypePointers nonIndexedArgTypes; TypePointers nonIndexedParamTypes; for (unsigned arg = 0; arg < arguments.size(); ++arg) if (!event.parameters()[arg]->isIndexed()) { arguments[arg]->accept(*this); nonIndexedArgTypes.push_back(arguments[arg]->annotation().type); nonIndexedParamTypes.push_back(paramTypes[arg]); } utils().fetchFreeMemoryPointer(); utils().abiEncode(nonIndexedArgTypes, nonIndexedParamTypes); // need: topic1 ... topicn memsize memstart utils().toSizeAfterFreeMemoryPointer(); m_context << logInstruction(numIndexed); break; } case FunctionType::Kind::BlockHash: { arguments[0]->accept(*this); utils().convertType(*arguments[0]->annotation().type, *function.parameterTypes()[0], true); m_context << Instruction::BLOCKHASH; break; } case FunctionType::Kind::AddMod: case FunctionType::Kind::MulMod: { arguments[2]->accept(*this); utils().convertType(*arguments[2]->annotation().type, IntegerType::uint256()); m_context << Instruction::DUP1 << Instruction::ISZERO; m_context.appendConditionalInvalid(); for (unsigned i = 1; i < 3; i ++) { arguments[2 - i]->accept(*this); utils().convertType(*arguments[2 - i]->annotation().type, IntegerType::uint256()); } if (function.kind() == FunctionType::Kind::AddMod) m_context << Instruction::ADDMOD; else m_context << Instruction::MULMOD; break; } case FunctionType::Kind::ECRecover: case FunctionType::Kind::SHA256: case FunctionType::Kind::RIPEMD160: { _functionCall.expression().accept(*this); static map const contractAddresses{ {FunctionType::Kind::ECRecover, 1}, {FunctionType::Kind::SHA256, 2}, {FunctionType::Kind::RIPEMD160, 3} }; m_context << contractAddresses.at(function.kind()); for (unsigned i = function.sizeOnStack(); i > 0; --i) m_context << swapInstruction(i); appendExternalFunctionCall(function, arguments); break; } case FunctionType::Kind::ByteArrayPush: case FunctionType::Kind::ArrayPush: { _functionCall.expression().accept(*this); solAssert(function.parameterTypes().size() == 1, ""); solAssert(!!function.parameterTypes()[0], ""); TypePointer paramType = function.parameterTypes()[0]; shared_ptr arrayType = function.kind() == FunctionType::Kind::ArrayPush ? make_shared(DataLocation::Storage, paramType) : make_shared(DataLocation::Storage); // stack: ArrayReference arguments[0]->accept(*this); TypePointer const& argType = arguments[0]->annotation().type; // stack: ArrayReference argValue utils().moveToStackTop(argType->sizeOnStack(), 1); // stack: argValue ArrayReference m_context << Instruction::DUP1; ArrayUtils(m_context).incrementDynamicArraySize(*arrayType); // stack: argValue ArrayReference newLength m_context << Instruction::SWAP1; // stack: argValue newLength ArrayReference m_context << u256(1) << Instruction::DUP3 << Instruction::SUB; // stack: argValue newLength ArrayReference (newLength-1) ArrayUtils(m_context).accessIndex(*arrayType, false); // stack: argValue newLength storageSlot slotOffset utils().moveToStackTop(3, argType->sizeOnStack()); // stack: newLength storageSlot slotOffset argValue TypePointer type = arguments[0]->annotation().type->closestTemporaryType(arrayType->baseType()); solAssert(type, ""); utils().convertType(*argType, *type); utils().moveToStackTop(1 + type->sizeOnStack()); utils().moveToStackTop(1 + type->sizeOnStack()); // stack: newLength argValue storageSlot slotOffset if (function.kind() == FunctionType::Kind::ArrayPush) StorageItem(m_context, *paramType).storeValue(*type, _functionCall.location(), true); else StorageByteArrayElement(m_context).storeValue(*type, _functionCall.location(), true); break; } case FunctionType::Kind::ArrayPop: { _functionCall.expression().accept(*this); solAssert(function.parameterTypes().empty(), ""); ArrayType const& arrayType = dynamic_cast( *dynamic_cast(_functionCall.expression()).expression().annotation().type ); solAssert(arrayType.dataStoredIn(DataLocation::Storage), ""); ArrayUtils(m_context).popStorageArrayElement(arrayType); break; } case FunctionType::Kind::ObjectCreation: { ArrayType const& arrayType = dynamic_cast(*_functionCall.annotation().type); _functionCall.expression().accept(*this); solAssert(arguments.size() == 1, ""); // Fetch requested length. arguments[0]->accept(*this); utils().convertType(*arguments[0]->annotation().type, IntegerType::uint256()); // Stack: requested_length utils().fetchFreeMemoryPointer(); // Stack: requested_length memptr m_context << Instruction::SWAP1; // Stack: memptr requested_length // store length m_context << Instruction::DUP1 << Instruction::DUP3 << Instruction::MSTORE; // Stack: memptr requested_length // update free memory pointer m_context << Instruction::DUP1; // Stack: memptr requested_length requested_length if (arrayType.isByteArray()) // Round up to multiple of 32 m_context << u256(31) << Instruction::ADD << u256(31) << Instruction::NOT << Instruction::AND; else m_context << arrayType.baseType()->memoryHeadSize() << Instruction::MUL; // stacK: memptr requested_length data_size m_context << u256(32) << Instruction::ADD; m_context << Instruction::DUP3 << Instruction::ADD; utils().storeFreeMemoryPointer(); // Stack: memptr requested_length // Check if length is zero m_context << Instruction::DUP1 << Instruction::ISZERO; auto skipInit = m_context.appendConditionalJump(); // Always initialize because the free memory pointer might point at // a dirty memory area. m_context << Instruction::DUP2 << u256(32) << Instruction::ADD; utils().zeroInitialiseMemoryArray(arrayType); m_context << skipInit; m_context << Instruction::POP; break; } case FunctionType::Kind::Assert: case FunctionType::Kind::Require: { arguments.front()->accept(*this); utils().convertType(*arguments.front()->annotation().type, *function.parameterTypes().front(), false); if (arguments.size() > 1) { // Users probably expect the second argument to be evaluated // even if the condition is false, as would be the case for an actual // function call. solAssert(arguments.size() == 2, ""); solAssert(function.kind() == FunctionType::Kind::Require, ""); arguments.at(1)->accept(*this); utils().moveIntoStack(1, arguments.at(1)->annotation().type->sizeOnStack()); } // Stack: // jump if condition was met m_context << Instruction::ISZERO << Instruction::ISZERO; auto success = m_context.appendConditionalJump(); if (function.kind() == FunctionType::Kind::Assert) // condition was not met, flag an error m_context.appendInvalid(); else if (arguments.size() > 1) { utils().revertWithStringData(*arguments.at(1)->annotation().type); // Here, the argument is consumed, but in the other branch, it is still there. m_context.adjustStackOffset(arguments.at(1)->annotation().type->sizeOnStack()); } else m_context.appendRevert(); // the success branch m_context << success; if (arguments.size() > 1) utils().popStackElement(*arguments.at(1)->annotation().type); break; } case FunctionType::Kind::ABIEncode: case FunctionType::Kind::ABIEncodePacked: case FunctionType::Kind::ABIEncodeWithSelector: case FunctionType::Kind::ABIEncodeWithSignature: { bool const isPacked = function.kind() == FunctionType::Kind::ABIEncodePacked; bool const hasSelectorOrSignature = function.kind() == FunctionType::Kind::ABIEncodeWithSelector || function.kind() == FunctionType::Kind::ABIEncodeWithSignature; TypePointers argumentTypes; TypePointers targetTypes; for (unsigned i = 0; i < arguments.size(); ++i) { arguments[i]->accept(*this); // Do not keep the selector as part of the ABI encoded args if (!hasSelectorOrSignature || i > 0) argumentTypes.push_back(arguments[i]->annotation().type); } utils().fetchFreeMemoryPointer(); // stack now: [] .. // adjust by 32(+4) bytes to accommodate the length(+selector) m_context << u256(32 + (hasSelectorOrSignature ? 4 : 0)) << Instruction::ADD; // stack now: [] .. if (isPacked) { solAssert(!function.padArguments(), ""); utils().packedEncode(argumentTypes, TypePointers()); } else { solAssert(function.padArguments(), ""); utils().abiEncode(argumentTypes, TypePointers()); } utils().fetchFreeMemoryPointer(); // stack: [] // size is end minus start minus length slot m_context.appendInlineAssembly(R"({ mstore(mem_ptr, sub(sub(mem_end, mem_ptr), 0x20)) })", {"mem_end", "mem_ptr"}); m_context << Instruction::SWAP1; utils().storeFreeMemoryPointer(); // stack: [] if (hasSelectorOrSignature) { // stack: solAssert(arguments.size() >= 1, ""); TypePointer const& selectorType = arguments[0]->annotation().type; utils().moveIntoStack(selectorType->sizeOnStack()); TypePointer dataOnStack = selectorType; // stack: if (function.kind() == FunctionType::Kind::ABIEncodeWithSignature) { // hash the signature if (auto const* stringType = dynamic_cast(selectorType.get())) { FixedHash<4> hash(dev::keccak256(stringType->value())); m_context << (u256(FixedHash<4>::Arith(hash)) << (256 - 32)); dataOnStack = make_shared(4); } else { utils().fetchFreeMemoryPointer(); // stack: utils().packedEncode(TypePointers{selectorType}, TypePointers()); utils().toSizeAfterFreeMemoryPointer(); m_context << Instruction::KECCAK256; // stack: dataOnStack = make_shared(32); } } else { solAssert(function.kind() == FunctionType::Kind::ABIEncodeWithSelector, ""); } utils().convertType(*dataOnStack, FixedBytesType(4), true); // stack: // load current memory, mask and combine the selector string mask = formatNumber((u256(-1) >> 32)); m_context.appendInlineAssembly(R"({ let data_start := add(mem_ptr, 0x20) let data := mload(data_start) let mask := )" + mask + R"( mstore(data_start, or(and(data, mask), selector)) })", {"mem_ptr", "selector"}); m_context << Instruction::POP; } // stack now: break; } case FunctionType::Kind::ABIDecode: { arguments.front()->accept(*this); TypePointer firstArgType = arguments.front()->annotation().type; TypePointers targetTypes; if (TupleType const* targetTupleType = dynamic_cast(_functionCall.annotation().type.get())) targetTypes = targetTupleType->components(); else targetTypes = TypePointers{_functionCall.annotation().type}; if ( *firstArgType == ArrayType(DataLocation::CallData) || *firstArgType == ArrayType(DataLocation::CallData, true) ) utils().abiDecode(targetTypes, false); else { utils().convertType(*firstArgType, ArrayType::bytesMemory()); m_context << Instruction::DUP1 << u256(32) << Instruction::ADD; m_context << Instruction::SWAP1 << Instruction::MLOAD; // stack now: utils().abiDecode(targetTypes, true); } break; } case FunctionType::Kind::GasLeft: m_context << Instruction::GAS; break; case FunctionType::Kind::MetaType: // No code to generate. break; } } return false; } bool ExpressionCompiler::visit(NewExpression const&) { // code is created for the function call (CREATION) only return false; } bool ExpressionCompiler::visit(MemberAccess const& _memberAccess) { CompilerContext::LocationSetter locationSetter(m_context, _memberAccess); // Check whether the member is a bound function. ASTString const& member = _memberAccess.memberName(); if (auto funType = dynamic_cast(_memberAccess.annotation().type.get())) if (funType->bound()) { _memberAccess.expression().accept(*this); utils().convertType( *_memberAccess.expression().annotation().type, *funType->selfType(), true ); if (funType->kind() == FunctionType::Kind::Internal) { FunctionDefinition const& funDef = dynamic_cast(funType->declaration()); utils().pushCombinedFunctionEntryLabel(funDef); utils().moveIntoStack(funType->selfType()->sizeOnStack(), 1); } else { solAssert(funType->kind() == FunctionType::Kind::DelegateCall, ""); auto contract = dynamic_cast(funType->declaration().scope()); solAssert(contract && contract->isLibrary(), ""); m_context.appendLibraryAddress(contract->fullyQualifiedName()); m_context << funType->externalIdentifier(); utils().moveIntoStack(funType->selfType()->sizeOnStack(), 2); } return false; } // Special processing for TypeType because we do not want to visit the library itself // for internal functions, or enum/struct definitions. if (TypeType const* type = dynamic_cast(_memberAccess.expression().annotation().type.get())) { if (dynamic_cast(type->actualType().get())) { solAssert(_memberAccess.annotation().type, "_memberAccess has no type"); if (auto variable = dynamic_cast(_memberAccess.annotation().referencedDeclaration)) appendVariable(*variable, static_cast(_memberAccess)); else if (auto funType = dynamic_cast(_memberAccess.annotation().type.get())) { switch (funType->kind()) { case FunctionType::Kind::Internal: // We do not visit the expression here on purpose, because in the case of an // internal library function call, this would push the library address forcing // us to link against it although we actually do not need it. if (auto const* function = dynamic_cast(_memberAccess.annotation().referencedDeclaration)) utils().pushCombinedFunctionEntryLabel(*function); else solAssert(false, "Function not found in member access"); break; case FunctionType::Kind::Event: if (!dynamic_cast(_memberAccess.annotation().referencedDeclaration)) solAssert(false, "event not found"); // no-op, because the parent node will do the job break; case FunctionType::Kind::DelegateCall: _memberAccess.expression().accept(*this); m_context << funType->externalIdentifier(); break; case FunctionType::Kind::External: case FunctionType::Kind::Creation: case FunctionType::Kind::Send: case FunctionType::Kind::BareCall: case FunctionType::Kind::BareCallCode: case FunctionType::Kind::BareDelegateCall: case FunctionType::Kind::BareStaticCall: case FunctionType::Kind::Transfer: case FunctionType::Kind::Log0: case FunctionType::Kind::Log1: case FunctionType::Kind::Log2: case FunctionType::Kind::Log3: case FunctionType::Kind::Log4: case FunctionType::Kind::ECRecover: case FunctionType::Kind::SHA256: case FunctionType::Kind::RIPEMD160: default: solAssert(false, "unsupported member function"); } } else if (dynamic_cast(_memberAccess.annotation().type.get())) { // no-op } else _memberAccess.expression().accept(*this); } else if (auto enumType = dynamic_cast(type->actualType().get())) { _memberAccess.expression().accept(*this); m_context << enumType->memberValue(_memberAccess.memberName()); } else _memberAccess.expression().accept(*this); return false; } // Another special case for `this.f.selector` which does not need the address. // There are other uses of `.selector` which do need the address, but we want this // specific use to be a pure expression. if ( _memberAccess.expression().annotation().type->category() == Type::Category::Function && member == "selector" ) if (auto const* expr = dynamic_cast(&_memberAccess.expression())) if (auto const* exprInt = dynamic_cast(&expr->expression())) if (exprInt->name() == "this") if (Declaration const* declaration = expr->annotation().referencedDeclaration) { u256 identifier; if (auto const* variable = dynamic_cast(declaration)) identifier = FunctionType(*variable).externalIdentifier(); else if (auto const* function = dynamic_cast(declaration)) identifier = FunctionType(*function).externalIdentifier(); else solAssert(false, "Contract member is neither variable nor function."); m_context << identifier; /// need to store it as bytes4 utils().leftShiftNumberOnStack(224); return false; } _memberAccess.expression().accept(*this); switch (_memberAccess.expression().annotation().type->category()) { case Type::Category::Contract: { ContractType const& type = dynamic_cast(*_memberAccess.expression().annotation().type); if (type.isSuper()) { solAssert(!!_memberAccess.annotation().referencedDeclaration, "Referenced declaration not resolved."); utils().pushCombinedFunctionEntryLabel(m_context.superFunction( dynamic_cast(*_memberAccess.annotation().referencedDeclaration), type.contractDefinition() )); } // ordinary contract type else if (Declaration const* declaration = _memberAccess.annotation().referencedDeclaration) { u256 identifier; if (auto const* variable = dynamic_cast(declaration)) identifier = FunctionType(*variable).externalIdentifier(); else if (auto const* function = dynamic_cast(declaration)) identifier = FunctionType(*function).externalIdentifier(); else solAssert(false, "Contract member is neither variable nor function."); utils().convertType(type, type.isPayable() ? AddressType::addressPayable() : AddressType::address(), true); m_context << identifier; } else solAssert(false, "Invalid member access in contract"); break; } case Type::Category::Integer: { solAssert(false, "Invalid member access to integer"); break; } case Type::Category::Address: { if (member == "balance") { utils().convertType( *_memberAccess.expression().annotation().type, AddressType::address(), true ); m_context << Instruction::BALANCE; } else if ((set{"send", "transfer"}).count(member)) { solAssert(dynamic_cast(*_memberAccess.expression().annotation().type).stateMutability() == StateMutability::Payable, ""); utils().convertType( *_memberAccess.expression().annotation().type, AddressType(StateMutability::Payable), true ); } else if ((set{"call", "callcode", "delegatecall", "staticcall"}).count(member)) utils().convertType( *_memberAccess.expression().annotation().type, AddressType::address(), true ); else solAssert(false, "Invalid member access to address"); break; } case Type::Category::Function: if (member == "selector") { m_context << Instruction::SWAP1 << Instruction::POP; /// need to store it as bytes4 utils().leftShiftNumberOnStack(224); } else solAssert( !!_memberAccess.expression().annotation().type->memberType(member), "Invalid member access to function." ); break; case Type::Category::Magic: // we can ignore the kind of magic and only look at the name of the member if (member == "coinbase") m_context << Instruction::COINBASE; else if (member == "timestamp") m_context << Instruction::TIMESTAMP; else if (member == "difficulty") m_context << Instruction::DIFFICULTY; else if (member == "number") m_context << Instruction::NUMBER; else if (member == "gaslimit") m_context << Instruction::GASLIMIT; else if (member == "sender") m_context << Instruction::CALLER; else if (member == "value") m_context << Instruction::CALLVALUE; else if (member == "origin") m_context << Instruction::ORIGIN; else if (member == "gasprice") m_context << Instruction::GASPRICE; else if (member == "data") m_context << u256(0) << Instruction::CALLDATASIZE; else if (member == "sig") m_context << u256(0) << Instruction::CALLDATALOAD << (u256(0xffffffff) << (256 - 32)) << Instruction::AND; else if (member == "gas") solAssert(false, "Gas has been removed."); else if (member == "blockhash") solAssert(false, "Blockhash has been removed."); else if (member == "creationCode" || member == "runtimeCode") { TypePointer arg = dynamic_cast(*_memberAccess.expression().annotation().type).typeArgument(); ContractDefinition const& contract = dynamic_cast(*arg).contractDefinition(); utils().fetchFreeMemoryPointer(); m_context << Instruction::DUP1 << u256(32) << Instruction::ADD; utils().copyContractCodeToMemory(contract, member == "creationCode"); // Stack: start end m_context.appendInlineAssembly( Whiskers(R"({ mstore(start, sub(end, add(start, 0x20))) mstore(, and(add(end, 31), not(31))) })")("free", to_string(CompilerUtils::freeMemoryPointer)).render(), {"start", "end"} ); m_context << Instruction::POP; } else if (member == "name") { TypePointer arg = dynamic_cast(*_memberAccess.expression().annotation().type).typeArgument(); ContractDefinition const& contract = dynamic_cast(*arg).contractDefinition(); m_context << u256(contract.name().length() + 32); utils().allocateMemory(); // store string length m_context << u256(contract.name().length()) << Instruction::DUP2 << Instruction::MSTORE; // adjust pointer m_context << Instruction::DUP1 << u256(32) << Instruction::ADD; utils().storeStringData(contract.name()); } else solAssert(false, "Unknown magic member."); break; case Type::Category::Struct: { StructType const& type = dynamic_cast(*_memberAccess.expression().annotation().type); switch (type.location()) { case DataLocation::Storage: { pair const& offsets = type.storageOffsetsOfMember(member); m_context << offsets.first << Instruction::ADD << u256(offsets.second); setLValueToStorageItem(_memberAccess); break; } case DataLocation::Memory: { m_context << type.memoryOffsetOfMember(member) << Instruction::ADD; setLValue(_memberAccess, *_memberAccess.annotation().type); break; } case DataLocation::CallData: { solUnimplementedAssert(!type.isDynamicallyEncoded(), ""); m_context << type.calldataOffsetOfMember(member) << Instruction::ADD; // For non-value types the calldata offset is returned directly. if (_memberAccess.annotation().type->isValueType()) { solAssert(_memberAccess.annotation().type->calldataEncodedSize(false) > 0, ""); CompilerUtils(m_context).loadFromMemoryDynamic(*_memberAccess.annotation().type, true, true, false); } else solAssert( _memberAccess.annotation().type->category() == Type::Category::Array || _memberAccess.annotation().type->category() == Type::Category::Struct, "" ); break; } default: solAssert(false, "Illegal data location for struct."); } break; } case Type::Category::Enum: { EnumType const& type = dynamic_cast(*_memberAccess.expression().annotation().type); m_context << type.memberValue(_memberAccess.memberName()); break; } case Type::Category::Array: { auto const& type = dynamic_cast(*_memberAccess.expression().annotation().type); if (member == "length") { if (!type.isDynamicallySized()) { utils().popStackElement(type); m_context << type.length(); } else switch (type.location()) { case DataLocation::CallData: m_context << Instruction::SWAP1 << Instruction::POP; break; case DataLocation::Storage: setLValue(_memberAccess, type); break; case DataLocation::Memory: m_context << Instruction::MLOAD; break; } } else if (member == "push" || member == "pop") { solAssert( type.isDynamicallySized() && type.location() == DataLocation::Storage && type.category() == Type::Category::Array, "Tried to use ." + member + "() on a non-dynamically sized array" ); } else solAssert(false, "Illegal array member."); break; } case Type::Category::FixedBytes: { auto const& type = dynamic_cast(*_memberAccess.expression().annotation().type); utils().popStackElement(type); if (member == "length") m_context << u256(type.numBytes()); else solAssert(false, "Illegal fixed bytes member."); break; } default: solAssert(false, "Member access to unknown type."); } return false; } bool ExpressionCompiler::visit(IndexAccess const& _indexAccess) { CompilerContext::LocationSetter locationSetter(m_context, _indexAccess); _indexAccess.baseExpression().accept(*this); Type const& baseType = *_indexAccess.baseExpression().annotation().type; if (baseType.category() == Type::Category::Mapping) { // stack: storage_base_ref TypePointer keyType = dynamic_cast(baseType).keyType(); solAssert(_indexAccess.indexExpression(), "Index expression expected."); if (keyType->isDynamicallySized()) { _indexAccess.indexExpression()->accept(*this); utils().fetchFreeMemoryPointer(); // stack: base index mem // note: the following operations must not allocate memory! utils().packedEncode( TypePointers{_indexAccess.indexExpression()->annotation().type}, TypePointers{keyType} ); m_context << Instruction::SWAP1; utils().storeInMemoryDynamic(IntegerType::uint256()); utils().toSizeAfterFreeMemoryPointer(); } else { m_context << u256(0); // memory position appendExpressionCopyToMemory(*keyType, *_indexAccess.indexExpression()); m_context << Instruction::SWAP1; solAssert(CompilerUtils::freeMemoryPointer >= 0x40, ""); utils().storeInMemoryDynamic(IntegerType::uint256()); m_context << u256(0); } m_context << Instruction::KECCAK256; m_context << u256(0); setLValueToStorageItem(_indexAccess); } else if (baseType.category() == Type::Category::Array) { ArrayType const& arrayType = dynamic_cast(baseType); solAssert(_indexAccess.indexExpression(), "Index expression expected."); _indexAccess.indexExpression()->accept(*this); utils().convertType(*_indexAccess.indexExpression()->annotation().type, IntegerType::uint256(), true); // stack layout: [] ArrayUtils(m_context).accessIndex(arrayType); switch (arrayType.location()) { case DataLocation::Storage: if (arrayType.isByteArray()) { solAssert(!arrayType.isString(), "Index access to string is not allowed."); setLValue(_indexAccess); } else setLValueToStorageItem(_indexAccess); break; case DataLocation::Memory: setLValue(_indexAccess, *_indexAccess.annotation().type, !arrayType.isByteArray()); break; case DataLocation::CallData: //@todo if we implement this, the value in calldata has to be added to the base offset solUnimplementedAssert(!arrayType.baseType()->isDynamicallySized(), "Nested arrays not yet implemented."); if (arrayType.baseType()->isValueType()) CompilerUtils(m_context).loadFromMemoryDynamic( *arrayType.baseType(), true, !arrayType.isByteArray(), false ); break; } } else if (baseType.category() == Type::Category::FixedBytes) { FixedBytesType const& fixedBytesType = dynamic_cast(baseType); solAssert(_indexAccess.indexExpression(), "Index expression expected."); _indexAccess.indexExpression()->accept(*this); utils().convertType(*_indexAccess.indexExpression()->annotation().type, IntegerType::uint256(), true); // stack layout: // check out-of-bounds access m_context << u256(fixedBytesType.numBytes()); m_context << Instruction::DUP2 << Instruction::LT << Instruction::ISZERO; // out-of-bounds access throws exception m_context.appendConditionalInvalid(); m_context << Instruction::BYTE; utils().leftShiftNumberOnStack(256 - 8); } else if (baseType.category() == Type::Category::TypeType) { solAssert(baseType.sizeOnStack() == 0, ""); solAssert(_indexAccess.annotation().type->sizeOnStack() == 0, ""); // no-op - this seems to be a lone array type (`structType[];`) } else solAssert(false, "Index access only allowed for mappings or arrays."); return false; } void ExpressionCompiler::endVisit(Identifier const& _identifier) { CompilerContext::LocationSetter locationSetter(m_context, _identifier); Declaration const* declaration = _identifier.annotation().referencedDeclaration; if (MagicVariableDeclaration const* magicVar = dynamic_cast(declaration)) { switch (magicVar->type()->category()) { case Type::Category::Contract: // "this" or "super" if (!dynamic_cast(*magicVar->type()).isSuper()) m_context << Instruction::ADDRESS; break; case Type::Category::Integer: // "now" m_context << Instruction::TIMESTAMP; break; default: break; } } else if (FunctionDefinition const* functionDef = dynamic_cast(declaration)) // If the identifier is called right away, this code is executed in visit(FunctionCall...), because // we want to avoid having a reference to the runtime function entry point in the // constructor context, since this would force the compiler to include unreferenced // internal functions in the runtime contex. utils().pushCombinedFunctionEntryLabel(m_context.resolveVirtualFunction(*functionDef)); else if (auto variable = dynamic_cast(declaration)) appendVariable(*variable, static_cast(_identifier)); else if (auto contract = dynamic_cast(declaration)) { if (contract->isLibrary()) m_context.appendLibraryAddress(contract->fullyQualifiedName()); } else if (dynamic_cast(declaration)) { // no-op } else if (dynamic_cast(declaration)) { // no-op } else if (dynamic_cast(declaration)) { // no-op } else { solAssert(false, "Identifier type not expected in expression context."); } } void ExpressionCompiler::endVisit(Literal const& _literal) { CompilerContext::LocationSetter locationSetter(m_context, _literal); TypePointer type = _literal.annotation().type; switch (type->category()) { case Type::Category::RationalNumber: case Type::Category::Bool: case Type::Category::Address: m_context << type->literalValue(&_literal); break; case Type::Category::StringLiteral: break; // will be done during conversion default: solUnimplemented("Only integer, boolean and string literals implemented for now."); } } void ExpressionCompiler::appendAndOrOperatorCode(BinaryOperation const& _binaryOperation) { Token const c_op = _binaryOperation.getOperator(); solAssert(c_op == Token::Or || c_op == Token::And, ""); _binaryOperation.leftExpression().accept(*this); m_context << Instruction::DUP1; if (c_op == Token::And) m_context << Instruction::ISZERO; eth::AssemblyItem endLabel = m_context.appendConditionalJump(); m_context << Instruction::POP; _binaryOperation.rightExpression().accept(*this); m_context << endLabel; } void ExpressionCompiler::appendCompareOperatorCode(Token _operator, Type const& _type) { solAssert(_type.sizeOnStack() == 1, "Comparison of multi-slot types."); if (_operator == Token::Equal || _operator == Token::NotEqual) { if (FunctionType const* funType = dynamic_cast(&_type)) { if (funType->kind() == FunctionType::Kind::Internal) { // We have to remove the upper bits (construction time value) because they might // be "unknown" in one of the operands and not in the other. m_context << ((u256(1) << 32) - 1) << Instruction::AND; m_context << Instruction::SWAP1; m_context << ((u256(1) << 32) - 1) << Instruction::AND; } } m_context << Instruction::EQ; if (_operator == Token::NotEqual) m_context << Instruction::ISZERO; } else { bool isSigned = false; if (auto type = dynamic_cast(&_type)) isSigned = type->isSigned(); switch (_operator) { case Token::GreaterThanOrEqual: m_context << (isSigned ? Instruction::SLT : Instruction::LT) << Instruction::ISZERO; break; case Token::LessThanOrEqual: m_context << (isSigned ? Instruction::SGT : Instruction::GT) << Instruction::ISZERO; break; case Token::GreaterThan: m_context << (isSigned ? Instruction::SGT : Instruction::GT); break; case Token::LessThan: m_context << (isSigned ? Instruction::SLT : Instruction::LT); break; default: solAssert(false, "Unknown comparison operator."); } } } void ExpressionCompiler::appendOrdinaryBinaryOperatorCode(Token _operator, Type const& _type) { if (TokenTraits::isArithmeticOp(_operator)) appendArithmeticOperatorCode(_operator, _type); else if (TokenTraits::isBitOp(_operator)) appendBitOperatorCode(_operator); else solAssert(false, "Unknown binary operator."); } void ExpressionCompiler::appendArithmeticOperatorCode(Token _operator, Type const& _type) { if (_type.category() == Type::Category::FixedPoint) solUnimplemented("Not yet implemented - FixedPointType."); IntegerType const& type = dynamic_cast(_type); bool const c_isSigned = type.isSigned(); switch (_operator) { case Token::Add: m_context << Instruction::ADD; break; case Token::Sub: m_context << Instruction::SUB; break; case Token::Mul: m_context << Instruction::MUL; break; case Token::Div: case Token::Mod: { // Test for division by zero m_context << Instruction::DUP2 << Instruction::ISZERO; m_context.appendConditionalInvalid(); if (_operator == Token::Div) m_context << (c_isSigned ? Instruction::SDIV : Instruction::DIV); else m_context << (c_isSigned ? Instruction::SMOD : Instruction::MOD); break; } case Token::Exp: m_context << Instruction::EXP; break; default: solAssert(false, "Unknown arithmetic operator."); } } void ExpressionCompiler::appendBitOperatorCode(Token _operator) { switch (_operator) { case Token::BitOr: m_context << Instruction::OR; break; case Token::BitAnd: m_context << Instruction::AND; break; case Token::BitXor: m_context << Instruction::XOR; break; default: solAssert(false, "Unknown bit operator."); } } void ExpressionCompiler::appendShiftOperatorCode(Token _operator, Type const& _valueType, Type const& _shiftAmountType) { // stack: shift_amount value_to_shift bool c_valueSigned = false; if (auto valueType = dynamic_cast(&_valueType)) c_valueSigned = valueType->isSigned(); else solAssert(dynamic_cast(&_valueType), "Only integer and fixed bytes type supported for shifts."); // The amount can be a RationalNumberType too. bool c_amountSigned = false; if (auto amountType = dynamic_cast(&_shiftAmountType)) { // This should be handled by the type checker. solAssert(amountType->integerType(), ""); solAssert(!amountType->integerType()->isSigned(), ""); } else if (auto amountType = dynamic_cast(&_shiftAmountType)) c_amountSigned = amountType->isSigned(); else solAssert(false, "Invalid shift amount type."); // shift by negative amount throws exception if (c_amountSigned) { m_context << u256(0) << Instruction::DUP3 << Instruction::SLT; m_context.appendConditionalInvalid(); } m_context << Instruction::SWAP1; // stack: value_to_shift shift_amount switch (_operator) { case Token::SHL: if (m_context.evmVersion().hasBitwiseShifting()) m_context << Instruction::SHL; else m_context << u256(2) << Instruction::EXP << Instruction::MUL; break; case Token::SAR: if (m_context.evmVersion().hasBitwiseShifting()) m_context << (c_valueSigned ? Instruction::SAR : Instruction::SHR); else { if (c_valueSigned) // In the following assembly snippet, xor_mask will be zero, if value_to_shift is positive. // Therefore xor'ing with xor_mask is the identity and the computation reduces to // div(value_to_shift, exp(2, shift_amount)), which is correct, since for positive values // arithmetic right shift is dividing by a power of two (which, as a bitwise operation, results // in discarding bits on the right and filling with zeros from the left). // For negative values arithmetic right shift, viewed as a bitwise operation, discards bits to the // right and fills in ones from the left. This is achieved as follows: // If value_to_shift is negative, then xor_mask will have all bits set, so xor'ing with xor_mask // will flip all bits. First all bits in value_to_shift are flipped. As for the positive case, // dividing by a power of two using integer arithmetic results in discarding bits to the right // and filling with zeros from the left. Flipping all bits in the result again, turns all zeros // on the left to ones and restores the non-discarded, shifted bits to their original value (they // have now been flipped twice). In summary we now have discarded bits to the right and filled with // ones from the left, i.e. we have performed an arithmetic right shift. m_context.appendInlineAssembly(R"({ let xor_mask := sub(0, slt(value_to_shift, 0)) value_to_shift := xor(div(xor(value_to_shift, xor_mask), exp(2, shift_amount)), xor_mask) })", {"value_to_shift", "shift_amount"}); else m_context.appendInlineAssembly(R"({ value_to_shift := div(value_to_shift, exp(2, shift_amount)) })", {"value_to_shift", "shift_amount"}); m_context << Instruction::POP; } break; case Token::SHR: default: solAssert(false, "Unknown shift operator."); } } void ExpressionCompiler::appendExternalFunctionCall( FunctionType const& _functionType, vector> const& _arguments ) { solAssert( _functionType.takesArbitraryParameters() || _arguments.size() == _functionType.parameterTypes().size(), "" ); // Assumed stack content here: // // value [if _functionType.valueSet()] // gas [if _functionType.gasSet()] // self object [if bound - moved to top right away] // function identifier [unless bare] // contract address unsigned selfSize = _functionType.bound() ? _functionType.selfType()->sizeOnStack() : 0; unsigned gasValueSize = (_functionType.gasSet() ? 1 : 0) + (_functionType.valueSet() ? 1 : 0); unsigned contractStackPos = m_context.currentToBaseStackOffset(1 + gasValueSize + selfSize + (_functionType.isBareCall() ? 0 : 1)); unsigned gasStackPos = m_context.currentToBaseStackOffset(gasValueSize); unsigned valueStackPos = m_context.currentToBaseStackOffset(1); // move self object to top if (_functionType.bound()) utils().moveToStackTop(gasValueSize, _functionType.selfType()->sizeOnStack()); auto funKind = _functionType.kind(); solAssert(funKind != FunctionType::Kind::BareStaticCall || m_context.evmVersion().hasStaticCall(), ""); solAssert(funKind != FunctionType::Kind::BareCallCode, "Callcode has been removed."); bool returnSuccessConditionAndReturndata = funKind == FunctionType::Kind::BareCall || funKind == FunctionType::Kind::BareDelegateCall || funKind == FunctionType::Kind::BareStaticCall; bool isDelegateCall = funKind == FunctionType::Kind::BareDelegateCall || funKind == FunctionType::Kind::DelegateCall; bool useStaticCall = funKind == FunctionType::Kind::BareStaticCall || (_functionType.stateMutability() <= StateMutability::View && m_context.evmVersion().hasStaticCall()); bool haveReturndatacopy = m_context.evmVersion().supportsReturndata(); unsigned retSize = 0; bool dynamicReturnSize = false; TypePointers returnTypes; if (!returnSuccessConditionAndReturndata) { if (haveReturndatacopy) returnTypes = _functionType.returnParameterTypes(); else returnTypes = _functionType.returnParameterTypesWithoutDynamicTypes(); for (auto const& retType: returnTypes) if (retType->isDynamicallyEncoded()) { solAssert(haveReturndatacopy, ""); dynamicReturnSize = true; retSize = 0; break; } else if (retType->decodingType()) retSize += retType->decodingType()->calldataEncodedSize(); else retSize += retType->calldataEncodedSize(); } // Evaluate arguments. TypePointers argumentTypes; TypePointers parameterTypes = _functionType.parameterTypes(); if (_functionType.bound()) { argumentTypes.push_back(_functionType.selfType()); parameterTypes.insert(parameterTypes.begin(), _functionType.selfType()); } for (size_t i = 0; i < _arguments.size(); ++i) { _arguments[i]->accept(*this); argumentTypes.push_back(_arguments[i]->annotation().type); } if (funKind == FunctionType::Kind::ECRecover) { // Clears 32 bytes of currently free memory and advances free memory pointer. // Output area will be "start of input area" - 32. // The reason is that a failing ECRecover cannot be detected, it will just return // zero bytes (which we cannot detect). solAssert(0 < retSize && retSize <= 32, ""); utils().fetchFreeMemoryPointer(); m_context << u256(0) << Instruction::DUP2 << Instruction::MSTORE; m_context << u256(32) << Instruction::ADD; utils().storeFreeMemoryPointer(); } if (!m_context.evmVersion().canOverchargeGasForCall()) { // Touch the end of the output area so that we do not pay for memory resize during the call // (which we would have to subtract from the gas left) // We could also just use MLOAD; POP right before the gas calculation, but the optimizer // would remove that, so we use MSTORE here. if (!_functionType.gasSet() && retSize > 0) { m_context << u256(0); utils().fetchFreeMemoryPointer(); // This touches too much, but that way we save some rounding arithmetic m_context << u256(retSize) << Instruction::ADD << Instruction::MSTORE; } } // Copy function identifier to memory. utils().fetchFreeMemoryPointer(); if (!_functionType.isBareCall()) { m_context << dupInstruction(2 + gasValueSize + CompilerUtils::sizeOnStack(argumentTypes)); utils().storeInMemoryDynamic(IntegerType(8 * CompilerUtils::dataStartOffset), false); } // If the function takes arbitrary parameters or is a bare call, copy dynamic length data in place. // Move arguments to memory, will not update the free memory pointer (but will update the memory // pointer on the stack). bool encodeInPlace = _functionType.takesArbitraryParameters() || _functionType.isBareCall(); if (_functionType.kind() == FunctionType::Kind::ECRecover) // This would be the only combination of padding and in-place encoding, // but all parameters of ecrecover are value types anyway. encodeInPlace = false; bool encodeForLibraryCall = funKind == FunctionType::Kind::DelegateCall; utils().encodeToMemory( argumentTypes, parameterTypes, _functionType.padArguments(), encodeInPlace, encodeForLibraryCall ); // Stack now: // // input_memory_end // value [if _functionType.valueSet()] // gas [if _functionType.gasSet()] // function identifier [unless bare] // contract address // Output data will replace input data, unless we have ECRecover (then, output // area will be 32 bytes just before input area). // put on stack: m_context << u256(retSize); utils().fetchFreeMemoryPointer(); // This is the start of input if (funKind == FunctionType::Kind::ECRecover) { // In this case, output is 32 bytes before input and has already been cleared. m_context << u256(32) << Instruction::DUP2 << Instruction::SUB << Instruction::SWAP1; // Here: m_context << Instruction::DUP1 << Instruction::DUP5 << Instruction::SUB; m_context << Instruction::SWAP1; } else { m_context << Instruction::DUP1 << Instruction::DUP4 << Instruction::SUB; m_context << Instruction::DUP2; } // CALL arguments: outSize, outOff, inSize, inOff (already present up to here) // [value,] addr, gas (stack top) if (isDelegateCall) solAssert(!_functionType.valueSet(), "Value set for delegatecall"); else if (useStaticCall) solAssert(!_functionType.valueSet(), "Value set for staticcall"); else if (_functionType.valueSet()) m_context << dupInstruction(m_context.baseToCurrentStackOffset(valueStackPos)); else m_context << u256(0); m_context << dupInstruction(m_context.baseToCurrentStackOffset(contractStackPos)); bool existenceChecked = false; // Check the target contract exists (has code) for non-low-level calls. if (funKind == FunctionType::Kind::External || funKind == FunctionType::Kind::DelegateCall) { m_context << Instruction::DUP1 << Instruction::EXTCODESIZE << Instruction::ISZERO; // TODO: error message? m_context.appendConditionalRevert(); existenceChecked = true; } if (_functionType.gasSet()) m_context << dupInstruction(m_context.baseToCurrentStackOffset(gasStackPos)); else if (m_context.evmVersion().canOverchargeGasForCall()) // Send all gas (requires tangerine whistle EVM) m_context << Instruction::GAS; else { // send all gas except the amount needed to execute "SUB" and "CALL" // @todo this retains too much gas for now, needs to be fine-tuned. u256 gasNeededByCaller = eth::GasCosts::callGas(m_context.evmVersion()) + 10; if (_functionType.valueSet()) gasNeededByCaller += eth::GasCosts::callValueTransferGas; if (!existenceChecked) gasNeededByCaller += eth::GasCosts::callNewAccountGas; // we never know m_context << gasNeededByCaller << Instruction::GAS << Instruction::SUB; } // Order is important here, STATICCALL might overlap with DELEGATECALL. if (isDelegateCall) m_context << Instruction::DELEGATECALL; else if (useStaticCall) m_context << Instruction::STATICCALL; else m_context << Instruction::CALL; unsigned remainsSize = 2 + // contract address, input_memory_end (_functionType.valueSet() ? 1 : 0) + (_functionType.gasSet() ? 1 : 0) + (!_functionType.isBareCall() ? 1 : 0); if (returnSuccessConditionAndReturndata) m_context << swapInstruction(remainsSize); else { //Propagate error condition (if CALL pushes 0 on stack). m_context << Instruction::ISZERO; m_context.appendConditionalRevert(true); } utils().popStackSlots(remainsSize); if (returnSuccessConditionAndReturndata) { // success condition is already there // The return parameter types can be empty, when this function is used as // an internal helper function e.g. for ``send`` and ``transfer``. In that // case we're only interested in the success condition, not the return data. if (!_functionType.returnParameterTypes().empty()) { if (haveReturndatacopy) { m_context << Instruction::RETURNDATASIZE; m_context.appendInlineAssembly(R"({ switch v case 0 { v := 0x60 } default { v := mload(0x40) mstore(0x40, add(v, and(add(returndatasize(), 0x3f), not(0x1f)))) mstore(v, returndatasize()) returndatacopy(add(v, 0x20), 0, returndatasize()) } })", {"v"}); } else utils().pushZeroPointer(); } } else if (funKind == FunctionType::Kind::RIPEMD160) { // fix: built-in contract returns right-aligned data utils().fetchFreeMemoryPointer(); utils().loadFromMemoryDynamic(IntegerType(160), false, true, false); utils().convertType(IntegerType(160), FixedBytesType(20)); } else if (funKind == FunctionType::Kind::ECRecover) { // Output is 32 bytes before input / free mem pointer. // Failing ecrecover cannot be detected, so we clear output before the call. m_context << u256(32); utils().fetchFreeMemoryPointer(); m_context << Instruction::SUB << Instruction::MLOAD; } else if (!returnTypes.empty()) { utils().fetchFreeMemoryPointer(); // Stack: return_data_start // The old decoder did not allocate any memory (i.e. did not touch the free // memory pointer), but kept references to the return data for // (statically-sized) arrays bool needToUpdateFreeMemoryPtr = false; if (dynamicReturnSize || m_context.experimentalFeatureActive(ExperimentalFeature::ABIEncoderV2)) needToUpdateFreeMemoryPtr = true; else for (auto const& retType: returnTypes) if (dynamic_cast(retType.get())) needToUpdateFreeMemoryPtr = true; // Stack: return_data_start if (dynamicReturnSize) { solAssert(haveReturndatacopy, ""); m_context.appendInlineAssembly("{ returndatacopy(return_data_start, 0, returndatasize()) }", {"return_data_start"}); } else solAssert(retSize > 0, ""); // Always use the actual return length, and not our calculated expected length, if returndatacopy is supported. // This ensures it can catch badly formatted input from external calls. m_context << (haveReturndatacopy ? eth::AssemblyItem(Instruction::RETURNDATASIZE) : u256(retSize)); // Stack: return_data_start return_data_size if (needToUpdateFreeMemoryPtr) m_context.appendInlineAssembly(R"({ // round size to the next multiple of 32 let newMem := add(start, and(add(size, 0x1f), not(0x1f))) mstore(0x40, newMem) })", {"start", "size"}); utils().abiDecode(returnTypes, true); } } void ExpressionCompiler::appendExpressionCopyToMemory(Type const& _expectedType, Expression const& _expression) { solUnimplementedAssert(_expectedType.isValueType(), "Not implemented for non-value types."); _expression.accept(*this); utils().convertType(*_expression.annotation().type, _expectedType, true); utils().storeInMemoryDynamic(_expectedType); } void ExpressionCompiler::appendVariable(VariableDeclaration const& _variable, Expression const& _expression) { if (!_variable.isConstant()) setLValueFromDeclaration(_variable, _expression); else { _variable.value()->accept(*this); utils().convertType(*_variable.value()->annotation().type, *_variable.annotation().type); } } void ExpressionCompiler::setLValueFromDeclaration(Declaration const& _declaration, Expression const& _expression) { if (m_context.isLocalVariable(&_declaration)) setLValue(_expression, dynamic_cast(_declaration)); else if (m_context.isStateVariable(&_declaration)) setLValue(_expression, dynamic_cast(_declaration)); else BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_sourceLocation(_expression.location()) << errinfo_comment("Identifier type not supported or identifier not found.")); } void ExpressionCompiler::setLValueToStorageItem(Expression const& _expression) { setLValue(_expression, *_expression.annotation().type); } bool ExpressionCompiler::cleanupNeededForOp(Type::Category _type, Token _op) { if (TokenTraits::isCompareOp(_op) || TokenTraits::isShiftOp(_op)) return true; else if (_type == Type::Category::Integer && (_op == Token::Div || _op == Token::Mod || _op == Token::Exp)) // We need cleanup for EXP because 0**0 == 1, but 0**0x100 == 0 // It would suffice to clean the exponent, though. return true; else return false; } CompilerUtils ExpressionCompiler::utils() { return CompilerUtils(m_context); } } }