/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see <http://www.gnu.org/licenses/>. */ // SPDX-License-Identifier: GPL-3.0 /** * @author Christian <c@ethdev.com> * @date 2014 * Framework for executing contracts and testing them using RPC. */ #pragma once #include <test/Common.h> #include <test/EVMHost.h> #include <libsolidity/interface/OptimiserSettings.h> #include <libsolidity/interface/DebugSettings.h> #include <liblangutil/EVMVersion.h> #include <libsolutil/FunctionSelector.h> #include <libsolutil/ErrorCodes.h> #include <functional> #include <boost/rational.hpp> #include <boost/test/unit_test.hpp> namespace solidity::frontend::test { struct LogRecord; } // namespace solidity::frontend::test namespace solidity::test { using rational = boost::rational<bigint>; // The ether and gwei denominations; here for ease of use where needed within code. static u256 const gwei = u256(1) << 9; static u256 const ether = u256(1) << 18; class ExecutionFramework { public: ExecutionFramework(); ExecutionFramework(langutil::EVMVersion _evmVersion, std::vector<boost::filesystem::path> const& _vmPaths); virtual ~ExecutionFramework() = default; virtual bytes const& compileAndRunWithoutCheck( std::map<std::string, std::string> const& _sourceCode, u256 const& _value = 0, std::string const& _contractName = "", bytes const& _arguments = {}, std::map<std::string, util::h160> const& _libraryAddresses = {}, std::optional<std::string> const& _sourceName = std::nullopt ) = 0; bytes const& compileAndRun( std::string const& _sourceCode, u256 const& _value = 0, std::string const& _contractName = "", bytes const& _arguments = {}, std::map<std::string, util::h160> const& _libraryAddresses = {} ) { compileAndRunWithoutCheck( {{"", _sourceCode}}, _value, _contractName, _arguments, _libraryAddresses ); BOOST_REQUIRE(m_transactionSuccessful); BOOST_REQUIRE(!m_output.empty()); return m_output; } bytes const& callFallbackWithValue(u256 const& _value) { sendMessage(bytes(), false, _value); return m_output; } bytes const & callFallback() { return callFallbackWithValue(0); } bytes const& callLowLevel(bytes const& _data, u256 const& _value) { sendMessage(_data, false, _value); return m_output; } bytes const& callContractFunctionWithValueNoEncoding(std::string _sig, u256 const& _value, bytes const& _arguments) { sendMessage(util::selectorFromSignatureH32(_sig).asBytes() + _arguments, false, _value); return m_output; } bytes const& callContractFunctionNoEncoding(std::string _sig, bytes const& _arguments) { return callContractFunctionWithValueNoEncoding(_sig, 0, _arguments); } template <class... Args> bytes const& callContractFunctionWithValue(std::string _sig, u256 const& _value, Args const&... _arguments) { return callContractFunctionWithValueNoEncoding(_sig, _value, encodeArgs(_arguments...)); } template <class... Args> bytes const& callContractFunction(std::string _sig, Args const&... _arguments) { return callContractFunctionWithValue(_sig, 0, _arguments...); } template <class CppFunction, class... Args> void testContractAgainstCpp(std::string _sig, CppFunction const& _cppFunction, Args const&... _arguments) { bytes contractResult = callContractFunction(_sig, _arguments...); bytes cppResult = callCppAndEncodeResult(_cppFunction, _arguments...); BOOST_CHECK_MESSAGE( contractResult == cppResult, "Computed values do not match.\nContract: " + util::toHex(contractResult) + "\nC++: " + util::toHex(cppResult) ); } template <class CppFunction, class... Args> void testContractAgainstCppOnRange(std::string _sig, CppFunction const& _cppFunction, u256 const& _rangeStart, u256 const& _rangeEnd) { for (u256 argument = _rangeStart; argument < _rangeEnd; ++argument) { bytes contractResult = callContractFunction(_sig, argument); bytes cppResult = callCppAndEncodeResult(_cppFunction, argument); BOOST_CHECK_MESSAGE( contractResult == cppResult, "Computed values do not match.\nContract: " + util::toHex(contractResult) + "\nC++: " + util::toHex(cppResult) + "\nArgument: " + util::toHex(encode(argument)) ); } } static std::pair<bool, std::string> compareAndCreateMessage(bytes const& _result, bytes const& _expectation); static bytes encode(bool _value) { return encode(uint8_t(_value)); } static bytes encode(int _value) { return encode(u256(_value)); } static bytes encode(size_t _value) { return encode(u256(_value)); } static bytes encode(char const* _value) { return encode(std::string(_value)); } static bytes encode(uint8_t _value) { return bytes(31, 0) + bytes{_value}; } static bytes encode(u256 const& _value) { return toBigEndian(_value); } /// @returns the fixed-point encoding of a rational number with a given /// number of fractional bits. static bytes encode(std::pair<rational, int> const& _valueAndPrecision) { rational const& value = _valueAndPrecision.first; int fractionalBits = _valueAndPrecision.second; return encode(u256((value.numerator() << fractionalBits) / value.denominator())); } static bytes encode(util::h256 const& _value) { return _value.asBytes(); } static bytes encode(util::h160 const& _value) { return encode(util::h256(_value, util::h256::AlignRight)); } static bytes encode(bytes const& _value, bool _padLeft = true) { bytes padding = bytes((32 - _value.size() % 32) % 32, 0); return _padLeft ? padding + _value : _value + padding; } static bytes encode(std::string const& _value) { return encode(util::asBytes(_value), false); } template <class T> static bytes encode(std::vector<T> const& _value) { bytes ret; for (auto const& v: _value) ret += encode(v); return ret; } template <class FirstArg, class... Args> static bytes encodeArgs(FirstArg const& _firstArg, Args const&... _followingArgs) { return encode(_firstArg) + encodeArgs(_followingArgs...); } static bytes encodeArgs() { return bytes(); } /// @returns error returndata corresponding to the Panic(uint256) error code, /// if REVERT is supported by the current EVM version and the empty string otherwise. bytes panicData(util::PanicCode _code); //@todo might be extended in the future template <class Arg> static bytes encodeDyn(Arg const& _arg) { return encodeArgs(u256(0x20), u256(_arg.size()), _arg); } u256 gasLimit() const; u256 gasPrice() const; u256 blockHash(u256 const& _blockNumber) const; u256 blockNumber() const; template<typename Range> static bytes encodeArray(bool _dynamicallySized, bool _dynamicallyEncoded, Range const& _elements) { bytes result; if (_dynamicallySized) result += encode(u256(_elements.size())); if (_dynamicallyEncoded) { u256 offset = u256(_elements.size()) * 32; std::vector<bytes> subEncodings; for (auto const& element: _elements) { result += encode(offset); subEncodings.emplace_back(encode(element)); offset += subEncodings.back().size(); } for (auto const& subEncoding: subEncodings) result += subEncoding; } else for (auto const& element: _elements) result += encode(element); return result; } util::h160 setAccount(size_t _accountNumber) { m_sender = account(_accountNumber); return m_sender; } size_t numLogs() const; size_t numLogTopics(size_t _logIdx) const; util::h256 logTopic(size_t _logIdx, size_t _topicIdx) const; util::h160 logAddress(size_t _logIdx) const; bytes logData(size_t _logIdx) const; private: template <class CppFunction, class... Args> auto callCppAndEncodeResult(CppFunction const& _cppFunction, Args const&... _arguments) -> typename std::enable_if<std::is_void<decltype(_cppFunction(_arguments...))>::value, bytes>::type { _cppFunction(_arguments...); return bytes(); } template <class CppFunction, class... Args> auto callCppAndEncodeResult(CppFunction const& _cppFunction, Args const&... _arguments) -> typename std::enable_if<!std::is_void<decltype(_cppFunction(_arguments...))>::value, bytes>::type { return encode(_cppFunction(_arguments...)); } protected: u256 const InitialGas = 100000000; void selectVM(evmc_capabilities _cap = evmc_capabilities::EVMC_CAPABILITY_EVM1); void reset(); void sendMessage(bytes const& _data, bool _isCreation, u256 const& _value = 0); void sendEther(util::h160 const& _to, u256 const& _value); size_t currentTimestamp(); size_t blockTimestamp(u256 _number); /// @returns the (potentially newly created) _ith address. util::h160 account(size_t _i); u256 balanceAt(util::h160 const& _addr) const; bool storageEmpty(util::h160 const& _addr) const; bool addressHasCode(util::h160 const& _addr) const; std::vector<frontend::test::LogRecord> recordedLogs() const; langutil::EVMVersion m_evmVersion; solidity::frontend::RevertStrings m_revertStrings = solidity::frontend::RevertStrings::Default; solidity::frontend::OptimiserSettings m_optimiserSettings = solidity::frontend::OptimiserSettings::minimal(); bool m_showMessages = false; std::unique_ptr<EVMHost> m_evmcHost; std::vector<boost::filesystem::path> m_vmPaths; bool m_transactionSuccessful = true; util::h160 m_sender = account(0); util::h160 m_contractAddress; bytes m_output; u256 m_gasUsed; }; #define ABI_CHECK(result, expectation) do { \ auto abiCheckResult = ExecutionFramework::compareAndCreateMessage((result), (expectation)); \ BOOST_CHECK_MESSAGE(abiCheckResult.first, abiCheckResult.second); \ } while (0) } // end namespaces