/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
/**
* @author Christian
* @date 2014
* Solidity data types
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace solidity;
using namespace solidity::langutil;
using namespace solidity::frontend;
namespace
{
/// Check whether (_base ** _exp) fits into 4096 bits.
bool fitsPrecisionExp(bigint const& _base, bigint const& _exp)
{
if (_base == 0)
return true;
solAssert(_base > 0, "");
size_t const bitsMax = 4096;
unsigned mostSignificantBaseBit = boost::multiprecision::msb(_base);
if (mostSignificantBaseBit == 0) // _base == 1
return true;
if (mostSignificantBaseBit > bitsMax) // _base >= 2 ^ 4096
return false;
bigint bitsNeeded = _exp * (mostSignificantBaseBit + 1);
return bitsNeeded <= bitsMax;
}
/// Checks whether _mantissa * (X ** _exp) fits into 4096 bits,
/// where X is given indirectly via _log2OfBase = log2(X).
bool fitsPrecisionBaseX(
bigint const& _mantissa,
double _log2OfBase,
uint32_t _exp
)
{
if (_mantissa == 0)
return true;
solAssert(_mantissa > 0, "");
size_t const bitsMax = 4096;
unsigned mostSignificantMantissaBit = boost::multiprecision::msb(_mantissa);
if (mostSignificantMantissaBit > bitsMax) // _mantissa >= 2 ^ 4096
return false;
bigint bitsNeeded = mostSignificantMantissaBit + bigint(floor(double(_exp) * _log2OfBase)) + 1;
return bitsNeeded <= bitsMax;
}
/// Checks whether _mantissa * (10 ** _expBase10) fits into 4096 bits.
bool fitsPrecisionBase10(bigint const& _mantissa, uint32_t _expBase10)
{
double const log2Of10AwayFromZero = 3.3219280948873624;
return fitsPrecisionBaseX(_mantissa, log2Of10AwayFromZero, _expBase10);
}
/// Checks whether _mantissa * (2 ** _expBase10) fits into 4096 bits.
bool fitsPrecisionBase2(bigint const& _mantissa, uint32_t _expBase2)
{
return fitsPrecisionBaseX(_mantissa, 1.0, _expBase2);
}
/// Checks whether _value fits into IntegerType _type.
BoolResult fitsIntegerType(bigint const& _value, IntegerType const& _type)
{
if (_value < 0 && !_type.isSigned())
return BoolResult::err("Cannot implicitly convert signed literal to unsigned type.");
if (_type.minValue() > _value || _value > _type.maxValue())
return BoolResult::err("Literal is too large to fit in " + _type.toString(false) + ".");
return true;
}
/// Checks whether _value fits into _bits bits when having 1 bit as the sign bit
/// if _signed is true.
bool fitsIntoBits(bigint const& _value, unsigned _bits, bool _signed)
{
return fitsIntegerType(_value, *TypeProvider::integer(
_bits,
_signed ? IntegerType::Modifier::Signed : IntegerType::Modifier::Unsigned
));
}
util::Result transformParametersToExternal(TypePointers const& _parameters, bool _inLibrary)
{
TypePointers transformed;
for (auto const& type: _parameters)
{
if (TypePointer ext = type->interfaceType(_inLibrary).get())
transformed.push_back(ext);
else
return util::Result::err("Parameter should have external type.");
}
return transformed;
}
}
void Type::clearCache() const
{
m_members.clear();
m_stackItems.reset();
m_stackSize.reset();
}
void StorageOffsets::computeOffsets(TypePointers const& _types)
{
bigint slotOffset = 0;
unsigned byteOffset = 0;
map> offsets;
for (size_t i = 0; i < _types.size(); ++i)
{
Type const* type = _types[i];
if (!type->canBeStored())
continue;
if (byteOffset + type->storageBytes() > 32)
{
// would overflow, go to next slot
++slotOffset;
byteOffset = 0;
}
if (slotOffset >= bigint(1) << 256)
BOOST_THROW_EXCEPTION(Error(Error::Type::TypeError) << util::errinfo_comment("Object too large for storage."));
offsets[i] = make_pair(u256(slotOffset), byteOffset);
solAssert(type->storageSize() >= 1, "Invalid storage size.");
if (type->storageSize() == 1 && byteOffset + type->storageBytes() <= 32)
byteOffset += type->storageBytes();
else
{
slotOffset += type->storageSize();
byteOffset = 0;
}
}
if (byteOffset > 0)
++slotOffset;
if (slotOffset >= bigint(1) << 256)
BOOST_THROW_EXCEPTION(Error(Error::Type::TypeError) << util::errinfo_comment("Object too large for storage."));
m_storageSize = u256(slotOffset);
swap(m_offsets, offsets);
}
pair const* StorageOffsets::offset(size_t _index) const
{
if (m_offsets.count(_index))
return &m_offsets.at(_index);
else
return nullptr;
}
void MemberList::combine(MemberList const & _other)
{
m_memberTypes += _other.m_memberTypes;
}
pair const* MemberList::memberStorageOffset(string const& _name) const
{
StorageOffsets const& offsets = storageOffsets();
for (size_t index = 0; index < m_memberTypes.size(); ++index)
if (m_memberTypes[index].name == _name)
return offsets.offset(index);
return nullptr;
}
u256 const& MemberList::storageSize() const
{
return storageOffsets().storageSize();
}
StorageOffsets const& MemberList::storageOffsets() const {
return m_storageOffsets.init([&]{
TypePointers memberTypes;
memberTypes.reserve(m_memberTypes.size());
for (auto const& member: m_memberTypes)
memberTypes.push_back(member.type);
StorageOffsets storageOffsets;
storageOffsets.computeOffsets(memberTypes);
return storageOffsets;
});
}
/// Helper functions for type identifier
namespace
{
string parenthesizeIdentifier(string const& _internal)
{
return "(" + _internal + ")";
}
template
string identifierList(Range const&& _list)
{
return parenthesizeIdentifier(boost::algorithm::join(_list, ","));
}
string richIdentifier(Type const* _type)
{
return _type ? _type->richIdentifier() : "";
}
string identifierList(vector const& _list)
{
return identifierList(_list | boost::adaptors::transformed(richIdentifier));
}
string identifierList(Type const* _type)
{
return parenthesizeIdentifier(richIdentifier(_type));
}
string identifierList(Type const* _type1, Type const* _type2)
{
TypePointers list;
list.push_back(_type1);
list.push_back(_type2);
return identifierList(list);
}
string parenthesizeUserIdentifier(string const& _internal)
{
return parenthesizeIdentifier(_internal);
}
}
string Type::escapeIdentifier(string const& _identifier)
{
string ret = _identifier;
// FIXME: should be _$$$_
boost::algorithm::replace_all(ret, "$", "$$$");
boost::algorithm::replace_all(ret, ",", "_$_");
boost::algorithm::replace_all(ret, "(", "$_");
boost::algorithm::replace_all(ret, ")", "_$");
return ret;
}
string Type::identifier() const
{
string ret = escapeIdentifier(richIdentifier());
solAssert(ret.find_first_of("0123456789") != 0, "Identifier cannot start with a number.");
solAssert(
ret.find_first_not_of("0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMONPQRSTUVWXYZ_$") == string::npos,
"Identifier contains invalid characters."
);
return ret;
}
TypePointer Type::commonType(Type const* _a, Type const* _b)
{
if (!_a || !_b)
return nullptr;
else if (_a->mobileType() && _b->isImplicitlyConvertibleTo(*_a->mobileType()))
return _a->mobileType();
else if (_b->mobileType() && _a->isImplicitlyConvertibleTo(*_b->mobileType()))
return _b->mobileType();
else
return nullptr;
}
MemberList const& Type::members(ContractDefinition const* _currentScope) const
{
if (!m_members[_currentScope])
{
MemberList::MemberMap members = nativeMembers(_currentScope);
if (_currentScope)
members += boundFunctions(*this, *_currentScope);
m_members[_currentScope] = make_unique(move(members));
}
return *m_members[_currentScope];
}
TypePointer Type::fullEncodingType(bool _inLibraryCall, bool _encoderV2, bool) const
{
TypePointer encodingType = mobileType();
if (encodingType)
encodingType = encodingType->interfaceType(_inLibraryCall);
if (encodingType)
encodingType = encodingType->encodingType();
// Structs are fine in the following circumstances:
// - ABIv2 or,
// - storage struct for a library
if (_inLibraryCall && encodingType && encodingType->dataStoredIn(DataLocation::Storage))
return encodingType;
TypePointer baseType = encodingType;
while (auto const* arrayType = dynamic_cast(baseType))
baseType = arrayType->baseType();
if (dynamic_cast(baseType))
if (!_encoderV2)
return nullptr;
return encodingType;
}
MemberList::MemberMap Type::boundFunctions(Type const& _type, ContractDefinition const& _scope)
{
// Normalise data location of type.
DataLocation typeLocation = DataLocation::Storage;
if (auto refType = dynamic_cast(&_type))
typeLocation = refType->location();
set seenFunctions;
MemberList::MemberMap members;
for (ContractDefinition const* contract: _scope.annotation().linearizedBaseContracts)
for (UsingForDirective const* ufd: contract->usingForDirectives())
{
if (ufd->typeName() && _type != *TypeProvider::withLocationIfReference(
typeLocation,
ufd->typeName()->annotation().type
))
continue;
auto const& library = dynamic_cast(
*ufd->libraryName().annotation().referencedDeclaration
);
for (FunctionDefinition const* function: library.definedFunctions())
{
if (!function->isVisibleAsLibraryMember() || seenFunctions.count(function))
continue;
seenFunctions.insert(function);
if (function->parameters().empty())
continue;
FunctionTypePointer fun = FunctionType(*function, FunctionType::Kind::External).asExternallyCallableFunction(true, true);
if (_type.isImplicitlyConvertibleTo(*fun->selfType()))
members.emplace_back(function->name(), fun, function);
}
}
return members;
}
AddressType::AddressType(StateMutability _stateMutability):
m_stateMutability(_stateMutability)
{
solAssert(m_stateMutability == StateMutability::Payable || m_stateMutability == StateMutability::NonPayable, "");
}
string AddressType::richIdentifier() const
{
if (m_stateMutability == StateMutability::Payable)
return "t_address_payable";
else
return "t_address";
}
BoolResult AddressType::isImplicitlyConvertibleTo(Type const& _other) const
{
if (_other.category() != category())
return false;
AddressType const& other = dynamic_cast(_other);
return other.m_stateMutability <= m_stateMutability;
}
BoolResult AddressType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
if (_convertTo.category() == category())
return true;
else if (auto const* contractType = dynamic_cast(&_convertTo))
return (m_stateMutability >= StateMutability::Payable) || !contractType->isPayable();
return isImplicitlyConvertibleTo(_convertTo) ||
_convertTo.category() == Category::Integer ||
(_convertTo.category() == Category::FixedBytes && 160 == dynamic_cast(_convertTo).numBytes() * 8);
}
string AddressType::toString(bool) const
{
if (m_stateMutability == StateMutability::Payable)
return "address payable";
else
return "address";
}
string AddressType::canonicalName() const
{
return "address";
}
u256 AddressType::literalValue(Literal const* _literal) const
{
solAssert(_literal, "");
solAssert(_literal->value().substr(0, 2) == "0x", "");
return u256(_literal->valueWithoutUnderscores());
}
TypeResult AddressType::unaryOperatorResult(Token _operator) const
{
return _operator == Token::Delete ? TypeProvider::emptyTuple() : nullptr;
}
TypeResult AddressType::binaryOperatorResult(Token _operator, Type const* _other) const
{
if (!TokenTraits::isCompareOp(_operator))
return TypeResult::err("Arithmetic operations on addresses are not supported. Convert to integer first before using them.");
return Type::commonType(this, _other);
}
bool AddressType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
AddressType const& other = dynamic_cast(_other);
return other.m_stateMutability == m_stateMutability;
}
MemberList::MemberMap AddressType::nativeMembers(ContractDefinition const*) const
{
MemberList::MemberMap members = {
{"balance", TypeProvider::uint256()},
{"call", TypeProvider::function(strings{"bytes memory"}, strings{"bool", "bytes memory"}, FunctionType::Kind::BareCall, false, StateMutability::Payable)},
{"callcode", TypeProvider::function(strings{"bytes memory"}, strings{"bool", "bytes memory"}, FunctionType::Kind::BareCallCode, false, StateMutability::Payable)},
{"delegatecall", TypeProvider::function(strings{"bytes memory"}, strings{"bool", "bytes memory"}, FunctionType::Kind::BareDelegateCall, false, StateMutability::NonPayable)},
{"staticcall", TypeProvider::function(strings{"bytes memory"}, strings{"bool", "bytes memory"}, FunctionType::Kind::BareStaticCall, false, StateMutability::View)}
};
if (m_stateMutability == StateMutability::Payable)
{
members.emplace_back(MemberList::Member{"send", TypeProvider::function(strings{"uint"}, strings{"bool"}, FunctionType::Kind::Send, false, StateMutability::NonPayable)});
members.emplace_back(MemberList::Member{"transfer", TypeProvider::function(strings{"uint"}, strings(), FunctionType::Kind::Transfer, false, StateMutability::NonPayable)});
}
return members;
}
namespace
{
bool isValidShiftAndAmountType(Token _operator, Type const& _shiftAmountType)
{
// Disable >>> here.
if (_operator == Token::SHR)
return false;
else if (IntegerType const* otherInt = dynamic_cast(&_shiftAmountType))
return !otherInt->isSigned();
else if (RationalNumberType const* otherRat = dynamic_cast(&_shiftAmountType))
return !otherRat->isFractional() && otherRat->integerType() && !otherRat->integerType()->isSigned();
else
return false;
}
}
IntegerType::IntegerType(unsigned _bits, IntegerType::Modifier _modifier):
m_bits(_bits), m_modifier(_modifier)
{
solAssert(
m_bits > 0 && m_bits <= 256 && m_bits % 8 == 0,
"Invalid bit number for integer type: " + util::toString(m_bits)
);
}
string IntegerType::richIdentifier() const
{
return "t_" + string(isSigned() ? "" : "u") + "int" + to_string(numBits());
}
BoolResult IntegerType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
if (_convertTo.category() == category())
{
IntegerType const& convertTo = dynamic_cast(_convertTo);
if (convertTo.m_bits < m_bits)
return false;
else if (isSigned())
return convertTo.isSigned();
else
return !convertTo.isSigned() || convertTo.m_bits > m_bits;
}
else if (_convertTo.category() == Category::FixedPoint)
{
FixedPointType const& convertTo = dynamic_cast(_convertTo);
return maxValue() <= convertTo.maxIntegerValue() && minValue() >= convertTo.minIntegerValue();
}
else
return false;
}
BoolResult IntegerType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
return _convertTo.category() == category() ||
_convertTo.category() == Category::Address ||
_convertTo.category() == Category::Contract ||
_convertTo.category() == Category::Enum ||
(_convertTo.category() == Category::FixedBytes && numBits() == dynamic_cast(_convertTo).numBytes() * 8) ||
_convertTo.category() == Category::FixedPoint;
}
TypeResult IntegerType::unaryOperatorResult(Token _operator) const
{
// "delete" is ok for all integer types
if (_operator == Token::Delete)
return TypeResult{TypeProvider::emptyTuple()};
// we allow -, ++ and --
else if (_operator == Token::Sub || _operator == Token::Inc ||
_operator == Token::Dec || _operator == Token::BitNot)
return TypeResult{this};
else
return TypeResult::err("");
}
bool IntegerType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
IntegerType const& other = dynamic_cast(_other);
return other.m_bits == m_bits && other.m_modifier == m_modifier;
}
string IntegerType::toString(bool) const
{
string prefix = isSigned() ? "int" : "uint";
return prefix + util::toString(m_bits);
}
u256 IntegerType::min() const
{
if (isSigned())
return s2u(s256(minValue()));
else
return u256(minValue());
}
u256 IntegerType::max() const
{
if (isSigned())
return s2u(s256(maxValue()));
else
return u256(maxValue());
}
bigint IntegerType::minValue() const
{
if (isSigned())
return -(bigint(1) << (m_bits - 1));
else
return bigint(0);
}
bigint IntegerType::maxValue() const
{
if (isSigned())
return (bigint(1) << (m_bits - 1)) - 1;
else
return (bigint(1) << m_bits) - 1;
}
TypeResult IntegerType::binaryOperatorResult(Token _operator, Type const* _other) const
{
if (
_other->category() != Category::RationalNumber &&
_other->category() != Category::FixedPoint &&
_other->category() != category()
)
return nullptr;
if (TokenTraits::isShiftOp(_operator))
{
// Shifts are not symmetric with respect to the type
if (isValidShiftAndAmountType(_operator, *_other))
return this;
else
return nullptr;
}
else if (Token::Exp == _operator)
{
if (auto otherIntType = dynamic_cast(_other))
{
if (otherIntType->isSigned())
return TypeResult::err("Exponentiation power is not allowed to be a signed integer type.");
}
else if (dynamic_cast(_other))
return nullptr;
else if (auto rationalNumberType = dynamic_cast(_other))
{
if (rationalNumberType->isFractional())
return TypeResult::err("Exponent is fractional.");
if (!rationalNumberType->integerType())
return TypeResult::err("Exponent too large.");
}
return this;
}
auto commonType = Type::commonType(this, _other); //might be an integer or fixed point
if (!commonType)
return nullptr;
// All integer types can be compared
if (TokenTraits::isCompareOp(_operator))
return commonType;
if (TokenTraits::isBooleanOp(_operator))
return nullptr;
return commonType;
}
FixedPointType::FixedPointType(unsigned _totalBits, unsigned _fractionalDigits, FixedPointType::Modifier _modifier):
m_totalBits(_totalBits), m_fractionalDigits(_fractionalDigits), m_modifier(_modifier)
{
solAssert(
8 <= m_totalBits && m_totalBits <= 256 && m_totalBits % 8 == 0 && m_fractionalDigits <= 80,
"Invalid bit number(s) for fixed type: " +
util::toString(_totalBits) + "x" + util::toString(_fractionalDigits)
);
}
string FixedPointType::richIdentifier() const
{
return "t_" + string(isSigned() ? "" : "u") + "fixed" + to_string(m_totalBits) + "x" + to_string(m_fractionalDigits);
}
BoolResult FixedPointType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
if (_convertTo.category() == category())
{
FixedPointType const& convertTo = dynamic_cast(_convertTo);
if (convertTo.fractionalDigits() < m_fractionalDigits)
return BoolResult::err("Too many fractional digits.");
if (convertTo.numBits() < m_totalBits)
return false;
else
return convertTo.maxIntegerValue() >= maxIntegerValue() && convertTo.minIntegerValue() <= minIntegerValue();
}
return false;
}
BoolResult FixedPointType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
return _convertTo.category() == category() || _convertTo.category() == Category::Integer;
}
TypeResult FixedPointType::unaryOperatorResult(Token _operator) const
{
switch (_operator)
{
case Token::Delete:
// "delete" is ok for all fixed types
return TypeResult{TypeProvider::emptyTuple()};
case Token::Add:
case Token::Sub:
case Token::Inc:
case Token::Dec:
// for fixed, we allow +, -, ++ and --
return this;
default:
return nullptr;
}
}
bool FixedPointType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
FixedPointType const& other = dynamic_cast(_other);
return other.m_totalBits == m_totalBits && other.m_fractionalDigits == m_fractionalDigits && other.m_modifier == m_modifier;
}
string FixedPointType::toString(bool) const
{
string prefix = isSigned() ? "fixed" : "ufixed";
return prefix + util::toString(m_totalBits) + "x" + util::toString(m_fractionalDigits);
}
bigint FixedPointType::maxIntegerValue() const
{
bigint maxValue = (bigint(1) << (m_totalBits - (isSigned() ? 1 : 0))) - 1;
return maxValue / boost::multiprecision::pow(bigint(10), m_fractionalDigits);
}
bigint FixedPointType::minIntegerValue() const
{
if (isSigned())
{
bigint minValue = -(bigint(1) << (m_totalBits - (isSigned() ? 1 : 0)));
return minValue / boost::multiprecision::pow(bigint(10), m_fractionalDigits);
}
else
return bigint(0);
}
TypeResult FixedPointType::binaryOperatorResult(Token _operator, Type const* _other) const
{
auto commonType = Type::commonType(this, _other);
if (!commonType)
return nullptr;
// All fixed types can be compared
if (TokenTraits::isCompareOp(_operator))
return commonType;
if (TokenTraits::isBitOp(_operator) || TokenTraits::isBooleanOp(_operator) || _operator == Token::Exp)
return nullptr;
return commonType;
}
IntegerType const* FixedPointType::asIntegerType() const
{
return TypeProvider::integer(numBits(), isSigned() ? IntegerType::Modifier::Signed : IntegerType::Modifier::Unsigned);
}
tuple RationalNumberType::parseRational(string const& _value)
{
rational value;
try
{
auto radixPoint = find(_value.begin(), _value.end(), '.');
if (radixPoint != _value.end())
{
if (
!all_of(radixPoint + 1, _value.end(), ::isdigit) ||
!all_of(_value.begin(), radixPoint, ::isdigit)
)
return make_tuple(false, rational(0));
// Only decimal notation allowed here, leading zeros would switch to octal.
auto fractionalBegin = find_if_not(
radixPoint + 1,
_value.end(),
[](char const& a) { return a == '0'; }
);
rational numerator;
rational denominator(1);
denominator = bigint(string(fractionalBegin, _value.end()));
denominator /= boost::multiprecision::pow(
bigint(10),
distance(radixPoint + 1, _value.end())
);
numerator = bigint(string(_value.begin(), radixPoint));
value = numerator + denominator;
}
else
value = bigint(_value);
return make_tuple(true, value);
}
catch (...)
{
return make_tuple(false, rational(0));
}
}
tuple RationalNumberType::isValidLiteral(Literal const& _literal)
{
rational value;
try
{
ASTString valueString = _literal.valueWithoutUnderscores();
auto expPoint = find(valueString.begin(), valueString.end(), 'e');
if (expPoint == valueString.end())
expPoint = find(valueString.begin(), valueString.end(), 'E');
if (boost::starts_with(valueString, "0x"))
{
// process as hex
value = bigint(valueString);
}
else if (expPoint != valueString.end())
{
// Parse mantissa and exponent. Checks numeric limit.
tuple mantissa = parseRational(string(valueString.begin(), expPoint));
if (!get<0>(mantissa))
return make_tuple(false, rational(0));
value = get<1>(mantissa);
// 0E... is always zero.
if (value == 0)
return make_tuple(true, rational(0));
bigint exp = bigint(string(expPoint + 1, valueString.end()));
if (exp > numeric_limits::max() || exp < numeric_limits::min())
return make_tuple(false, rational(0));
uint32_t expAbs = bigint(abs(exp)).convert_to();
if (exp < 0)
{
if (!fitsPrecisionBase10(abs(value.denominator()), expAbs))
return make_tuple(false, rational(0));
value /= boost::multiprecision::pow(
bigint(10),
expAbs
);
}
else if (exp > 0)
{
if (!fitsPrecisionBase10(abs(value.numerator()), expAbs))
return make_tuple(false, rational(0));
value *= boost::multiprecision::pow(
bigint(10),
expAbs
);
}
}
else
{
// parse as rational number
tuple tmp = parseRational(valueString);
if (!get<0>(tmp))
return tmp;
value = get<1>(tmp);
}
}
catch (...)
{
return make_tuple(false, rational(0));
}
switch (_literal.subDenomination())
{
case Literal::SubDenomination::None:
case Literal::SubDenomination::Wei:
case Literal::SubDenomination::Second:
break;
case Literal::SubDenomination::Szabo:
value *= bigint("1000000000000");
break;
case Literal::SubDenomination::Finney:
value *= bigint("1000000000000000");
break;
case Literal::SubDenomination::Ether:
value *= bigint("1000000000000000000");
break;
case Literal::SubDenomination::Minute:
value *= bigint("60");
break;
case Literal::SubDenomination::Hour:
value *= bigint("3600");
break;
case Literal::SubDenomination::Day:
value *= bigint("86400");
break;
case Literal::SubDenomination::Week:
value *= bigint("604800");
break;
case Literal::SubDenomination::Year:
value *= bigint("31536000");
break;
}
return make_tuple(true, value);
}
BoolResult RationalNumberType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
switch (_convertTo.category())
{
case Category::Integer:
{
if (isFractional())
return false;
IntegerType const& targetType = dynamic_cast(_convertTo);
return fitsIntegerType(m_value.numerator(), targetType);
}
case Category::FixedPoint:
{
FixedPointType const& targetType = dynamic_cast(_convertTo);
// Store a negative number into an unsigned.
if (isNegative() && !targetType.isSigned())
return false;
if (!isFractional())
return (targetType.minIntegerValue() <= m_value) && (m_value <= targetType.maxIntegerValue());
rational value = m_value * pow(bigint(10), targetType.fractionalDigits());
// Need explicit conversion since truncation will occur.
if (value.denominator() != 1)
return false;
return fitsIntoBits(value.numerator(), targetType.numBits(), targetType.isSigned());
}
case Category::FixedBytes:
return (m_value == rational(0)) || (m_compatibleBytesType && *m_compatibleBytesType == _convertTo);
default:
return false;
}
}
BoolResult RationalNumberType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
if (isImplicitlyConvertibleTo(_convertTo))
return true;
else if (_convertTo.category() != Category::FixedBytes)
{
TypePointer mobType = mobileType();
return (mobType && mobType->isExplicitlyConvertibleTo(_convertTo));
}
else
return false;
}
TypeResult RationalNumberType::unaryOperatorResult(Token _operator) const
{
rational value;
switch (_operator)
{
case Token::BitNot:
if (isFractional())
return nullptr;
value = ~m_value.numerator();
break;
case Token::Add:
value = +(m_value);
break;
case Token::Sub:
value = -(m_value);
break;
case Token::After:
return this;
default:
return nullptr;
}
return TypeResult{TypeProvider::rationalNumber(value)};
}
TypeResult RationalNumberType::binaryOperatorResult(Token _operator, Type const* _other) const
{
if (_other->category() == Category::Integer || _other->category() == Category::FixedPoint)
{
auto commonType = Type::commonType(this, _other);
if (!commonType)
return nullptr;
return commonType->binaryOperatorResult(_operator, _other);
}
else if (_other->category() != category())
return nullptr;
RationalNumberType const& other = dynamic_cast(*_other);
if (TokenTraits::isCompareOp(_operator))
{
// Since we do not have a "BoolConstantType", we have to do the actual comparison
// at runtime and convert to mobile typse first. Such a comparison is not a very common
// use-case and will be optimized away.
TypePointer thisMobile = mobileType();
TypePointer otherMobile = other.mobileType();
if (!thisMobile || !otherMobile)
return nullptr;
return thisMobile->binaryOperatorResult(_operator, otherMobile);
}
else
{
rational value;
bool fractional = isFractional() || other.isFractional();
switch (_operator)
{
//bit operations will only be enabled for integers and fixed types that resemble integers
case Token::BitOr:
if (fractional)
return nullptr;
value = m_value.numerator() | other.m_value.numerator();
break;
case Token::BitXor:
if (fractional)
return nullptr;
value = m_value.numerator() ^ other.m_value.numerator();
break;
case Token::BitAnd:
if (fractional)
return nullptr;
value = m_value.numerator() & other.m_value.numerator();
break;
case Token::Add:
value = m_value + other.m_value;
break;
case Token::Sub:
value = m_value - other.m_value;
break;
case Token::Mul:
value = m_value * other.m_value;
break;
case Token::Div:
if (other.m_value == rational(0))
return nullptr;
else
value = m_value / other.m_value;
break;
case Token::Mod:
if (other.m_value == rational(0))
return nullptr;
else if (fractional)
{
rational tempValue = m_value / other.m_value;
value = m_value - (tempValue.numerator() / tempValue.denominator()) * other.m_value;
}
else
value = m_value.numerator() % other.m_value.numerator();
break;
case Token::Exp:
{
if (other.isFractional())
return nullptr;
solAssert(other.m_value.denominator() == 1, "");
bigint const& exp = other.m_value.numerator();
// x ** 0 = 1
// for 0, 1 and -1 the size of the exponent doesn't have to be restricted
if (exp == 0)
value = 1;
else if (m_value.numerator() == 0 || m_value == 1)
value = m_value;
else if (m_value == -1)
{
bigint isOdd = abs(exp) & bigint(1);
value = 1 - 2 * isOdd.convert_to();
}
else
{
if (abs(exp) > numeric_limits::max())
return nullptr; // This will need too much memory to represent.
uint32_t absExp = bigint(abs(exp)).convert_to();
if (!fitsPrecisionExp(abs(m_value.numerator()), absExp) || !fitsPrecisionExp(abs(m_value.denominator()), absExp))
return TypeResult::err("Precision of rational constants is limited to 4096 bits.");
static auto const optimizedPow = [](bigint const& _base, uint32_t _exponent) -> bigint {
if (_base == 1)
return 1;
else if (_base == -1)
return 1 - 2 * int(_exponent & 1);
else
return boost::multiprecision::pow(_base, _exponent);
};
bigint numerator = optimizedPow(m_value.numerator(), absExp);
bigint denominator = optimizedPow(m_value.denominator(), absExp);
if (exp >= 0)
value = makeRational(numerator, denominator);
else
// invert
value = makeRational(denominator, numerator);
}
break;
}
case Token::SHL:
{
if (fractional)
return nullptr;
else if (other.m_value < 0)
return nullptr;
else if (other.m_value > numeric_limits::max())
return nullptr;
if (m_value.numerator() == 0)
value = 0;
else
{
uint32_t exponent = other.m_value.numerator().convert_to();
if (!fitsPrecisionBase2(abs(m_value.numerator()), exponent))
return nullptr;
value = m_value.numerator() * boost::multiprecision::pow(bigint(2), exponent);
}
break;
}
// NOTE: we're using >> (SAR) to denote right shifting. The type of the LValue
// determines the resulting type and the type of shift (SAR or SHR).
case Token::SAR:
{
if (fractional)
return nullptr;
else if (other.m_value < 0)
return nullptr;
else if (other.m_value > numeric_limits::max())
return nullptr;
if (m_value.numerator() == 0)
value = 0;
else
{
uint32_t exponent = other.m_value.numerator().convert_to();
if (exponent > boost::multiprecision::msb(boost::multiprecision::abs(m_value.numerator())))
value = m_value.numerator() < 0 ? -1 : 0;
else
{
if (m_value.numerator() < 0)
// Add 1 to the negative value before dividing to get a result that is strictly too large,
// then subtract 1 afterwards to round towards negative infinity.
// This is the same algorithm as used in ExpressionCompiler::appendShiftOperatorCode(...).
// To see this note that for negative x, xor(x,all_ones) = (-x-1) and
// therefore xor(div(xor(x,all_ones), exp(2, shift_amount)), all_ones) is
// -(-x - 1) / 2^shift_amount - 1, which is the same as
// (x + 1) / 2^shift_amount - 1.
value = rational((m_value.numerator() + 1) / boost::multiprecision::pow(bigint(2), exponent) - bigint(1), 1);
else
value = rational(m_value.numerator() / boost::multiprecision::pow(bigint(2), exponent), 1);
}
}
break;
}
default:
return nullptr;
}
// verify that numerator and denominator fit into 4096 bit after every operation
if (value.numerator() != 0 && max(boost::multiprecision::msb(abs(value.numerator())), boost::multiprecision::msb(abs(value.denominator()))) > 4096)
return TypeResult::err("Precision of rational constants is limited to 4096 bits.");
return TypeResult{TypeProvider::rationalNumber(value)};
}
}
string RationalNumberType::richIdentifier() const
{
// rational seemingly will put the sign always on the numerator,
// but let just make it deterministic here.
bigint numerator = abs(m_value.numerator());
bigint denominator = abs(m_value.denominator());
if (m_value < 0)
return "t_rational_minus_" + numerator.str() + "_by_" + denominator.str();
else
return "t_rational_" + numerator.str() + "_by_" + denominator.str();
}
bool RationalNumberType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
RationalNumberType const& other = dynamic_cast(_other);
return m_value == other.m_value;
}
string RationalNumberType::bigintToReadableString(bigint const& _num)
{
string str = _num.str();
if (str.size() > 32)
{
int omitted = str.size() - 8;
str = str.substr(0, 4) + "...(" + to_string(omitted) + " digits omitted)..." + str.substr(str.size() - 4, 4);
}
return str;
}
string RationalNumberType::toString(bool) const
{
if (!isFractional())
return "int_const " + bigintToReadableString(m_value.numerator());
string numerator = bigintToReadableString(m_value.numerator());
string denominator = bigintToReadableString(m_value.denominator());
return "rational_const " + numerator + " / " + denominator;
}
u256 RationalNumberType::literalValue(Literal const*) const
{
// We ignore the literal and hope that the type was correctly determined to represent
// its value.
u256 value;
bigint shiftedValue;
if (!isFractional())
shiftedValue = m_value.numerator();
else
{
auto fixed = fixedPointType();
solAssert(fixed, "Rational number cannot be represented as fixed point type.");
int fractionalDigits = fixed->fractionalDigits();
shiftedValue = m_value.numerator() * boost::multiprecision::pow(bigint(10), fractionalDigits) / m_value.denominator();
}
// we ignore the literal and hope that the type was correctly determined
solAssert(shiftedValue <= u256(-1), "Number constant too large.");
solAssert(shiftedValue >= -(bigint(1) << 255), "Number constant too small.");
if (m_value >= rational(0))
value = u256(shiftedValue);
else
value = s2u(s256(shiftedValue));
return value;
}
TypePointer RationalNumberType::mobileType() const
{
if (!isFractional())
return integerType();
else
return fixedPointType();
}
IntegerType const* RationalNumberType::integerType() const
{
solAssert(!isFractional(), "integerType() called for fractional number.");
bigint value = m_value.numerator();
bool negative = (value < 0);
if (negative) // convert to positive number of same bit requirements
value = ((0 - value) - 1) << 1;
if (value > u256(-1))
return nullptr;
else
return TypeProvider::integer(
max(util::bytesRequired(value), 1u) * 8,
negative ? IntegerType::Modifier::Signed : IntegerType::Modifier::Unsigned
);
}
FixedPointType const* RationalNumberType::fixedPointType() const
{
bool negative = (m_value < 0);
unsigned fractionalDigits = 0;
rational value = abs(m_value); // We care about the sign later.
rational maxValue = negative ?
rational(bigint(1) << 255, 1):
rational((bigint(1) << 256) - 1, 1);
while (value * 10 <= maxValue && value.denominator() != 1 && fractionalDigits < 80)
{
value *= 10;
fractionalDigits++;
}
if (value > maxValue)
return nullptr;
// This means we round towards zero for positive and negative values.
bigint v = value.numerator() / value.denominator();
if (negative && v != 0)
// modify value to satisfy bit requirements for negative numbers:
// add one bit for sign and decrement because negative numbers can be larger
v = (v - 1) << 1;
if (v > u256(-1))
return nullptr;
unsigned totalBits = max(util::bytesRequired(v), 1u) * 8;
solAssert(totalBits <= 256, "");
return TypeProvider::fixedPoint(
totalBits, fractionalDigits,
negative ? FixedPointType::Modifier::Signed : FixedPointType::Modifier::Unsigned
);
}
StringLiteralType::StringLiteralType(Literal const& _literal):
m_value(_literal.value())
{
}
StringLiteralType::StringLiteralType(string _value):
m_value{std::move(_value)}
{
}
BoolResult StringLiteralType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
if (auto fixedBytes = dynamic_cast(&_convertTo))
return size_t(fixedBytes->numBytes()) >= m_value.size();
else if (auto arrayType = dynamic_cast(&_convertTo))
return
arrayType->isByteArray() &&
!(arrayType->dataStoredIn(DataLocation::Storage) && arrayType->isPointer()) &&
!(arrayType->isString() && !isValidUTF8());
else
return false;
}
string StringLiteralType::richIdentifier() const
{
// Since we have to return a valid identifier and the string itself may contain
// anything, we hash it.
return "t_stringliteral_" + util::toHex(util::keccak256(m_value).asBytes());
}
bool StringLiteralType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
return m_value == dynamic_cast(_other).m_value;
}
std::string StringLiteralType::toString(bool) const
{
size_t invalidSequence;
if (!util::validateUTF8(m_value, invalidSequence))
return "literal_string (contains invalid UTF-8 sequence at position " + util::toString(invalidSequence) + ")";
return "literal_string \"" + m_value + "\"";
}
TypePointer StringLiteralType::mobileType() const
{
return TypeProvider::stringMemory();
}
bool StringLiteralType::isValidUTF8() const
{
return util::validateUTF8(m_value);
}
FixedBytesType::FixedBytesType(unsigned _bytes): m_bytes(_bytes)
{
solAssert(
m_bytes > 0 && m_bytes <= 32,
"Invalid byte number for fixed bytes type: " + util::toString(m_bytes)
);
}
BoolResult FixedBytesType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
if (_convertTo.category() != category())
return false;
FixedBytesType const& convertTo = dynamic_cast(_convertTo);
return convertTo.m_bytes >= m_bytes;
}
BoolResult FixedBytesType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
return (_convertTo.category() == Category::Integer && numBytes() * 8 == dynamic_cast(_convertTo).numBits()) ||
(_convertTo.category() == Category::Address && numBytes() == 20) ||
_convertTo.category() == Category::FixedPoint ||
_convertTo.category() == category();
}
TypeResult FixedBytesType::unaryOperatorResult(Token _operator) const
{
// "delete" and "~" is okay for FixedBytesType
if (_operator == Token::Delete)
return TypeResult{TypeProvider::emptyTuple()};
else if (_operator == Token::BitNot)
return this;
return nullptr;
}
TypeResult FixedBytesType::binaryOperatorResult(Token _operator, Type const* _other) const
{
if (TokenTraits::isShiftOp(_operator))
{
if (isValidShiftAndAmountType(_operator, *_other))
return this;
else
return nullptr;
}
auto commonType = dynamic_cast(Type::commonType(this, _other));
if (!commonType)
return nullptr;
// FixedBytes can be compared and have bitwise operators applied to them
if (TokenTraits::isCompareOp(_operator) || TokenTraits::isBitOp(_operator))
return TypeResult(commonType);
return nullptr;
}
MemberList::MemberMap FixedBytesType::nativeMembers(ContractDefinition const*) const
{
return MemberList::MemberMap{MemberList::Member{"length", TypeProvider::uint(8)}};
}
string FixedBytesType::richIdentifier() const
{
return "t_bytes" + to_string(m_bytes);
}
bool FixedBytesType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
FixedBytesType const& other = dynamic_cast(_other);
return other.m_bytes == m_bytes;
}
u256 BoolType::literalValue(Literal const* _literal) const
{
solAssert(_literal, "");
if (_literal->token() == Token::TrueLiteral)
return u256(1);
else if (_literal->token() == Token::FalseLiteral)
return u256(0);
else
solAssert(false, "Bool type constructed from non-boolean literal.");
}
TypeResult BoolType::unaryOperatorResult(Token _operator) const
{
if (_operator == Token::Delete)
return TypeProvider::emptyTuple();
else if (_operator == Token::Not)
return this;
else
return nullptr;
}
TypeResult BoolType::binaryOperatorResult(Token _operator, Type const* _other) const
{
if (category() != _other->category())
return nullptr;
if (_operator == Token::Equal || _operator == Token::NotEqual || _operator == Token::And || _operator == Token::Or)
return _other;
else
return nullptr;
}
Type const* ContractType::encodingType() const
{
if (isSuper())
return nullptr;
if (isPayable())
return TypeProvider::payableAddress();
else
return TypeProvider::address();
}
BoolResult ContractType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
if (m_super)
return false;
if (*this == _convertTo)
return true;
if (_convertTo.category() == Category::Contract)
{
auto const& bases = contractDefinition().annotation().linearizedBaseContracts;
if (m_super && bases.size() <= 1)
return false;
return find(
m_super ? ++bases.begin() : bases.begin(), bases.end(),
&dynamic_cast(_convertTo).contractDefinition()
) != bases.end();
}
return false;
}
BoolResult ContractType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
if (m_super)
return false;
if (auto const* addressType = dynamic_cast(&_convertTo))
return isPayable() || (addressType->stateMutability() < StateMutability::Payable);
return isImplicitlyConvertibleTo(_convertTo);
}
bool ContractType::isPayable() const
{
auto receiveFunction = m_contract.receiveFunction();
auto fallbackFunction = m_contract.fallbackFunction();
return receiveFunction || (fallbackFunction && fallbackFunction->isPayable());
}
TypeResult ContractType::unaryOperatorResult(Token _operator) const
{
if (isSuper())
return nullptr;
else if (_operator == Token::Delete)
return TypeProvider::emptyTuple();
else
return nullptr;
}
Type const* ReferenceType::withLocation(DataLocation _location, bool _isPointer) const
{
return TypeProvider::withLocation(this, _location, _isPointer);
}
TypeResult ReferenceType::unaryOperatorResult(Token _operator) const
{
if (_operator != Token::Delete)
return nullptr;
// delete can be used on everything except calldata references or storage pointers
// (storage references are ok)
switch (location())
{
case DataLocation::CallData:
return nullptr;
case DataLocation::Memory:
return TypeProvider::emptyTuple();
case DataLocation::Storage:
return isPointer() ? nullptr : TypeProvider::emptyTuple();
}
return nullptr;
}
bool ReferenceType::isPointer() const
{
if (m_location == DataLocation::Storage)
return m_isPointer;
else
return true;
}
TypePointer ReferenceType::copyForLocationIfReference(Type const* _type) const
{
return TypeProvider::withLocationIfReference(m_location, _type);
}
string ReferenceType::stringForReferencePart() const
{
switch (m_location)
{
case DataLocation::Storage:
return string("storage ") + (isPointer() ? "pointer" : "ref");
case DataLocation::CallData:
return "calldata";
case DataLocation::Memory:
return "memory";
}
solAssert(false, "");
return "";
}
string ReferenceType::identifierLocationSuffix() const
{
string id;
switch (location())
{
case DataLocation::Storage:
id += "_storage";
break;
case DataLocation::Memory:
id += "_memory";
break;
case DataLocation::CallData:
id += "_calldata";
break;
}
if (isPointer())
id += "_ptr";
return id;
}
ArrayType::ArrayType(DataLocation _location, bool _isString):
ReferenceType(_location),
m_arrayKind(_isString ? ArrayKind::String : ArrayKind::Bytes),
m_baseType{TypeProvider::byte()}
{
}
void ArrayType::clearCache() const
{
Type::clearCache();
m_interfaceType.reset();
m_interfaceType_library.reset();
}
BoolResult ArrayType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
if (_convertTo.category() != category())
return false;
auto& convertTo = dynamic_cast(_convertTo);
if (convertTo.isByteArray() != isByteArray() || convertTo.isString() != isString())
return false;
// memory/calldata to storage can be converted, but only to a direct storage reference
if (convertTo.location() == DataLocation::Storage && location() != DataLocation::Storage && convertTo.isPointer())
return false;
if (convertTo.location() == DataLocation::CallData && location() != convertTo.location())
return false;
if (convertTo.location() == DataLocation::Storage && !convertTo.isPointer())
{
// Less restrictive conversion, since we need to copy anyway.
if (!baseType()->isImplicitlyConvertibleTo(*convertTo.baseType()))
return false;
if (convertTo.isDynamicallySized())
return true;
return !isDynamicallySized() && convertTo.length() >= length();
}
else
{
// Conversion to storage pointer or to memory, we de not copy element-for-element here, so
// require that the base type is the same, not only convertible.
// This disallows assignment of nested dynamic arrays from storage to memory for now.
if (
*TypeProvider::withLocationIfReference(location(), baseType()) !=
*TypeProvider::withLocationIfReference(location(), convertTo.baseType())
)
return false;
if (isDynamicallySized() != convertTo.isDynamicallySized())
return false;
// We also require that the size is the same.
if (!isDynamicallySized() && length() != convertTo.length())
return false;
return true;
}
}
BoolResult ArrayType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
if (isImplicitlyConvertibleTo(_convertTo))
return true;
// allow conversion bytes <-> string
if (_convertTo.category() != category())
return false;
auto& convertTo = dynamic_cast(_convertTo);
if (convertTo.location() != location())
return false;
if (!isByteArray() || !convertTo.isByteArray())
return false;
return true;
}
string ArrayType::richIdentifier() const
{
string id;
if (isString())
id = "t_string";
else if (isByteArray())
id = "t_bytes";
else
{
id = "t_array";
id += identifierList(baseType());
if (isDynamicallySized())
id += "dyn";
else
id += length().str();
}
id += identifierLocationSuffix();
return id;
}
bool ArrayType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
ArrayType const& other = dynamic_cast(_other);
if (
!ReferenceType::operator==(other) ||
other.isByteArray() != isByteArray() ||
other.isString() != isString() ||
other.isDynamicallySized() != isDynamicallySized()
)
return false;
if (*other.baseType() != *baseType())
return false;
return isDynamicallySized() || length() == other.length();
}
BoolResult ArrayType::validForLocation(DataLocation _loc) const
{
if (auto arrayBaseType = dynamic_cast(baseType()))
{
BoolResult result = arrayBaseType->validForLocation(_loc);
if (!result)
return result;
}
if (isDynamicallySized())
return true;
switch (_loc)
{
case DataLocation::Memory:
{
bigint size = bigint(length());
auto type = m_baseType;
while (auto arrayType = dynamic_cast(type))
{
if (arrayType->isDynamicallySized())
break;
else
{
size *= arrayType->length();
type = arrayType->baseType();
}
}
if (type->isDynamicallySized())
size *= type->memoryHeadSize();
else
size *= type->memoryDataSize();
if (size >= numeric_limits::max())
return BoolResult::err("Type too large for memory.");
break;
}
case DataLocation::CallData:
{
if (unlimitedStaticCalldataSize(true) >= numeric_limits::max())
return BoolResult::err("Type too large for calldata.");
break;
}
case DataLocation::Storage:
break;
}
return true;
}
bigint ArrayType::unlimitedStaticCalldataSize(bool _padded) const
{
solAssert(!isDynamicallySized(), "");
bigint size = bigint(length()) * calldataStride();
if (_padded)
size = ((size + 31) / 32) * 32;
return size;
}
unsigned ArrayType::calldataEncodedSize(bool _padded) const
{
solAssert(!isDynamicallyEncoded(), "");
bigint size = unlimitedStaticCalldataSize(_padded);
solAssert(size <= numeric_limits::max(), "Array size does not fit unsigned.");
return unsigned(size);
}
unsigned ArrayType::calldataEncodedTailSize() const
{
solAssert(isDynamicallyEncoded(), "");
if (isDynamicallySized())
// We do not know the dynamic length itself, but at least the uint256 containing the
// length must still be present.
return 32;
bigint size = unlimitedStaticCalldataSize(false);
solAssert(size <= numeric_limits::max(), "Array size does not fit unsigned.");
return unsigned(size);
}
bool ArrayType::isDynamicallyEncoded() const
{
return isDynamicallySized() || baseType()->isDynamicallyEncoded();
}
u256 ArrayType::storageSize() const
{
if (isDynamicallySized())
return 1;
bigint size;
unsigned baseBytes = baseType()->storageBytes();
if (baseBytes == 0)
size = 1;
else if (baseBytes < 32)
{
unsigned itemsPerSlot = 32 / baseBytes;
size = (bigint(length()) + (itemsPerSlot - 1)) / itemsPerSlot;
}
else
size = bigint(length()) * baseType()->storageSize();
if (size >= bigint(1) << 256)
BOOST_THROW_EXCEPTION(Error(Error::Type::TypeError) << util::errinfo_comment("Array too large for storage."));
return max(1, u256(size));
}
vector> ArrayType::makeStackItems() const
{
switch (m_location)
{
case DataLocation::CallData:
if (isDynamicallySized())
return {std::make_tuple("offset", TypeProvider::uint256()), std::make_tuple("length", TypeProvider::uint256())};
else
return {std::make_tuple("offset", TypeProvider::uint256())};
case DataLocation::Memory:
return {std::make_tuple("mpos", TypeProvider::uint256())};
case DataLocation::Storage:
// byte offset inside storage value is omitted
return {std::make_tuple("slot", TypeProvider::uint256())};
}
solAssert(false, "");
}
string ArrayType::toString(bool _short) const
{
string ret;
if (isString())
ret = "string";
else if (isByteArray())
ret = "bytes";
else
{
ret = baseType()->toString(_short) + "[";
if (!isDynamicallySized())
ret += length().str();
ret += "]";
}
if (!_short)
ret += " " + stringForReferencePart();
return ret;
}
string ArrayType::canonicalName() const
{
string ret;
if (isString())
ret = "string";
else if (isByteArray())
ret = "bytes";
else
{
ret = baseType()->canonicalName() + "[";
if (!isDynamicallySized())
ret += length().str();
ret += "]";
}
return ret;
}
string ArrayType::signatureInExternalFunction(bool _structsByName) const
{
if (isByteArray())
return canonicalName();
else
{
solAssert(baseType(), "");
return
baseType()->signatureInExternalFunction(_structsByName) +
"[" +
(isDynamicallySized() ? "" : length().str()) +
"]";
}
}
MemberList::MemberMap ArrayType::nativeMembers(ContractDefinition const*) const
{
MemberList::MemberMap members;
if (!isString())
{
members.emplace_back("length", TypeProvider::uint256());
if (isDynamicallySized() && location() == DataLocation::Storage)
{
members.emplace_back("push", TypeProvider::function(
TypePointers{},
TypePointers{baseType()},
strings{},
strings{string()},
isByteArray() ? FunctionType::Kind::ByteArrayPush : FunctionType::Kind::ArrayPush
));
members.emplace_back("push", TypeProvider::function(
TypePointers{baseType()},
TypePointers{},
strings{string()},
strings{},
isByteArray() ? FunctionType::Kind::ByteArrayPush : FunctionType::Kind::ArrayPush
));
members.emplace_back("pop", TypeProvider::function(
TypePointers{},
TypePointers{},
strings{},
strings{},
FunctionType::Kind::ArrayPop
));
}
}
return members;
}
TypePointer ArrayType::encodingType() const
{
if (location() == DataLocation::Storage)
return TypeProvider::uint256();
else
return TypeProvider::withLocation(this, DataLocation::Memory, true);
}
TypePointer ArrayType::decodingType() const
{
if (location() == DataLocation::Storage)
return TypeProvider::uint256();
else
return this;
}
TypeResult ArrayType::interfaceType(bool _inLibrary) const
{
if (_inLibrary && m_interfaceType_library.has_value())
return *m_interfaceType_library;
if (!_inLibrary && m_interfaceType.has_value())
return *m_interfaceType;
TypeResult result{TypePointer{}};
TypeResult baseInterfaceType = m_baseType->interfaceType(_inLibrary);
if (!baseInterfaceType.get())
{
solAssert(!baseInterfaceType.message().empty(), "Expected detailed error message!");
result = baseInterfaceType;
}
else if (_inLibrary && location() == DataLocation::Storage)
result = this;
else if (m_arrayKind != ArrayKind::Ordinary)
result = TypeProvider::withLocation(this, DataLocation::Memory, true);
else if (isDynamicallySized())
result = TypeProvider::array(DataLocation::Memory, baseInterfaceType);
else
result = TypeProvider::array(DataLocation::Memory, baseInterfaceType, m_length);
if (_inLibrary)
m_interfaceType_library = result;
else
m_interfaceType = result;
return result;
}
u256 ArrayType::memoryDataSize() const
{
solAssert(!isDynamicallySized(), "");
solAssert(m_location == DataLocation::Memory, "");
solAssert(!isByteArray(), "");
bigint size = bigint(m_length) * m_baseType->memoryHeadSize();
solAssert(size <= numeric_limits::max(), "Array size does not fit u256.");
return u256(size);
}
std::unique_ptr ArrayType::copyForLocation(DataLocation _location, bool _isPointer) const
{
auto copy = make_unique(_location);
if (_location == DataLocation::Storage)
copy->m_isPointer = _isPointer;
copy->m_arrayKind = m_arrayKind;
copy->m_baseType = copy->copyForLocationIfReference(m_baseType);
copy->m_hasDynamicLength = m_hasDynamicLength;
copy->m_length = m_length;
return copy;
}
BoolResult ArraySliceType::isImplicitlyConvertibleTo(Type const& _other) const
{
if (m_arrayType.location() == DataLocation::CallData && m_arrayType.isDynamicallySized() && m_arrayType == _other)
return true;
return (*this) == _other;
}
string ArraySliceType::richIdentifier() const
{
return m_arrayType.richIdentifier() + "_slice";
}
bool ArraySliceType::operator==(Type const& _other) const
{
if (auto const* other = dynamic_cast(&_other))
return m_arrayType == other->m_arrayType;
return false;
}
string ArraySliceType::toString(bool _short) const
{
return m_arrayType.toString(_short) + " slice";
}
TypePointer ArraySliceType::mobileType() const
{
if (
m_arrayType.dataStoredIn(DataLocation::CallData) &&
m_arrayType.isDynamicallySized() &&
!m_arrayType.baseType()->isDynamicallyEncoded()
)
return &m_arrayType;
else
return this;
}
std::vector> ArraySliceType::makeStackItems() const
{
return {{"offset", TypeProvider::uint256()}, {"length", TypeProvider::uint256()}};
}
string ContractType::richIdentifier() const
{
return (m_super ? "t_super" : "t_contract") + parenthesizeUserIdentifier(m_contract.name()) + to_string(m_contract.id());
}
bool ContractType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
ContractType const& other = dynamic_cast(_other);
return other.m_contract == m_contract && other.m_super == m_super;
}
string ContractType::toString(bool) const
{
return
string(m_contract.isLibrary() ? "library " : "contract ") +
string(m_super ? "super " : "") +
m_contract.name();
}
string ContractType::canonicalName() const
{
return m_contract.annotation().canonicalName;
}
MemberList::MemberMap ContractType::nativeMembers(ContractDefinition const* _contract) const
{
MemberList::MemberMap members;
solAssert(_contract, "");
if (m_super)
{
// add the most derived of all functions which are visible in derived contracts
auto bases = m_contract.annotation().linearizedBaseContracts;
solAssert(bases.size() >= 1, "linearizedBaseContracts should at least contain the most derived contract.");
// `sliced(1, ...)` ignores the most derived contract, which should not be searchable from `super`.
for (ContractDefinition const* base: bases | boost::adaptors::sliced(1, bases.size()))
for (FunctionDefinition const* function: base->definedFunctions())
{
if (!function->isVisibleInDerivedContracts() || !function->isImplemented())
continue;
auto functionType = TypeProvider::function(*function, FunctionType::Kind::Internal);
bool functionWithEqualArgumentsFound = false;
for (auto const& member: members)
{
if (member.name != function->name())
continue;
auto memberType = dynamic_cast(member.type);
solAssert(!!memberType, "Override changes type.");
if (!memberType->hasEqualParameterTypes(*functionType))
continue;
functionWithEqualArgumentsFound = true;
break;
}
if (!functionWithEqualArgumentsFound)
members.emplace_back(function->name(), functionType, function);
}
}
else if (!m_contract.isLibrary())
{
for (auto const& it: m_contract.interfaceFunctions())
members.emplace_back(
it.second->declaration().name(),
it.second->asExternallyCallableFunction(m_contract.isLibrary()),
&it.second->declaration()
);
}
return members;
}
FunctionType const* ContractType::newExpressionType() const
{
if (!m_constructorType)
m_constructorType = FunctionType::newExpressionType(m_contract);
return m_constructorType;
}
vector> ContractType::stateVariables() const
{
vector variables;
for (ContractDefinition const* contract: boost::adaptors::reverse(m_contract.annotation().linearizedBaseContracts))
for (VariableDeclaration const* variable: contract->stateVariables())
if (!(variable->isConstant() || variable->immutable()))
variables.push_back(variable);
TypePointers types;
for (auto variable: variables)
types.push_back(variable->annotation().type);
StorageOffsets offsets;
offsets.computeOffsets(types);
vector> variablesAndOffsets;
for (size_t index = 0; index < variables.size(); ++index)
if (auto const* offset = offsets.offset(index))
variablesAndOffsets.emplace_back(variables[index], offset->first, offset->second);
return variablesAndOffsets;
}
vector ContractType::immutableVariables() const
{
vector variables;
for (ContractDefinition const* contract: boost::adaptors::reverse(m_contract.annotation().linearizedBaseContracts))
for (VariableDeclaration const* variable: contract->stateVariables())
if (variable->immutable())
variables.push_back(variable);
return variables;
}
vector> ContractType::makeStackItems() const
{
if (m_super)
return {};
else
return {make_tuple("address", isPayable() ? TypeProvider::payableAddress() : TypeProvider::address())};
}
void StructType::clearCache() const
{
Type::clearCache();
m_interfaceType.reset();
m_interfaceType_library.reset();
}
Type const* StructType::encodingType() const
{
if (location() != DataLocation::Storage)
return this;
return TypeProvider::uint256();
}
BoolResult StructType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
if (_convertTo.category() != category())
return false;
auto& convertTo = dynamic_cast(_convertTo);
// memory/calldata to storage can be converted, but only to a direct storage reference
if (convertTo.location() == DataLocation::Storage && location() != DataLocation::Storage && convertTo.isPointer())
return false;
if (convertTo.location() == DataLocation::CallData && location() != convertTo.location())
return false;
return this->m_struct == convertTo.m_struct;
}
string StructType::richIdentifier() const
{
return "t_struct" + parenthesizeUserIdentifier(m_struct.name()) + to_string(m_struct.id()) + identifierLocationSuffix();
}
bool StructType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
StructType const& other = dynamic_cast(_other);
return ReferenceType::operator==(other) && other.m_struct == m_struct;
}
unsigned StructType::calldataEncodedSize(bool) const
{
solAssert(!isDynamicallyEncoded(), "");
unsigned size = 0;
for (auto const& member: members(nullptr))
{
solAssert(member.type->canLiveOutsideStorage(), "");
// Struct members are always padded.
size += member.type->calldataEncodedSize();
}
return size;
}
unsigned StructType::calldataEncodedTailSize() const
{
solAssert(isDynamicallyEncoded(), "");
unsigned size = 0;
for (auto const& member: members(nullptr))
{
solAssert(member.type->canLiveOutsideStorage(), "");
// Struct members are always padded.
size += member.type->calldataHeadSize();
}
return size;
}
unsigned StructType::calldataOffsetOfMember(std::string const& _member) const
{
unsigned offset = 0;
for (auto const& member: members(nullptr))
{
solAssert(member.type->canLiveOutsideStorage(), "");
if (member.name == _member)
return offset;
// Struct members are always padded.
offset += member.type->calldataHeadSize();
}
solAssert(false, "Struct member not found.");
}
bool StructType::isDynamicallyEncoded() const
{
if (recursive())
return true;
solAssert(interfaceType(false).get(), "");
for (auto t: memoryMemberTypes())
{
solAssert(t, "Parameter should have external type.");
t = t->interfaceType(false);
if (t->isDynamicallyEncoded())
return true;
}
return false;
}
u256 StructType::memoryDataSize() const
{
u256 size;
for (auto const& t: memoryMemberTypes())
size += t->memoryHeadSize();
return size;
}
u256 StructType::storageSize() const
{
return max(1, members(nullptr).storageSize());
}
string StructType::toString(bool _short) const
{
string ret = "struct " + m_struct.annotation().canonicalName;
if (!_short)
ret += " " + stringForReferencePart();
return ret;
}
MemberList::MemberMap StructType::nativeMembers(ContractDefinition const*) const
{
MemberList::MemberMap members;
for (ASTPointer const& variable: m_struct.members())
{
TypePointer type = variable->annotation().type;
solAssert(type, "");
// If we are not in storage, skip all members that cannot live outside of storage,
// ex. mappings and array of mappings
if (location() != DataLocation::Storage && !type->canLiveOutsideStorage())
continue;
members.emplace_back(
variable->name(),
copyForLocationIfReference(type),
variable.get()
);
}
return members;
}
TypeResult StructType::interfaceType(bool _inLibrary) const
{
if (!_inLibrary)
{
if (!m_interfaceType.has_value())
{
if (recursive())
m_interfaceType = TypeResult::err("Recursive type not allowed for public or external contract functions.");
else
{
TypeResult result{TypePointer{}};
for (ASTPointer const& member: m_struct.members())
{
if (!member->annotation().type)
{
result = TypeResult::err("Invalid type!");
break;
}
auto interfaceType = member->annotation().type->interfaceType(false);
if (!interfaceType.get())
{
solAssert(!interfaceType.message().empty(), "Expected detailed error message!");
result = interfaceType;
break;
}
}
if (result.message().empty())
m_interfaceType = TypeProvider::withLocation(this, DataLocation::Memory, true);
else
m_interfaceType = result;
}
}
return *m_interfaceType;
}
else if (m_interfaceType_library.has_value())
return *m_interfaceType_library;
TypeResult result{TypePointer{}};
util::BreadthFirstSearch breadthFirstSearch{{&m_struct}};
breadthFirstSearch.run(
[&](StructDefinition const* _struct, auto&& _addChild) {
// Check that all members have interface types.
// Return an error if at least one struct member does not have a type.
// This might happen, for example, if the type of the member does not exist.
for (ASTPointer const& variable: _struct->members())
{
// If the struct member does not have a type return false.
// A TypeError is expected in this case.
if (!variable->annotation().type)
{
result = TypeResult::err("Invalid type!");
breadthFirstSearch.abort();
return;
}
Type const* memberType = variable->annotation().type;
while (dynamic_cast(memberType))
memberType = dynamic_cast(memberType)->baseType();
if (StructType const* innerStruct = dynamic_cast(memberType))
{
if (innerStruct->recursive() && !(_inLibrary && location() == DataLocation::Storage))
{
result = TypeResult::err(
"Recursive structs can only be passed as storage pointers to libraries, not as memory objects to contract functions."
);
breadthFirstSearch.abort();
return;
}
else
_addChild(&innerStruct->structDefinition());
}
else
{
auto iType = memberType->interfaceType(_inLibrary);
if (!iType.get())
{
solAssert(!iType.message().empty(), "Expected detailed error message!");
result = iType;
breadthFirstSearch.abort();
return;
}
}
}
}
);
if (!result.message().empty())
return result;
if (location() == DataLocation::Storage)
m_interfaceType_library = this;
else
m_interfaceType_library = TypeProvider::withLocation(this, DataLocation::Memory, true);
return *m_interfaceType_library;
}
BoolResult StructType::validForLocation(DataLocation _loc) const
{
for (auto const& member: m_struct.members())
if (auto referenceType = dynamic_cast(member->annotation().type))
{
BoolResult result = referenceType->validForLocation(_loc);
if (!result)
return result;
}
return true;
}
bool StructType::recursive() const
{
solAssert(m_struct.annotation().recursive.has_value(), "Called StructType::recursive() before DeclarationTypeChecker.");
return *m_struct.annotation().recursive;
}
std::unique_ptr StructType::copyForLocation(DataLocation _location, bool _isPointer) const
{
auto copy = make_unique(m_struct, _location);
if (_location == DataLocation::Storage)
copy->m_isPointer = _isPointer;
return copy;
}
string StructType::signatureInExternalFunction(bool _structsByName) const
{
if (_structsByName)
return canonicalName();
else
{
TypePointers memberTypes = memoryMemberTypes();
auto memberTypeStrings = memberTypes | boost::adaptors::transformed([&](TypePointer _t) -> string
{
solAssert(_t, "Parameter should have external type.");
auto t = _t->interfaceType(_structsByName);
solAssert(t.get(), "");
return t.get()->signatureInExternalFunction(_structsByName);
});
return "(" + boost::algorithm::join(memberTypeStrings, ",") + ")";
}
}
string StructType::canonicalName() const
{
return m_struct.annotation().canonicalName;
}
FunctionTypePointer StructType::constructorType() const
{
TypePointers paramTypes;
strings paramNames;
for (auto const& member: members(nullptr))
{
if (!member.type->canLiveOutsideStorage())
continue;
paramNames.push_back(member.name);
paramTypes.push_back(TypeProvider::withLocationIfReference(DataLocation::Memory, member.type));
}
return TypeProvider::function(
paramTypes,
TypePointers{TypeProvider::withLocation(this, DataLocation::Memory, false)},
paramNames,
strings(1, ""),
FunctionType::Kind::Internal
);
}
pair const& StructType::storageOffsetsOfMember(string const& _name) const
{
auto const* offsets = members(nullptr).memberStorageOffset(_name);
solAssert(offsets, "Storage offset of non-existing member requested.");
return *offsets;
}
u256 StructType::memoryOffsetOfMember(string const& _name) const
{
u256 offset;
for (auto const& member: members(nullptr))
if (member.name == _name)
return offset;
else
offset += member.type->memoryHeadSize();
solAssert(false, "Member not found in struct.");
return 0;
}
TypePointers StructType::memoryMemberTypes() const
{
TypePointers types;
for (ASTPointer const& variable: m_struct.members())
if (variable->annotation().type->canLiveOutsideStorage())
types.push_back(TypeProvider::withLocationIfReference(DataLocation::Memory, variable->annotation().type));
return types;
}
set StructType::membersMissingInMemory() const
{
set missing;
for (ASTPointer const& variable: m_struct.members())
if (!variable->annotation().type->canLiveOutsideStorage())
missing.insert(variable->name());
return missing;
}
TypePointer EnumType::encodingType() const
{
return TypeProvider::uint(8 * storageBytes());
}
TypeResult EnumType::unaryOperatorResult(Token _operator) const
{
return _operator == Token::Delete ? TypeProvider::emptyTuple() : nullptr;
}
string EnumType::richIdentifier() const
{
return "t_enum" + parenthesizeUserIdentifier(m_enum.name()) + to_string(m_enum.id());
}
bool EnumType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
EnumType const& other = dynamic_cast(_other);
return other.m_enum == m_enum;
}
unsigned EnumType::storageBytes() const
{
size_t elements = numberOfMembers();
if (elements <= 1)
return 1;
else
return util::bytesRequired(elements - 1);
}
string EnumType::toString(bool) const
{
return string("enum ") + m_enum.annotation().canonicalName;
}
string EnumType::canonicalName() const
{
return m_enum.annotation().canonicalName;
}
size_t EnumType::numberOfMembers() const
{
return m_enum.members().size();
}
BoolResult EnumType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
return _convertTo == *this || _convertTo.category() == Category::Integer;
}
unsigned EnumType::memberValue(ASTString const& _member) const
{
unsigned index = 0;
for (ASTPointer const& decl: m_enum.members())
{
if (decl->name() == _member)
return index;
++index;
}
solAssert(false, "Requested unknown enum value " + _member);
}
BoolResult TupleType::isImplicitlyConvertibleTo(Type const& _other) const
{
if (auto tupleType = dynamic_cast(&_other))
{
TypePointers const& targets = tupleType->components();
if (targets.empty())
return components().empty();
if (components().size() != targets.size())
return false;
for (size_t i = 0; i < targets.size(); ++i)
if (!components()[i] && targets[i])
return false;
else if (components()[i] && targets[i] && !components()[i]->isImplicitlyConvertibleTo(*targets[i]))
return false;
return true;
}
else
return false;
}
string TupleType::richIdentifier() const
{
return "t_tuple" + identifierList(components());
}
bool TupleType::operator==(Type const& _other) const
{
if (auto tupleType = dynamic_cast(&_other))
return components() == tupleType->components();
else
return false;
}
string TupleType::toString(bool _short) const
{
if (components().empty())
return "tuple()";
string str = "tuple(";
for (auto const& t: components())
str += (t ? t->toString(_short) : "") + ",";
str.pop_back();
return str + ")";
}
u256 TupleType::storageSize() const
{
solAssert(false, "Storage size of non-storable tuple type requested.");
}
vector> TupleType::makeStackItems() const
{
vector> slots;
unsigned i = 1;
for (auto const& t: components())
{
if (t)
slots.emplace_back("component_" + std::to_string(i), t);
++i;
}
return slots;
}
TypePointer TupleType::mobileType() const
{
TypePointers mobiles;
for (auto const& c: components())
{
if (c)
{
auto mt = c->mobileType();
if (!mt)
return nullptr;
mobiles.push_back(mt);
}
else
mobiles.push_back(nullptr);
}
return TypeProvider::tuple(move(mobiles));
}
TypePointer TupleType::closestTemporaryType(Type const* _targetType) const
{
solAssert(!!_targetType, "");
TypePointers const& targetComponents = dynamic_cast(*_targetType).components();
solAssert(components().size() == targetComponents.size(), "");
TypePointers tempComponents(targetComponents.size());
for (size_t i = 0; i < targetComponents.size(); ++i)
{
if (components()[i] && targetComponents[i])
{
tempComponents[i] = components()[i]->closestTemporaryType(targetComponents[i]);
solAssert(tempComponents[i], "");
}
}
return TypeProvider::tuple(move(tempComponents));
}
FunctionType::FunctionType(FunctionDefinition const& _function, Kind _kind):
m_kind(_kind),
m_stateMutability(_function.stateMutability()),
m_declaration(&_function)
{
solAssert(
_kind == Kind::Internal || _kind == Kind::External || _kind == Kind::Declaration,
"Only internal or external function types or function declaration types can be created from function definitions."
);
if (_kind == Kind::Internal && m_stateMutability == StateMutability::Payable)
m_stateMutability = StateMutability::NonPayable;
for (ASTPointer const& var: _function.parameters())
{
m_parameterNames.push_back(var->name());
m_parameterTypes.push_back(var->annotation().type);
}
for (ASTPointer const& var: _function.returnParameters())
{
m_returnParameterNames.push_back(var->name());
m_returnParameterTypes.push_back(var->annotation().type);
}
solAssert(
m_parameterNames.size() == m_parameterTypes.size(),
"Parameter names list must match parameter types list!"
);
solAssert(
m_returnParameterNames.size() == m_returnParameterTypes.size(),
"Return parameter names list must match return parameter types list!"
);
}
FunctionType::FunctionType(VariableDeclaration const& _varDecl):
m_kind(Kind::External),
m_stateMutability(StateMutability::View),
m_declaration(&_varDecl)
{
auto returnType = _varDecl.annotation().type;
while (true)
{
if (auto mappingType = dynamic_cast(returnType))
{
m_parameterTypes.push_back(mappingType->keyType());
m_parameterNames.emplace_back("");
returnType = mappingType->valueType();
}
else if (auto arrayType = dynamic_cast(returnType))
{
if (arrayType->isByteArray())
// Return byte arrays as whole.
break;
returnType = arrayType->baseType();
m_parameterNames.emplace_back("");
m_parameterTypes.push_back(TypeProvider::uint256());
}
else
break;
}
if (auto structType = dynamic_cast(returnType))
{
for (auto const& member: structType->members(nullptr))
{
solAssert(member.type, "");
if (member.type->category() != Category::Mapping)
{
if (auto arrayType = dynamic_cast(member.type))
if (!arrayType->isByteArray())
continue;
m_returnParameterTypes.push_back(TypeProvider::withLocationIfReference(
DataLocation::Memory,
member.type
));
m_returnParameterNames.push_back(member.name);
}
}
}
else
{
m_returnParameterTypes.push_back(TypeProvider::withLocationIfReference(
DataLocation::Memory,
returnType
));
m_returnParameterNames.emplace_back("");
}
solAssert(
m_parameterNames.size() == m_parameterTypes.size(),
"Parameter names list must match parameter types list!"
);
solAssert(
m_returnParameterNames.size() == m_returnParameterTypes.size(),
"Return parameter names list must match return parameter types list!"
);
}
FunctionType::FunctionType(EventDefinition const& _event):
m_kind(Kind::Event),
m_stateMutability(StateMutability::NonPayable),
m_declaration(&_event)
{
for (ASTPointer const& var: _event.parameters())
{
m_parameterNames.push_back(var->name());
m_parameterTypes.push_back(var->annotation().type);
}
solAssert(
m_parameterNames.size() == m_parameterTypes.size(),
"Parameter names list must match parameter types list!"
);
solAssert(
m_returnParameterNames.size() == m_returnParameterTypes.size(),
"Return parameter names list must match return parameter types list!"
);
}
FunctionType::FunctionType(FunctionTypeName const& _typeName):
m_parameterNames(_typeName.parameterTypes().size(), ""),
m_returnParameterNames(_typeName.returnParameterTypes().size(), ""),
m_kind(_typeName.visibility() == Visibility::External ? Kind::External : Kind::Internal),
m_stateMutability(_typeName.stateMutability())
{
if (_typeName.isPayable())
solAssert(m_kind == Kind::External, "Internal payable function type used.");
for (auto const& t: _typeName.parameterTypes())
{
solAssert(t->annotation().type, "Type not set for parameter.");
m_parameterTypes.push_back(t->annotation().type);
}
for (auto const& t: _typeName.returnParameterTypes())
{
solAssert(t->annotation().type, "Type not set for return parameter.");
m_returnParameterTypes.push_back(t->annotation().type);
}
solAssert(
m_parameterNames.size() == m_parameterTypes.size(),
"Parameter names list must match parameter types list!"
);
solAssert(
m_returnParameterNames.size() == m_returnParameterTypes.size(),
"Return parameter names list must match return parameter types list!"
);
}
FunctionTypePointer FunctionType::newExpressionType(ContractDefinition const& _contract)
{
FunctionDefinition const* constructor = _contract.constructor();
TypePointers parameters;
strings parameterNames;
StateMutability stateMutability = StateMutability::NonPayable;
solAssert(!_contract.isInterface(), "");
if (constructor)
{
for (ASTPointer const& var: constructor->parameters())
{
parameterNames.push_back(var->name());
parameters.push_back(var->annotation().type);
}
if (constructor->isPayable())
stateMutability = StateMutability::Payable;
}
return TypeProvider::function(
parameters,
TypePointers{TypeProvider::contract(_contract)},
parameterNames,
strings{""},
Kind::Creation,
false,
stateMutability
);
}
vector FunctionType::parameterNames() const
{
if (!bound())
return m_parameterNames;
return vector(m_parameterNames.cbegin() + 1, m_parameterNames.cend());
}
TypePointers FunctionType::returnParameterTypesWithoutDynamicTypes() const
{
TypePointers returnParameterTypes = m_returnParameterTypes;
if (
m_kind == Kind::External ||
m_kind == Kind::DelegateCall ||
m_kind == Kind::BareCall ||
m_kind == Kind::BareCallCode ||
m_kind == Kind::BareDelegateCall ||
m_kind == Kind::BareStaticCall
)
for (auto& param: returnParameterTypes)
if (param->isDynamicallySized() && !param->dataStoredIn(DataLocation::Storage))
param = TypeProvider::inaccessibleDynamic();
return returnParameterTypes;
}
TypePointers FunctionType::parameterTypes() const
{
if (!bound())
return m_parameterTypes;
return TypePointers(m_parameterTypes.cbegin() + 1, m_parameterTypes.cend());
}
string FunctionType::richIdentifier() const
{
string id = "t_function_";
switch (m_kind)
{
case Kind::Declaration: id += "declaration"; break;
case Kind::Internal: id += "internal"; break;
case Kind::External: id += "external"; break;
case Kind::DelegateCall: id += "delegatecall"; break;
case Kind::BareCall: id += "barecall"; break;
case Kind::BareCallCode: id += "barecallcode"; break;
case Kind::BareDelegateCall: id += "baredelegatecall"; break;
case Kind::BareStaticCall: id += "barestaticcall"; break;
case Kind::Creation: id += "creation"; break;
case Kind::Send: id += "send"; break;
case Kind::Transfer: id += "transfer"; break;
case Kind::KECCAK256: id += "keccak256"; break;
case Kind::Selfdestruct: id += "selfdestruct"; break;
case Kind::Revert: id += "revert"; break;
case Kind::ECRecover: id += "ecrecover"; break;
case Kind::SHA256: id += "sha256"; break;
case Kind::RIPEMD160: id += "ripemd160"; break;
case Kind::Log0: id += "log0"; break;
case Kind::Log1: id += "log1"; break;
case Kind::Log2: id += "log2"; break;
case Kind::Log3: id += "log3"; break;
case Kind::Log4: id += "log4"; break;
case Kind::GasLeft: id += "gasleft"; break;
case Kind::Event: id += "event"; break;
case Kind::SetGas: id += "setgas"; break;
case Kind::SetValue: id += "setvalue"; break;
case Kind::BlockHash: id += "blockhash"; break;
case Kind::AddMod: id += "addmod"; break;
case Kind::MulMod: id += "mulmod"; break;
case Kind::ArrayPush: id += "arraypush"; break;
case Kind::ArrayPop: id += "arraypop"; break;
case Kind::ByteArrayPush: id += "bytearraypush"; break;
case Kind::ObjectCreation: id += "objectcreation"; break;
case Kind::Assert: id += "assert"; break;
case Kind::Require: id += "require"; break;
case Kind::ABIEncode: id += "abiencode"; break;
case Kind::ABIEncodePacked: id += "abiencodepacked"; break;
case Kind::ABIEncodeWithSelector: id += "abiencodewithselector"; break;
case Kind::ABIEncodeWithSignature: id += "abiencodewithsignature"; break;
case Kind::ABIDecode: id += "abidecode"; break;
case Kind::MetaType: id += "metatype"; break;
}
id += "_" + stateMutabilityToString(m_stateMutability);
id += identifierList(m_parameterTypes) + "returns" + identifierList(m_returnParameterTypes);
if (m_gasSet)
id += "gas";
if (m_valueSet)
id += "value";
if (m_saltSet)
id += "salt";
if (bound())
id += "bound_to" + identifierList(selfType());
return id;
}
bool FunctionType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
FunctionType const& other = dynamic_cast(_other);
if (!equalExcludingStateMutability(other))
return false;
if (m_stateMutability != other.stateMutability())
return false;
return true;
}
BoolResult FunctionType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
if (_convertTo.category() == category())
{
auto const& convertToType = dynamic_cast(_convertTo);
return (m_kind == FunctionType::Kind::Declaration) == (convertToType.kind() == FunctionType::Kind::Declaration);
}
return false;
}
BoolResult FunctionType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
if (_convertTo.category() != category())
return false;
FunctionType const& convertTo = dynamic_cast(_convertTo);
if (!equalExcludingStateMutability(convertTo))
return false;
// non-payable should not be convertible to payable
if (m_stateMutability != StateMutability::Payable && convertTo.stateMutability() == StateMutability::Payable)
return false;
// payable should be convertible to non-payable, because you are free to pay 0 ether
if (m_stateMutability == StateMutability::Payable && convertTo.stateMutability() == StateMutability::NonPayable)
return true;
// e.g. pure should be convertible to view, but not the other way around.
if (m_stateMutability > convertTo.stateMutability())
return false;
return true;
}
TypeResult FunctionType::unaryOperatorResult(Token _operator) const
{
if (_operator == Token::Delete)
return TypeResult(TypeProvider::emptyTuple());
return nullptr;
}
TypeResult FunctionType::binaryOperatorResult(Token _operator, Type const* _other) const
{
if (_other->category() != category() || !(_operator == Token::Equal || _operator == Token::NotEqual))
return nullptr;
FunctionType const& other = dynamic_cast(*_other);
if (kind() == Kind::Internal && other.kind() == Kind::Internal && sizeOnStack() == 1 && other.sizeOnStack() == 1)
return commonType(this, _other);
return nullptr;
}
string FunctionType::canonicalName() const
{
solAssert(m_kind == Kind::External, "");
return "function";
}
string FunctionType::toString(bool _short) const
{
string name = "function ";
if (m_kind == Kind::Declaration)
{
auto const* functionDefinition = dynamic_cast(m_declaration);
solAssert(functionDefinition, "");
auto const* contract = dynamic_cast(functionDefinition->scope());
solAssert(contract, "");
name += contract->annotation().canonicalName;
name += '.';
name += functionDefinition->name();
}
name += '(';
for (auto it = m_parameterTypes.begin(); it != m_parameterTypes.end(); ++it)
name += (*it)->toString(_short) + (it + 1 == m_parameterTypes.end() ? "" : ",");
name += ")";
if (m_stateMutability != StateMutability::NonPayable)
name += " " + stateMutabilityToString(m_stateMutability);
if (m_kind == Kind::External)
name += " external";
if (!m_returnParameterTypes.empty())
{
name += " returns (";
for (auto it = m_returnParameterTypes.begin(); it != m_returnParameterTypes.end(); ++it)
name += (*it)->toString(_short) + (it + 1 == m_returnParameterTypes.end() ? "" : ",");
name += ")";
}
return name;
}
unsigned FunctionType::calldataEncodedSize(bool _padded) const
{
unsigned size = storageBytes();
if (_padded)
size = ((size + 31) / 32) * 32;
return size;
}
u256 FunctionType::storageSize() const
{
if (m_kind == Kind::External || m_kind == Kind::Internal)
return 1;
else
solAssert(false, "Storage size of non-storable function type requested.");
}
bool FunctionType::leftAligned() const
{
if (m_kind == Kind::External)
return true;
else
solAssert(false, "Alignment property of non-exportable function type requested.");
}
unsigned FunctionType::storageBytes() const
{
if (m_kind == Kind::External)
return 20 + 4;
else if (m_kind == Kind::Internal)
return 8; // it should really not be possible to create larger programs
else
solAssert(false, "Storage size of non-storable function type requested.");
}
bool FunctionType::nameable() const
{
return
(m_kind == Kind::Internal || m_kind == Kind::External) &&
!m_bound &&
!m_arbitraryParameters &&
!m_gasSet &&
!m_valueSet &&
!m_saltSet;
}
vector> FunctionType::makeStackItems() const
{
vector> slots;
Kind kind = m_kind;
if (m_kind == Kind::SetGas || m_kind == Kind::SetValue)
{
solAssert(m_returnParameterTypes.size() == 1, "");
kind = dynamic_cast(*m_returnParameterTypes.front()).m_kind;
}
switch (kind)
{
case Kind::External:
case Kind::DelegateCall:
slots = {
make_tuple("address", TypeProvider::address()),
make_tuple("functionIdentifier", TypeProvider::uint(32))
};
break;
case Kind::BareCall:
case Kind::BareCallCode:
case Kind::BareDelegateCall:
case Kind::BareStaticCall:
case Kind::Transfer:
case Kind::Send:
slots = {make_tuple("address", TypeProvider::address())};
break;
case Kind::Internal:
slots = {make_tuple("functionIdentifier", TypeProvider::uint256())};
break;
case Kind::ArrayPush:
case Kind::ArrayPop:
case Kind::ByteArrayPush:
slots = {make_tuple("slot", TypeProvider::uint256())};
break;
default:
break;
}
if (m_gasSet)
slots.emplace_back("gas", TypeProvider::uint256());
if (m_valueSet)
slots.emplace_back("value", TypeProvider::uint256());
if (m_saltSet)
slots.emplace_back("salt", TypeProvider::fixedBytes(32));
if (bound())
for (auto const& [boundName, boundType]: m_parameterTypes.front()->stackItems())
slots.emplace_back("self_" + boundName, boundType);
return slots;
}
FunctionTypePointer FunctionType::interfaceFunctionType() const
{
// Note that m_declaration might also be a state variable!
solAssert(m_declaration, "Declaration needed to determine interface function type.");
bool isLibraryFunction = kind() != Kind::Event && dynamic_cast(*m_declaration->scope()).isLibrary();
util::Result paramTypes =
transformParametersToExternal(m_parameterTypes, isLibraryFunction);
if (!paramTypes.message().empty())
return FunctionTypePointer();
util::Result retParamTypes =
transformParametersToExternal(m_returnParameterTypes, isLibraryFunction);
if (!retParamTypes.message().empty())
return FunctionTypePointer();
auto variable = dynamic_cast(m_declaration);
if (variable && retParamTypes.get().empty())
return FunctionTypePointer();
return TypeProvider::function(
paramTypes,
retParamTypes,
m_parameterNames,
m_returnParameterNames,
m_kind,
m_arbitraryParameters,
m_stateMutability,
m_declaration
);
}
MemberList::MemberMap FunctionType::nativeMembers(ContractDefinition const* _scope) const
{
switch (m_kind)
{
case Kind::Declaration:
if (declaration().isPartOfExternalInterface())
return {{"selector", TypeProvider::fixedBytes(4)}};
else
return MemberList::MemberMap();
case Kind::Internal:
if (
auto const* functionDefinition = dynamic_cast(m_declaration);
functionDefinition &&
_scope &&
functionDefinition->annotation().contract &&
_scope != functionDefinition->annotation().contract &&
functionDefinition->isPartOfExternalInterface()
)
{
solAssert(_scope->derivesFrom(*functionDefinition->annotation().contract), "");
return {{"selector", TypeProvider::fixedBytes(4)}};
}
else
return MemberList::MemberMap();
case Kind::External:
case Kind::Creation:
case Kind::BareCall:
case Kind::BareCallCode:
case Kind::BareDelegateCall:
case Kind::BareStaticCall:
{
MemberList::MemberMap members;
if (m_kind == Kind::External)
{
members.emplace_back("selector", TypeProvider::fixedBytes(4));
members.emplace_back("address", TypeProvider::address());
}
if (m_kind != Kind::BareDelegateCall)
{
if (isPayable())
members.emplace_back(
"value",
TypeProvider::function(
parseElementaryTypeVector({"uint"}),
TypePointers{copyAndSetCallOptions(false, true, false)},
strings(1, ""),
strings(1, ""),
Kind::SetValue,
false,
StateMutability::Pure,
nullptr,
m_gasSet,
m_valueSet,
m_saltSet
)
);
}
if (m_kind != Kind::Creation)
members.emplace_back(
"gas",
TypeProvider::function(
parseElementaryTypeVector({"uint"}),
TypePointers{copyAndSetCallOptions(true, false, false)},
strings(1, ""),
strings(1, ""),
Kind::SetGas,
false,
StateMutability::Pure,
nullptr,
m_gasSet,
m_valueSet,
m_saltSet
)
);
return members;
}
case Kind::DelegateCall:
{
auto const* functionDefinition = dynamic_cast(m_declaration);
solAssert(functionDefinition, "");
solAssert(functionDefinition->visibility() != Visibility::Private, "");
if (functionDefinition->visibility() != Visibility::Internal)
{
auto const* contract = dynamic_cast(m_declaration->scope());
solAssert(contract, "");
solAssert(contract->isLibrary(), "");
return {{"selector", TypeProvider::fixedBytes(4)}};
}
return {};
}
default:
return MemberList::MemberMap();
}
}
TypePointer FunctionType::encodingType() const
{
if (m_gasSet || m_valueSet)
return nullptr;
// Only external functions can be encoded, internal functions cannot leave code boundaries.
if (m_kind == Kind::External)
return this;
else
return nullptr;
}
TypeResult FunctionType::interfaceType(bool /*_inLibrary*/) const
{
if (m_kind == Kind::External)
return this;
else
return TypeResult::err("Internal type is not allowed for public or external functions.");
}
bool FunctionType::canTakeArguments(
FuncCallArguments const& _arguments,
Type const* _selfType
) const
{
solAssert(!bound() || _selfType, "");
if (bound() && !_selfType->isImplicitlyConvertibleTo(*selfType()))
return false;
TypePointers paramTypes = parameterTypes();
std::vector const paramNames = parameterNames();
if (takesArbitraryParameters())
return true;
else if (_arguments.numArguments() != paramTypes.size())
return false;
else if (!_arguments.hasNamedArguments())
return equal(
_arguments.types.cbegin(),
_arguments.types.cend(),
paramTypes.cbegin(),
[](Type const* argumentType, Type const* parameterType)
{
return argumentType->isImplicitlyConvertibleTo(*parameterType);
}
);
else if (paramNames.size() != _arguments.numNames())
return false;
else
{
solAssert(_arguments.numArguments() == _arguments.numNames(), "Expected equal sized type & name vectors");
size_t matchedNames = 0;
for (auto const& argName: _arguments.names)
for (size_t i = 0; i < paramNames.size(); i++)
if (*argName == paramNames[i])
{
matchedNames++;
if (!_arguments.types[i]->isImplicitlyConvertibleTo(*paramTypes[i]))
return false;
}
if (matchedNames == _arguments.numNames())
return true;
return false;
}
}
bool FunctionType::hasEqualParameterTypes(FunctionType const& _other) const
{
if (m_parameterTypes.size() != _other.m_parameterTypes.size())
return false;
return equal(
m_parameterTypes.cbegin(),
m_parameterTypes.cend(),
_other.m_parameterTypes.cbegin(),
[](Type const* _a, Type const* _b) -> bool { return *_a == *_b; }
);
}
bool FunctionType::hasEqualReturnTypes(FunctionType const& _other) const
{
if (m_returnParameterTypes.size() != _other.m_returnParameterTypes.size())
return false;
return equal(
m_returnParameterTypes.cbegin(),
m_returnParameterTypes.cend(),
_other.m_returnParameterTypes.cbegin(),
[](Type const* _a, Type const* _b) -> bool { return *_a == *_b; }
);
}
bool FunctionType::equalExcludingStateMutability(FunctionType const& _other) const
{
if (m_kind != _other.m_kind)
return false;
if (!hasEqualParameterTypes(_other) || !hasEqualReturnTypes(_other))
return false;
//@todo this is ugly, but cannot be prevented right now
if (m_gasSet != _other.m_gasSet || m_valueSet != _other.m_valueSet || m_saltSet != _other.m_saltSet)
return false;
if (bound() != _other.bound())
return false;
solAssert(!bound() || *selfType() == *_other.selfType(), "");
return true;
}
bool FunctionType::isBareCall() const
{
switch (m_kind)
{
case Kind::BareCall:
case Kind::BareCallCode:
case Kind::BareDelegateCall:
case Kind::BareStaticCall:
case Kind::ECRecover:
case Kind::SHA256:
case Kind::RIPEMD160:
return true;
default:
return false;
}
}
string FunctionType::externalSignature() const
{
solAssert(m_declaration != nullptr, "External signature of function needs declaration");
solAssert(!m_declaration->name().empty(), "Fallback function has no signature.");
switch (kind())
{
case Kind::Internal:
case Kind::External:
case Kind::DelegateCall:
case Kind::Event:
case Kind::Declaration:
break;
default:
solAssert(false, "Invalid function type for requesting external signature.");
}
// "inLibrary" is only relevant if this is not an event.
bool const inLibrary = kind() != Kind::Event && dynamic_cast(*m_declaration->scope()).isLibrary();
auto extParams = transformParametersToExternal(m_parameterTypes, inLibrary);
solAssert(extParams.message().empty(), extParams.message());
auto typeStrings = extParams.get() | boost::adaptors::transformed([&](TypePointer _t) -> string
{
string typeName = _t->signatureInExternalFunction(inLibrary);
if (inLibrary && _t->dataStoredIn(DataLocation::Storage))
typeName += " storage";
return typeName;
});
return m_declaration->name() + "(" + boost::algorithm::join(typeStrings, ",") + ")";
}
u256 FunctionType::externalIdentifier() const
{
return util::FixedHash<4>::Arith(util::FixedHash<4>(util::keccak256(externalSignature())));
}
string FunctionType::externalIdentifierHex() const
{
return util::FixedHash<4>(util::keccak256(externalSignature())).hex();
}
bool FunctionType::isPure() const
{
// TODO: replace this with m_stateMutability == StateMutability::Pure once
// the callgraph analyzer is in place
return
m_kind == Kind::KECCAK256 ||
m_kind == Kind::ECRecover ||
m_kind == Kind::SHA256 ||
m_kind == Kind::RIPEMD160 ||
m_kind == Kind::AddMod ||
m_kind == Kind::MulMod ||
m_kind == Kind::ObjectCreation ||
m_kind == Kind::ABIEncode ||
m_kind == Kind::ABIEncodePacked ||
m_kind == Kind::ABIEncodeWithSelector ||
m_kind == Kind::ABIEncodeWithSignature ||
m_kind == Kind::ABIDecode ||
m_kind == Kind::MetaType;
}
TypePointers FunctionType::parseElementaryTypeVector(strings const& _types)
{
TypePointers pointers;
pointers.reserve(_types.size());
for (string const& type: _types)
pointers.push_back(TypeProvider::fromElementaryTypeName(type));
return pointers;
}
TypePointer FunctionType::copyAndSetCallOptions(bool _setGas, bool _setValue, bool _setSalt) const
{
solAssert(m_kind != Kind::Declaration, "");
return TypeProvider::function(
m_parameterTypes,
m_returnParameterTypes,
m_parameterNames,
m_returnParameterNames,
m_kind,
m_arbitraryParameters,
m_stateMutability,
m_declaration,
m_gasSet || _setGas,
m_valueSet || _setValue,
m_saltSet || _setSalt,
m_bound
);
}
FunctionTypePointer FunctionType::asExternallyCallableFunction(bool _inLibrary, bool _bound) const
{
if (_bound)
solAssert(!m_parameterTypes.empty(), "");
TypePointers parameterTypes;
for (auto const& t: m_parameterTypes)
{
auto refType = dynamic_cast(t);
if (refType && refType->location() == DataLocation::CallData)
parameterTypes.push_back(TypeProvider::withLocation(refType, DataLocation::Memory, true));
else
parameterTypes.push_back(t);
}
Kind kind = m_kind;
if (_inLibrary)
{
solAssert(!!m_declaration, "Declaration has to be available.");
if (!m_declaration->isPublic())
kind = Kind::Internal; // will be inlined
else
kind = Kind::DelegateCall;
}
return TypeProvider::function(
parameterTypes,
m_returnParameterTypes,
m_parameterNames,
m_returnParameterNames,
kind,
m_arbitraryParameters,
m_stateMutability,
m_declaration,
m_gasSet,
m_valueSet,
m_saltSet,
_bound
);
}
Type const* FunctionType::selfType() const
{
solAssert(bound(), "Function is not bound.");
solAssert(m_parameterTypes.size() > 0, "Function has no self type.");
return m_parameterTypes.at(0);
}
ASTPointer FunctionType::documentation() const
{
auto function = dynamic_cast(m_declaration);
if (function)
return function->documentation();
return ASTPointer();
}
bool FunctionType::padArguments() const
{
// No padding only for hash functions, low-level calls and the packed encoding function.
switch (m_kind)
{
case Kind::BareCall:
case Kind::BareCallCode:
case Kind::BareDelegateCall:
case Kind::BareStaticCall:
case Kind::SHA256:
case Kind::RIPEMD160:
case Kind::KECCAK256:
case Kind::ABIEncodePacked:
return false;
default:
return true;
}
return true;
}
Type const* MappingType::encodingType() const
{
return TypeProvider::integer(256, IntegerType::Modifier::Unsigned);
}
string MappingType::richIdentifier() const
{
return "t_mapping" + identifierList(m_keyType, m_valueType);
}
bool MappingType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
MappingType const& other = dynamic_cast(_other);
return *other.m_keyType == *m_keyType && *other.m_valueType == *m_valueType;
}
string MappingType::toString(bool _short) const
{
return "mapping(" + keyType()->toString(_short) + " => " + valueType()->toString(_short) + ")";
}
string MappingType::canonicalName() const
{
return "mapping(" + keyType()->canonicalName() + " => " + valueType()->canonicalName() + ")";
}
TypeResult MappingType::interfaceType(bool _inLibrary) const
{
solAssert(keyType()->interfaceType(_inLibrary).get(), "Must be an elementary type!");
if (_inLibrary)
{
auto iType = valueType()->interfaceType(_inLibrary);
if (!iType.get())
{
solAssert(!iType.message().empty(), "Expected detailed error message!");
return iType;
}
}
else
return TypeResult::err("Only libraries are allowed to use the mapping type in public or external functions.");
return this;
}
string TypeType::richIdentifier() const
{
return "t_type" + identifierList(actualType());
}
bool TypeType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
TypeType const& other = dynamic_cast(_other);
return *actualType() == *other.actualType();
}
u256 TypeType::storageSize() const
{
solAssert(false, "Storage size of non-storable type type requested.");
}
vector> TypeType::makeStackItems() const
{
if (auto contractType = dynamic_cast(m_actualType))
if (contractType->contractDefinition().isLibrary())
return {make_tuple("address", TypeProvider::address())};
return {};
}
MemberList::MemberMap TypeType::nativeMembers(ContractDefinition const* _currentScope) const
{
MemberList::MemberMap members;
if (m_actualType->category() == Category::Contract)
{
ContractDefinition const& contract = dynamic_cast(*m_actualType).contractDefinition();
bool inDerivingScope = _currentScope && _currentScope->derivesFrom(contract);
for (auto const* declaration: contract.declarations())
{
if (dynamic_cast(declaration))
continue;
if (!contract.isLibrary() && inDerivingScope && declaration->isVisibleInDerivedContracts())
{
if (
auto const* functionDefinition = dynamic_cast(declaration);
functionDefinition && !functionDefinition->isImplemented()
)
members.emplace_back(declaration->name(), declaration->typeViaContractName(), declaration);
else
members.emplace_back(declaration->name(), declaration->type(), declaration);
}
else if (
(contract.isLibrary() && declaration->isVisibleAsLibraryMember()) ||
declaration->isVisibleViaContractTypeAccess()
)
members.emplace_back(declaration->name(), declaration->typeViaContractName(), declaration);
}
}
else if (m_actualType->category() == Category::Enum)
{
EnumDefinition const& enumDef = dynamic_cast(*m_actualType).enumDefinition();
auto enumType = TypeProvider::enumType(enumDef);
for (ASTPointer const& enumValue: enumDef.members())
members.emplace_back(enumValue->name(), enumType);
}
return members;
}
BoolResult TypeType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
if (auto const* address = dynamic_cast(&_convertTo))
if (address->stateMutability() == StateMutability::NonPayable)
if (auto const* contractType = dynamic_cast(m_actualType))
return contractType->contractDefinition().isLibrary();
return isImplicitlyConvertibleTo(_convertTo);
}
ModifierType::ModifierType(ModifierDefinition const& _modifier)
{
TypePointers params;
params.reserve(_modifier.parameters().size());
for (ASTPointer const& var: _modifier.parameters())
params.push_back(var->annotation().type);
swap(params, m_parameterTypes);
}
u256 ModifierType::storageSize() const
{
solAssert(false, "Storage size of non-storable type type requested.");
}
string ModifierType::richIdentifier() const
{
return "t_modifier" + identifierList(m_parameterTypes);
}
bool ModifierType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
ModifierType const& other = dynamic_cast(_other);
if (m_parameterTypes.size() != other.m_parameterTypes.size())
return false;
auto typeCompare = [](Type const* _a, Type const* _b) -> bool { return *_a == *_b; };
if (!equal(
m_parameterTypes.cbegin(),
m_parameterTypes.cend(),
other.m_parameterTypes.cbegin(),
typeCompare
))
return false;
return true;
}
string ModifierType::toString(bool _short) const
{
string name = "modifier (";
for (auto it = m_parameterTypes.begin(); it != m_parameterTypes.end(); ++it)
name += (*it)->toString(_short) + (it + 1 == m_parameterTypes.end() ? "" : ",");
return name + ")";
}
string ModuleType::richIdentifier() const
{
return "t_module_" + to_string(m_sourceUnit.id());
}
bool ModuleType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
return &m_sourceUnit == &dynamic_cast(_other).m_sourceUnit;
}
MemberList::MemberMap ModuleType::nativeMembers(ContractDefinition const*) const
{
MemberList::MemberMap symbols;
for (auto const& symbolName: m_sourceUnit.annotation().exportedSymbols)
for (Declaration const* symbol: symbolName.second)
symbols.emplace_back(symbolName.first, symbol->type(), symbol);
return symbols;
}
string ModuleType::toString(bool) const
{
return string("module \"") + m_sourceUnit.annotation().path + string("\"");
}
string MagicType::richIdentifier() const
{
switch (m_kind)
{
case Kind::Block:
return "t_magic_block";
case Kind::Message:
return "t_magic_message";
case Kind::Transaction:
return "t_magic_transaction";
case Kind::ABI:
return "t_magic_abi";
case Kind::MetaType:
solAssert(m_typeArgument, "");
return "t_magic_meta_type_" + m_typeArgument->richIdentifier();
}
return "";
}
bool MagicType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
MagicType const& other = dynamic_cast(_other);
return other.m_kind == m_kind;
}
MemberList::MemberMap MagicType::nativeMembers(ContractDefinition const*) const
{
switch (m_kind)
{
case Kind::Block:
return MemberList::MemberMap({
{"coinbase", TypeProvider::payableAddress()},
{"timestamp", TypeProvider::uint256()},
{"blockhash", TypeProvider::function(strings{"uint"}, strings{"bytes32"}, FunctionType::Kind::BlockHash, false, StateMutability::View)},
{"difficulty", TypeProvider::uint256()},
{"number", TypeProvider::uint256()},
{"gaslimit", TypeProvider::uint256()}
});
case Kind::Message:
return MemberList::MemberMap({
{"sender", TypeProvider::payableAddress()},
{"gas", TypeProvider::uint256()},
{"value", TypeProvider::uint256()},
{"data", TypeProvider::array(DataLocation::CallData)},
{"sig", TypeProvider::fixedBytes(4)}
});
case Kind::Transaction:
return MemberList::MemberMap({
{"origin", TypeProvider::payableAddress()},
{"gasprice", TypeProvider::uint256()}
});
case Kind::ABI:
return MemberList::MemberMap({
{"encode", TypeProvider::function(
TypePointers{},
TypePointers{TypeProvider::array(DataLocation::Memory)},
strings{},
strings{1, ""},
FunctionType::Kind::ABIEncode,
true,
StateMutability::Pure
)},
{"encodePacked", TypeProvider::function(
TypePointers{},
TypePointers{TypeProvider::array(DataLocation::Memory)},
strings{},
strings{1, ""},
FunctionType::Kind::ABIEncodePacked,
true,
StateMutability::Pure
)},
{"encodeWithSelector", TypeProvider::function(
TypePointers{TypeProvider::fixedBytes(4)},
TypePointers{TypeProvider::array(DataLocation::Memory)},
strings{1, ""},
strings{1, ""},
FunctionType::Kind::ABIEncodeWithSelector,
true,
StateMutability::Pure
)},
{"encodeWithSignature", TypeProvider::function(
TypePointers{TypeProvider::array(DataLocation::Memory, true)},
TypePointers{TypeProvider::array(DataLocation::Memory)},
strings{1, ""},
strings{1, ""},
FunctionType::Kind::ABIEncodeWithSignature,
true,
StateMutability::Pure
)},
{"decode", TypeProvider::function(
TypePointers(),
TypePointers(),
strings{},
strings{},
FunctionType::Kind::ABIDecode,
true,
StateMutability::Pure
)}
});
case Kind::MetaType:
{
solAssert(
m_typeArgument && (
m_typeArgument->category() == Type::Category::Contract ||
m_typeArgument->category() == Type::Category::Integer
),
"Only contracts or integer types supported for now"
);
if (m_typeArgument->category() == Type::Category::Contract)
{
ContractDefinition const& contract = dynamic_cast(*m_typeArgument).contractDefinition();
if (contract.canBeDeployed())
return MemberList::MemberMap({
{"creationCode", TypeProvider::array(DataLocation::Memory)},
{"runtimeCode", TypeProvider::array(DataLocation::Memory)},
{"name", TypeProvider::stringMemory()},
});
else
return MemberList::MemberMap({
{"interfaceId", TypeProvider::fixedBytes(4)},
});
}
else if (m_typeArgument->category() == Type::Category::Integer)
{
IntegerType const* integerTypePointer = dynamic_cast(m_typeArgument);
return MemberList::MemberMap({
{"min", integerTypePointer},
{"max", integerTypePointer},
});
}
}
}
solAssert(false, "Unknown kind of magic.");
return {};
}
string MagicType::toString(bool _short) const
{
switch (m_kind)
{
case Kind::Block:
return "block";
case Kind::Message:
return "msg";
case Kind::Transaction:
return "tx";
case Kind::ABI:
return "abi";
case Kind::MetaType:
solAssert(m_typeArgument, "");
return "type(" + m_typeArgument->toString(_short) + ")";
}
solAssert(false, "Unknown kind of magic.");
return {};
}
TypePointer MagicType::typeArgument() const
{
solAssert(m_kind == Kind::MetaType, "");
solAssert(m_typeArgument, "");
return m_typeArgument;
}
TypePointer InaccessibleDynamicType::decodingType() const
{
return TypeProvider::integer(256, IntegerType::Modifier::Unsigned);
}