/*
	This file is part of solidity.
	solidity is free software: you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation, either version 3 of the License, or
	(at your option) any later version.
	solidity is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
	GNU General Public License for more details.
	You should have received a copy of the GNU General Public License
	along with solidity.  If not, see .
*/
// SPDX-License-Identifier: GPL-3.0
/**
 * @author Christian 
 * @date 2014
 * Solidity AST to EVM bytecode compiler for expressions.
 */
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
using namespace solidity;
using namespace solidity::evmasm;
using namespace solidity::frontend;
using namespace solidity::langutil;
using namespace solidity::util;
void ExpressionCompiler::compile(Expression const& _expression)
{
	_expression.accept(*this);
}
void ExpressionCompiler::appendStateVariableInitialization(VariableDeclaration const& _varDecl)
{
	if (!_varDecl.value())
		return;
	Type const* type = _varDecl.value()->annotation().type;
	solAssert(!!type, "Type information not available.");
	CompilerContext::LocationSetter locationSetter(m_context, _varDecl);
	_varDecl.value()->accept(*this);
	if (_varDecl.annotation().type->dataStoredIn(DataLocation::Storage))
	{
		// reference type, only convert value to mobile type and do final conversion in storeValue.
		auto mt = type->mobileType();
		solAssert(mt, "");
		utils().convertType(*type, *mt);
		type = mt;
	}
	else
	{
		utils().convertType(*type, *_varDecl.annotation().type);
		type = _varDecl.annotation().type;
	}
	if (_varDecl.immutable())
		ImmutableItem(m_context, _varDecl).storeValue(*type, _varDecl.location(), true);
	else
		StorageItem(m_context, _varDecl).storeValue(*type, _varDecl.location(), true);
}
void ExpressionCompiler::appendConstStateVariableAccessor(VariableDeclaration const& _varDecl)
{
	solAssert(_varDecl.isConstant(), "");
	acceptAndConvert(*_varDecl.value(), *_varDecl.annotation().type);
	// append return
	m_context << dupInstruction(_varDecl.annotation().type->sizeOnStack() + 1);
	m_context.appendJump(evmasm::AssemblyItem::JumpType::OutOfFunction);
}
void ExpressionCompiler::appendStateVariableAccessor(VariableDeclaration const& _varDecl)
{
	solAssert(!_varDecl.isConstant(), "");
	CompilerContext::LocationSetter locationSetter(m_context, _varDecl);
	FunctionType accessorType(_varDecl);
	TypePointers paramTypes = accessorType.parameterTypes();
	if (_varDecl.immutable())
		solAssert(paramTypes.empty(), "");
	m_context.adjustStackOffset(static_cast(1 + CompilerUtils::sizeOnStack(paramTypes)));
	if (!_varDecl.immutable())
	{
		// retrieve the position of the variable
		auto const& location = m_context.storageLocationOfVariable(_varDecl);
		m_context << location.first << u256(location.second);
	}
	Type const* returnType = _varDecl.annotation().type;
	for (size_t i = 0; i < paramTypes.size(); ++i)
	{
		if (auto mappingType = dynamic_cast(returnType))
		{
			solAssert(CompilerUtils::freeMemoryPointer >= 0x40, "");
			// pop offset
			m_context << Instruction::POP;
			if (paramTypes[i]->isDynamicallySized())
			{
				solAssert(
					dynamic_cast(*paramTypes[i]).isByteArray(),
					"Expected string or byte array for mapping key type"
				);
				// stack:  
				// copy key[i] to top.
				utils().copyToStackTop(static_cast(paramTypes.size() - i + 1), 1);
				m_context.appendInlineAssembly(R"({
					let key_len := mload(key_ptr)
					// Temp. use the memory after the array data for the slot
					// position
					let post_data_ptr := add(key_ptr, add(key_len, 0x20))
					let orig_data := mload(post_data_ptr)
					mstore(post_data_ptr, slot_pos)
					let hash := keccak256(add(key_ptr, 0x20), add(key_len, 0x20))
					mstore(post_data_ptr, orig_data)
					slot_pos := hash
				})", {"slot_pos", "key_ptr"});
				m_context << Instruction::POP;
			}
			else
			{
				solAssert(paramTypes[i]->isValueType(), "Expected value type for mapping key");
				// move storage offset to memory.
				utils().storeInMemory(32);
				// move key to memory.
				utils().copyToStackTop(static_cast(paramTypes.size() - i), 1);
				utils().storeInMemory(0);
				m_context << u256(64) << u256(0);
				m_context << Instruction::KECCAK256;
			}
			// push offset
			m_context << u256(0);
			returnType = mappingType->valueType();
		}
		else if (auto arrayType = dynamic_cast(returnType))
		{
			// pop offset
			m_context << Instruction::POP;
			utils().copyToStackTop(static_cast(paramTypes.size() - i + 1), 1);
			ArrayUtils(m_context).retrieveLength(*arrayType, 1);
			// Stack: ref [length] index length
			// check out-of-bounds access
			m_context << Instruction::DUP2 << Instruction::LT;
			auto tag = m_context.appendConditionalJump();
			m_context << u256(0) << Instruction::DUP1 << Instruction::REVERT;
			m_context << tag;
			ArrayUtils(m_context).accessIndex(*arrayType, false);
			returnType = arrayType->baseType();
		}
		else
			solAssert(false, "Index access is allowed only for \"mapping\" and \"array\" types.");
	}
	// remove index arguments.
	if (paramTypes.size() == 1)
		m_context << Instruction::SWAP2 << Instruction::POP << Instruction::SWAP1;
	else if (paramTypes.size() >= 2)
	{
		m_context << swapInstruction(static_cast(paramTypes.size()));
		m_context << Instruction::POP;
		m_context << swapInstruction(static_cast(paramTypes.size()));
		utils().popStackSlots(paramTypes.size() - 1);
	}
	unsigned retSizeOnStack = 0;
	auto returnTypes = accessorType.returnParameterTypes();
	solAssert(returnTypes.size() >= 1, "");
	if (StructType const* structType = dynamic_cast(returnType))
	{
		solAssert(!_varDecl.immutable(), "");
		// remove offset
		m_context << Instruction::POP;
		auto const& names = accessorType.returnParameterNames();
		// struct
		for (size_t i = 0; i < names.size(); ++i)
		{
			if (returnTypes[i]->category() == Type::Category::Mapping)
				continue;
			if (auto arrayType = dynamic_cast(returnTypes[i]))
				if (!arrayType->isByteArray())
					continue;
			pair const& offsets = structType->storageOffsetsOfMember(names[i]);
			m_context << Instruction::DUP1 << u256(offsets.first) << Instruction::ADD << u256(offsets.second);
			Type const* memberType = structType->memberType(names[i]);
			StorageItem(m_context, *memberType).retrieveValue(SourceLocation(), true);
			utils().convertType(*memberType, *returnTypes[i]);
			utils().moveToStackTop(returnTypes[i]->sizeOnStack());
			retSizeOnStack += returnTypes[i]->sizeOnStack();
		}
		// remove slot
		m_context << Instruction::POP;
	}
	else
	{
		// simple value or array
		solAssert(returnTypes.size() == 1, "");
		if (_varDecl.immutable())
			ImmutableItem(m_context, _varDecl).retrieveValue(SourceLocation());
		else
			StorageItem(m_context, *returnType).retrieveValue(SourceLocation(), true);
		utils().convertType(*returnType, *returnTypes.front());
		retSizeOnStack = returnTypes.front()->sizeOnStack();
	}
	solAssert(retSizeOnStack == utils().sizeOnStack(returnTypes), "");
	if (retSizeOnStack > 15)
		BOOST_THROW_EXCEPTION(
			StackTooDeepError() <<
			errinfo_sourceLocation(_varDecl.location()) <<
			errinfo_comment("Stack too deep.")
		);
	m_context << dupInstruction(retSizeOnStack + 1);
	m_context.appendJump(evmasm::AssemblyItem::JumpType::OutOfFunction);
}
bool ExpressionCompiler::visit(Conditional const& _condition)
{
	CompilerContext::LocationSetter locationSetter(m_context, _condition);
	_condition.condition().accept(*this);
	evmasm::AssemblyItem trueTag = m_context.appendConditionalJump();
	acceptAndConvert(_condition.falseExpression(), *_condition.annotation().type);
	evmasm::AssemblyItem endTag = m_context.appendJumpToNew();
	m_context << trueTag;
	int offset = static_cast(_condition.annotation().type->sizeOnStack());
	m_context.adjustStackOffset(-offset);
	acceptAndConvert(_condition.trueExpression(), *_condition.annotation().type);
	m_context << endTag;
	return false;
}
bool ExpressionCompiler::visit(Assignment const& _assignment)
{
	CompilerContext::LocationSetter locationSetter(m_context, _assignment);
	Token op = _assignment.assignmentOperator();
	Token binOp = op == Token::Assign ? op : TokenTraits::AssignmentToBinaryOp(op);
	Type const& leftType = *_assignment.leftHandSide().annotation().type;
	if (leftType.category() == Type::Category::Tuple)
	{
		solAssert(*_assignment.annotation().type == TupleType(), "");
		solAssert(op == Token::Assign, "");
	}
	else
		solAssert(*_assignment.annotation().type == leftType, "");
	bool cleanupNeeded = false;
	if (op != Token::Assign)
		cleanupNeeded = cleanupNeededForOp(leftType.category(), binOp, m_context.arithmetic());
	_assignment.rightHandSide().accept(*this);
	// Perform some conversion already. This will convert storage types to memory and literals
	// to their actual type, but will not convert e.g. memory to storage.
	Type const* rightIntermediateType;
	if (op != Token::Assign && TokenTraits::isShiftOp(binOp))
		rightIntermediateType = _assignment.rightHandSide().annotation().type->mobileType();
	else
		rightIntermediateType = _assignment.rightHandSide().annotation().type->closestTemporaryType(
			_assignment.leftHandSide().annotation().type
		);
	solAssert(rightIntermediateType, "");
	utils().convertType(*_assignment.rightHandSide().annotation().type, *rightIntermediateType, cleanupNeeded);
	_assignment.leftHandSide().accept(*this);
	solAssert(!!m_currentLValue, "LValue not retrieved.");
	if (op == Token::Assign)
		m_currentLValue->storeValue(*rightIntermediateType, _assignment.location());
	else  // compound assignment
	{
		solAssert(binOp != Token::Exp, "Compound exp is not possible.");
		solAssert(leftType.isValueType(), "Compound operators only available for value types.");
		unsigned lvalueSize = m_currentLValue->sizeOnStack();
		unsigned itemSize = _assignment.annotation().type->sizeOnStack();
		if (lvalueSize > 0)
		{
			utils().copyToStackTop(lvalueSize + itemSize, itemSize);
			utils().copyToStackTop(itemSize + lvalueSize, lvalueSize);
			// value lvalue_ref value lvalue_ref
		}
		m_currentLValue->retrieveValue(_assignment.location(), true);
		utils().convertType(leftType, leftType, cleanupNeeded);
		if (TokenTraits::isShiftOp(binOp))
			appendShiftOperatorCode(binOp, leftType, *rightIntermediateType);
		else
		{
			solAssert(leftType == *rightIntermediateType, "");
			appendOrdinaryBinaryOperatorCode(binOp, leftType);
		}
		if (lvalueSize > 0)
		{
			if (itemSize + lvalueSize > 16)
				BOOST_THROW_EXCEPTION(
					StackTooDeepError() <<
					errinfo_sourceLocation(_assignment.location()) <<
					errinfo_comment("Stack too deep, try removing local variables.")
				);
			// value [lvalue_ref] updated_value
			for (unsigned i = 0; i < itemSize; ++i)
				m_context << swapInstruction(itemSize + lvalueSize) << Instruction::POP;
		}
		m_currentLValue->storeValue(*_assignment.annotation().type, _assignment.location());
	}
	m_currentLValue.reset();
	return false;
}
bool ExpressionCompiler::visit(TupleExpression const& _tuple)
{
	if (_tuple.isInlineArray())
	{
		ArrayType const& arrayType = dynamic_cast(*_tuple.annotation().type);
		solAssert(!arrayType.isDynamicallySized(), "Cannot create dynamically sized inline array.");
		utils().allocateMemory(max(u256(32u), arrayType.memoryDataSize()));
		m_context << Instruction::DUP1;
		for (auto const& component: _tuple.components())
		{
			acceptAndConvert(*component, *arrayType.baseType(), true);
			utils().storeInMemoryDynamic(*arrayType.baseType(), true);
		}
		m_context << Instruction::POP;
	}
	else
	{
		vector> lvalues;
		for (auto const& component: _tuple.components())
			if (component)
			{
				component->accept(*this);
				if (_tuple.annotation().willBeWrittenTo)
				{
					solAssert(!!m_currentLValue, "");
					lvalues.push_back(move(m_currentLValue));
				}
			}
			else if (_tuple.annotation().willBeWrittenTo)
				lvalues.push_back(unique_ptr());
		if (_tuple.annotation().willBeWrittenTo)
		{
			if (_tuple.components().size() == 1)
				m_currentLValue = move(lvalues[0]);
			else
				m_currentLValue = make_unique(m_context, move(lvalues));
		}
	}
	return false;
}
bool ExpressionCompiler::visit(UnaryOperation const& _unaryOperation)
{
	CompilerContext::LocationSetter locationSetter(m_context, _unaryOperation);
	Type const& type = *_unaryOperation.annotation().type;
	if (type.category() == Type::Category::RationalNumber)
	{
		m_context << type.literalValue(nullptr);
		return false;
	}
	_unaryOperation.subExpression().accept(*this);
	switch (_unaryOperation.getOperator())
	{
	case Token::Not: // !
		m_context << Instruction::ISZERO;
		break;
	case Token::BitNot: // ~
		m_context << Instruction::NOT;
		break;
	case Token::Delete: // delete
		solAssert(!!m_currentLValue, "LValue not retrieved.");
		m_currentLValue->setToZero(_unaryOperation.location());
		m_currentLValue.reset();
		break;
	case Token::Inc: // ++ (pre- or postfix)
	case Token::Dec: // -- (pre- or postfix)
		solAssert(!!m_currentLValue, "LValue not retrieved.");
		solUnimplementedAssert(
			type.category() != Type::Category::FixedPoint,
			"Not yet implemented - FixedPointType."
		);
		m_currentLValue->retrieveValue(_unaryOperation.location());
		if (!_unaryOperation.isPrefixOperation())
		{
			// store value for later
			solUnimplementedAssert(type.sizeOnStack() == 1, "Stack size != 1 not implemented.");
			m_context << Instruction::DUP1;
			if (m_currentLValue->sizeOnStack() > 0)
				for (unsigned i = 1 + m_currentLValue->sizeOnStack(); i > 0; --i)
					m_context << swapInstruction(i);
		}
		if (_unaryOperation.getOperator() == Token::Inc)
		{
			if (m_context.arithmetic() == Arithmetic::Checked)
				m_context.callYulFunction(m_context.utilFunctions().incrementCheckedFunction(type), 1, 1);
			else
			{
				m_context << u256(1);
				m_context << Instruction::ADD;
			}
		}
		else
		{
			if (m_context.arithmetic() == Arithmetic::Checked)
				m_context.callYulFunction(m_context.utilFunctions().decrementCheckedFunction(type), 1, 1);
			else
			{
				m_context << u256(1);
				m_context << Instruction::SWAP1 << Instruction::SUB;
			}
		}
		// Stack for prefix: [ref...] (*ref)+-1
		// Stack for postfix: *ref [ref...] (*ref)+-1
		for (unsigned i = m_currentLValue->sizeOnStack(); i > 0; --i)
			m_context << swapInstruction(i);
		m_currentLValue->storeValue(
			*_unaryOperation.annotation().type, _unaryOperation.location(),
			!_unaryOperation.isPrefixOperation());
		m_currentLValue.reset();
		break;
	case Token::Add: // +
		// unary add, so basically no-op
		break;
	case Token::Sub: // -
		solUnimplementedAssert(
			type.category() != Type::Category::FixedPoint,
			"Not yet implemented - FixedPointType."
		);
		if (m_context.arithmetic() == Arithmetic::Checked)
			m_context.callYulFunction(m_context.utilFunctions().negateNumberCheckedFunction(type), 1, 1);
		else
			m_context << u256(0) << Instruction::SUB;
		break;
	default:
		solAssert(false, "Invalid unary operator: " + string(TokenTraits::toString(_unaryOperation.getOperator())));
	}
	return false;
}
bool ExpressionCompiler::visit(BinaryOperation const& _binaryOperation)
{
	CompilerContext::LocationSetter locationSetter(m_context, _binaryOperation);
	Expression const& leftExpression = _binaryOperation.leftExpression();
	Expression const& rightExpression = _binaryOperation.rightExpression();
	solAssert(!!_binaryOperation.annotation().commonType, "");
	Type const* commonType = _binaryOperation.annotation().commonType;
	Token const c_op = _binaryOperation.getOperator();
	if (c_op == Token::And || c_op == Token::Or) // special case: short-circuiting
		appendAndOrOperatorCode(_binaryOperation);
	else if (commonType->category() == Type::Category::RationalNumber)
		m_context << commonType->literalValue(nullptr);
	else
	{
		bool cleanupNeeded = cleanupNeededForOp(commonType->category(), c_op, m_context.arithmetic());
		Type const* leftTargetType = commonType;
		Type const* rightTargetType =
			TokenTraits::isShiftOp(c_op) || c_op == Token::Exp ?
			rightExpression.annotation().type->mobileType() :
			commonType;
		solAssert(rightTargetType, "");
		// for commutative operators, push the literal as late as possible to allow improved optimization
		auto isLiteral = [](Expression const& _e)
		{
			return dynamic_cast(&_e) || _e.annotation().type->category() == Type::Category::RationalNumber;
		};
		bool swap = m_optimiseOrderLiterals && TokenTraits::isCommutativeOp(c_op) && isLiteral(rightExpression) && !isLiteral(leftExpression);
		if (swap)
		{
			acceptAndConvert(leftExpression, *leftTargetType, cleanupNeeded);
			acceptAndConvert(rightExpression, *rightTargetType, cleanupNeeded);
		}
		else
		{
			acceptAndConvert(rightExpression, *rightTargetType, cleanupNeeded);
			acceptAndConvert(leftExpression, *leftTargetType, cleanupNeeded);
		}
		if (TokenTraits::isShiftOp(c_op))
			// shift only cares about the signedness of both sides
			appendShiftOperatorCode(c_op, *leftTargetType, *rightTargetType);
		else if (c_op == Token::Exp)
			appendExpOperatorCode(*leftTargetType, *rightTargetType);
		else if (TokenTraits::isCompareOp(c_op))
			appendCompareOperatorCode(c_op, *commonType);
		else
			appendOrdinaryBinaryOperatorCode(c_op, *commonType);
	}
	// do not visit the child nodes, we already did that explicitly
	return false;
}
bool ExpressionCompiler::visit(FunctionCall const& _functionCall)
{
	auto functionCallKind = *_functionCall.annotation().kind;
	CompilerContext::LocationSetter locationSetter(m_context, _functionCall);
	if (functionCallKind == FunctionCallKind::TypeConversion)
	{
		solAssert(_functionCall.arguments().size() == 1, "");
		solAssert(_functionCall.names().empty(), "");
		auto const& expression = *_functionCall.arguments().front();
		auto const& targetType = *_functionCall.annotation().type;
		if (auto const* typeType = dynamic_cast(expression.annotation().type))
			if (auto const* addressType = dynamic_cast(&targetType))
			{
				auto const* contractType = dynamic_cast(typeType->actualType());
				solAssert(
					contractType &&
					contractType->contractDefinition().isLibrary() &&
					addressType->stateMutability() == StateMutability::NonPayable,
					""
				);
				m_context.appendLibraryAddress(contractType->contractDefinition().fullyQualifiedName());
				return false;
			}
		acceptAndConvert(expression, targetType);
		return false;
	}
	FunctionTypePointer functionType;
	if (functionCallKind == FunctionCallKind::StructConstructorCall)
	{
		auto const& type = dynamic_cast(*_functionCall.expression().annotation().type);
		auto const& structType = dynamic_cast(*type.actualType());
		functionType = structType.constructorType();
	}
	else
		functionType = dynamic_cast(_functionCall.expression().annotation().type);
	TypePointers parameterTypes = functionType->parameterTypes();
	vector> const& arguments = _functionCall.sortedArguments();
	if (functionCallKind == FunctionCallKind::StructConstructorCall)
	{
		TypeType const& type = dynamic_cast(*_functionCall.expression().annotation().type);
		auto const& structType = dynamic_cast(*type.actualType());
		utils().allocateMemory(max(u256(32u), structType.memoryDataSize()));
		m_context << Instruction::DUP1;
		for (unsigned i = 0; i < arguments.size(); ++i)
		{
			acceptAndConvert(*arguments[i], *functionType->parameterTypes()[i]);
			utils().storeInMemoryDynamic(*functionType->parameterTypes()[i]);
		}
		m_context << Instruction::POP;
	}
	else
	{
		FunctionType const& function = *functionType;
		if (function.bound())
			solAssert(
				function.kind() == FunctionType::Kind::DelegateCall ||
				function.kind() == FunctionType::Kind::Internal ||
				function.kind() == FunctionType::Kind::ArrayPush ||
				function.kind() == FunctionType::Kind::ArrayPop,
			"");
		switch (function.kind())
		{
		case FunctionType::Kind::Declaration:
			solAssert(false, "Attempted to generate code for calling a function definition.");
			break;
		case FunctionType::Kind::Internal:
		{
			// Calling convention: Caller pushes return address and arguments
			// Callee removes them and pushes return values
			evmasm::AssemblyItem returnLabel = m_context.pushNewTag();
			for (unsigned i = 0; i < arguments.size(); ++i)
				acceptAndConvert(*arguments[i], *function.parameterTypes()[i]);
			{
				bool shortcutTaken = false;
				if (auto identifier = dynamic_cast(&_functionCall.expression()))
				{
					solAssert(!function.bound(), "");
					if (auto functionDef = dynamic_cast(identifier->annotation().referencedDeclaration))
					{
						// Do not directly visit the identifier, because this way, we can avoid
						// the runtime entry label to be created at the creation time context.
						CompilerContext::LocationSetter locationSetter2(m_context, *identifier);
						solAssert(*identifier->annotation().requiredLookup == VirtualLookup::Virtual, "");
						utils().pushCombinedFunctionEntryLabel(
							functionDef->resolveVirtual(m_context.mostDerivedContract()),
							false
						);
						shortcutTaken = true;
					}
				}
				if (!shortcutTaken)
					_functionCall.expression().accept(*this);
			}
			unsigned parameterSize = CompilerUtils::sizeOnStack(function.parameterTypes());
			if (function.bound())
			{
				// stack: arg2, ..., argn, label, arg1
				unsigned depth = parameterSize + 1;
				utils().moveIntoStack(depth, function.selfType()->sizeOnStack());
				parameterSize += function.selfType()->sizeOnStack();
			}
			if (m_context.runtimeContext())
				// We have a runtime context, so we need the creation part.
				utils().rightShiftNumberOnStack(32);
			else
				// Extract the runtime part.
				m_context << ((u256(1) << 32) - 1) << Instruction::AND;
			m_context.appendJump(evmasm::AssemblyItem::JumpType::IntoFunction);
			m_context << returnLabel;
			unsigned returnParametersSize = CompilerUtils::sizeOnStack(function.returnParameterTypes());
			// callee adds return parameters, but removes arguments and return label
			m_context.adjustStackOffset(static_cast(returnParametersSize - parameterSize) - 1);
			break;
		}
		case FunctionType::Kind::BareCall:
		case FunctionType::Kind::BareDelegateCall:
		case FunctionType::Kind::BareStaticCall:
			solAssert(!_functionCall.annotation().tryCall, "");
			[[fallthrough]];
		case FunctionType::Kind::External:
		case FunctionType::Kind::DelegateCall:
			_functionCall.expression().accept(*this);
			appendExternalFunctionCall(function, arguments, _functionCall.annotation().tryCall);
			break;
		case FunctionType::Kind::BareCallCode:
			solAssert(false, "Callcode has been removed.");
		case FunctionType::Kind::Creation:
		{
			_functionCall.expression().accept(*this);
			// Stack: [salt], [value]
			solAssert(!function.gasSet(), "Gas limit set for contract creation.");
			solAssert(function.returnParameterTypes().size() == 1, "");
			TypePointers argumentTypes;
			for (auto const& arg: arguments)
			{
				arg->accept(*this);
				argumentTypes.push_back(arg->annotation().type);
			}
			ContractDefinition const* contract =
				&dynamic_cast(*function.returnParameterTypes().front()).contractDefinition();
			utils().fetchFreeMemoryPointer();
			utils().copyContractCodeToMemory(*contract, true);
			utils().abiEncode(argumentTypes, function.parameterTypes());
			// now on stack: [salt], [value], memory_end_ptr
			// need: [salt], size, offset, value
			if (function.saltSet())
			{
				m_context << dupInstruction(2 + (function.valueSet() ? 1 : 0));
				m_context << Instruction::SWAP1;
			}
			// now: [salt], [value], [salt], memory_end_ptr
			utils().toSizeAfterFreeMemoryPointer();
			// now: [salt], [value], [salt], size, offset
			if (function.valueSet())
				m_context << dupInstruction(3 + (function.saltSet() ? 1 : 0));
			else
				m_context << u256(0);
			// now: [salt], [value], [salt], size, offset, value
			if (function.saltSet())
				m_context << Instruction::CREATE2;
			else
				m_context << Instruction::CREATE;
			// now: [salt], [value], address
			if (function.valueSet())
				m_context << swapInstruction(1) << Instruction::POP;
			if (function.saltSet())
				m_context << swapInstruction(1) << Instruction::POP;
			// Check if zero (reverted)
			m_context << Instruction::DUP1 << Instruction::ISZERO;
			if (_functionCall.annotation().tryCall)
			{
				// If this is a try call, return " 1" in the success case and
				// "0" in the error case.
				AssemblyItem errorCase = m_context.appendConditionalJump();
				m_context << u256(1);
				m_context << errorCase;
			}
			else
				m_context.appendConditionalRevert(true);
			break;
		}
		case FunctionType::Kind::SetGas:
		{
			// stack layout: contract_address function_id [gas] [value]
			_functionCall.expression().accept(*this);
			acceptAndConvert(*arguments.front(), *TypeProvider::uint256(), true);
			// Note that function is not the original function, but the ".gas" function.
			// Its values of gasSet and valueSet is equal to the original function's though.
			unsigned stackDepth = (function.gasSet() ? 1u : 0u) + (function.valueSet() ? 1u : 0u);
			if (stackDepth > 0)
				m_context << swapInstruction(stackDepth);
			if (function.gasSet())
				m_context << Instruction::POP;
			break;
		}
		case FunctionType::Kind::SetValue:
			// stack layout: contract_address function_id [gas] [value]
			_functionCall.expression().accept(*this);
			// Note that function is not the original function, but the ".value" function.
			// Its values of gasSet and valueSet is equal to the original function's though.
			if (function.valueSet())
				m_context << Instruction::POP;
			arguments.front()->accept(*this);
			break;
		case FunctionType::Kind::Send:
		case FunctionType::Kind::Transfer:
			_functionCall.expression().accept(*this);
			// Provide the gas stipend manually at first because we may send zero ether.
			// Will be zeroed if we send more than zero ether.
			m_context << u256(evmasm::GasCosts::callStipend);
			acceptAndConvert(*arguments.front(), *function.parameterTypes().front(), true);
			// gas <- gas * !value
			m_context << Instruction::SWAP1 << Instruction::DUP2;
			m_context << Instruction::ISZERO << Instruction::MUL << Instruction::SWAP1;
			appendExternalFunctionCall(
				FunctionType(
					TypePointers{},
					TypePointers{},
					strings(),
					strings(),
					FunctionType::Kind::BareCall,
					false,
					StateMutability::NonPayable,
					nullptr,
					true,
					true
				),
				{},
				false
			);
			if (function.kind() == FunctionType::Kind::Transfer)
			{
				// Check if zero (out of stack or not enough balance).
				m_context << Instruction::ISZERO;
				// Revert message bubbles up.
				m_context.appendConditionalRevert(true);
			}
			break;
		case FunctionType::Kind::Selfdestruct:
			acceptAndConvert(*arguments.front(), *function.parameterTypes().front(), true);
			m_context << Instruction::SELFDESTRUCT;
			break;
		case FunctionType::Kind::Revert:
		{
			if (arguments.empty())
				m_context.appendRevert();
			else
			{
				// function-sel(Error(string)) + encoding
				solAssert(arguments.size() == 1, "");
				solAssert(function.parameterTypes().size() == 1, "");
				if (m_context.revertStrings() == RevertStrings::Strip)
				{
					if (!*arguments.front()->annotation().isPure)
					{
						arguments.front()->accept(*this);
						utils().popStackElement(*arguments.front()->annotation().type);
					}
					m_context.appendRevert();
				}
				else
				{
					arguments.front()->accept(*this);
					utils().revertWithStringData(*arguments.front()->annotation().type);
				}
			}
			break;
		}
		case FunctionType::Kind::KECCAK256:
		{
			solAssert(arguments.size() == 1, "");
			solAssert(!function.padArguments(), "");
			Type const* argType = arguments.front()->annotation().type;
			solAssert(argType, "");
			arguments.front()->accept(*this);
			if (auto const* stringLiteral = dynamic_cast(argType))
				// Optimization: Compute keccak256 on string literals at compile-time.
				m_context << u256(keccak256(stringLiteral->value()));
			else if (*argType == *TypeProvider::bytesMemory() || *argType == *TypeProvider::stringMemory())
			{
				// Optimization: If type is bytes or string, then do not encode,
				// but directly compute keccak256 on memory.
				ArrayUtils(m_context).retrieveLength(*TypeProvider::bytesMemory());
				m_context << Instruction::SWAP1 << u256(0x20) << Instruction::ADD;
				m_context << Instruction::KECCAK256;
			}
			else
			{
				utils().fetchFreeMemoryPointer();
				utils().packedEncode({argType}, TypePointers());
				utils().toSizeAfterFreeMemoryPointer();
				m_context << Instruction::KECCAK256;
			}
			break;
		}
		case FunctionType::Kind::Event:
		{
			_functionCall.expression().accept(*this);
			auto const& event = dynamic_cast(function.declaration());
			unsigned numIndexed = 0;
			TypePointers paramTypes = function.parameterTypes();
			// All indexed arguments go to the stack
			for (size_t arg = arguments.size(); arg > 0; --arg)
				if (event.parameters()[arg - 1]->isIndexed())
				{
					++numIndexed;
					arguments[arg - 1]->accept(*this);
					if (auto const& referenceType = dynamic_cast(paramTypes[arg - 1]))
					{
						utils().fetchFreeMemoryPointer();
						utils().packedEncode(
							{arguments[arg - 1]->annotation().type},
							{referenceType}
						);
						utils().toSizeAfterFreeMemoryPointer();
						m_context << Instruction::KECCAK256;
					}
					else
					{
						solAssert(paramTypes[arg - 1]->isValueType(), "");
						if (auto functionType =	dynamic_cast(paramTypes[arg - 1]))
						{
							auto argumentType =
								dynamic_cast(arguments[arg-1]->annotation().type);
							solAssert(
								argumentType &&
								functionType->kind() == FunctionType::Kind::External &&
								argumentType->kind() == FunctionType::Kind::External &&
								!argumentType->bound(),
								""
							);
							utils().combineExternalFunctionType(true);
						}
						else
							utils().convertType(
								*arguments[arg - 1]->annotation().type,
								*paramTypes[arg - 1],
								true
							);
					}
				}
			if (!event.isAnonymous())
			{
				m_context << u256(h256::Arith(keccak256(function.externalSignature())));
				++numIndexed;
			}
			solAssert(numIndexed <= 4, "Too many indexed arguments.");
			// Copy all non-indexed arguments to memory (data)
			// Memory position is only a hack and should be removed once we have free memory pointer.
			TypePointers nonIndexedArgTypes;
			TypePointers nonIndexedParamTypes;
			for (unsigned arg = 0; arg < arguments.size(); ++arg)
				if (!event.parameters()[arg]->isIndexed())
				{
					arguments[arg]->accept(*this);
					nonIndexedArgTypes.push_back(arguments[arg]->annotation().type);
					nonIndexedParamTypes.push_back(paramTypes[arg]);
				}
			utils().fetchFreeMemoryPointer();
			utils().abiEncode(nonIndexedArgTypes, nonIndexedParamTypes);
			// need: topic1 ... topicn memsize memstart
			utils().toSizeAfterFreeMemoryPointer();
			m_context << logInstruction(numIndexed);
			break;
		}
		case FunctionType::Kind::Error:
		{
			_functionCall.expression().accept(*this);
			vector argumentTypes;
			for (ASTPointer const& arg: _functionCall.sortedArguments())
			{
				arg->accept(*this);
				argumentTypes.push_back(arg->annotation().type);
			}
			solAssert(dynamic_cast(&function.declaration()), "");
			utils().revertWithError(
				function.externalSignature(),
				function.parameterTypes(),
				argumentTypes
			);
			break;
		}
		case FunctionType::Kind::BlockHash:
		{
			acceptAndConvert(*arguments[0], *function.parameterTypes()[0], true);
			m_context << Instruction::BLOCKHASH;
			break;
		}
		case FunctionType::Kind::AddMod:
		case FunctionType::Kind::MulMod:
		{
			acceptAndConvert(*arguments[2], *TypeProvider::uint256());
			m_context << Instruction::DUP1 << Instruction::ISZERO;
			m_context.appendConditionalPanic(util::PanicCode::DivisionByZero);
			for (unsigned i = 1; i < 3; i ++)
				acceptAndConvert(*arguments[2 - i], *TypeProvider::uint256());
			if (function.kind() == FunctionType::Kind::AddMod)
				m_context << Instruction::ADDMOD;
			else
				m_context << Instruction::MULMOD;
			break;
		}
		case FunctionType::Kind::ECRecover:
		case FunctionType::Kind::SHA256:
		case FunctionType::Kind::RIPEMD160:
		{
			_functionCall.expression().accept(*this);
			static map const contractAddresses{
				{FunctionType::Kind::ECRecover, 1},
				{FunctionType::Kind::SHA256, 2},
				{FunctionType::Kind::RIPEMD160, 3}
			};
			m_context << contractAddresses.at(function.kind());
			for (unsigned i = function.sizeOnStack(); i > 0; --i)
				m_context << swapInstruction(i);
			solAssert(!_functionCall.annotation().tryCall, "");
			appendExternalFunctionCall(function, arguments, false);
			break;
		}
		case FunctionType::Kind::ArrayPush:
		{
			solAssert(function.bound(), "");
			_functionCall.expression().accept(*this);
			if (function.parameterTypes().size() == 0)
			{
				auto paramType = function.returnParameterTypes().at(0);
				solAssert(paramType, "");
				ArrayType const* arrayType = dynamic_cast(function.selfType());
				solAssert(arrayType, "");
				// stack: ArrayReference
				m_context << u256(1) << Instruction::DUP2;
				ArrayUtils(m_context).incrementDynamicArraySize(*arrayType);
				// stack: ArrayReference 1 newLength
				m_context << Instruction::SUB;
				// stack: ArrayReference (newLength-1)
				ArrayUtils(m_context).accessIndex(*arrayType, false);
				if (arrayType->isByteArray())
					setLValue(_functionCall);
				else
					setLValueToStorageItem(_functionCall);
			}
			else
			{
				solAssert(function.parameterTypes().size() == 1, "");
				solAssert(!!function.parameterTypes()[0], "");
				Type const* paramType = function.parameterTypes()[0];
				ArrayType const* arrayType = dynamic_cast(function.selfType());
				solAssert(arrayType, "");
				// stack: ArrayReference
				arguments[0]->accept(*this);
				Type const* argType = arguments[0]->annotation().type;
				// stack: ArrayReference argValue
				utils().moveToStackTop(argType->sizeOnStack(), 1);
				// stack: argValue ArrayReference
				m_context << Instruction::DUP1;
				ArrayUtils(m_context).incrementDynamicArraySize(*arrayType);
				// stack: argValue ArrayReference newLength
				m_context << u256(1) << Instruction::SWAP1 << Instruction::SUB;
				// stack: argValue ArrayReference (newLength-1)
				ArrayUtils(m_context).accessIndex(*arrayType, false);
				// stack: argValue storageSlot slotOffset
				utils().moveToStackTop(2, argType->sizeOnStack());
				// stack: storageSlot slotOffset argValue
				Type const* type = arguments[0]->annotation().type->closestTemporaryType(arrayType->baseType());
				solAssert(type, "");
				utils().convertType(*argType, *type);
				utils().moveToStackTop(1 + type->sizeOnStack());
				utils().moveToStackTop(1 + type->sizeOnStack());
				// stack: argValue storageSlot slotOffset
				if (!arrayType->isByteArray())
					StorageItem(m_context, *paramType).storeValue(*type, _functionCall.location(), true);
				else
					StorageByteArrayElement(m_context).storeValue(*type, _functionCall.location(), true);
			}
			break;
		}
		case FunctionType::Kind::ArrayPop:
		{
			_functionCall.expression().accept(*this);
			solAssert(function.bound(), "");
			solAssert(function.parameterTypes().empty(), "");
			ArrayType const* arrayType = dynamic_cast(function.selfType());
			solAssert(arrayType && arrayType->dataStoredIn(DataLocation::Storage), "");
			ArrayUtils(m_context).popStorageArrayElement(*arrayType);
			break;
		}
		case FunctionType::Kind::BytesConcat:
		{
			_functionCall.expression().accept(*this);
			vector argumentTypes;
			vector targetTypes;
			for (auto const& argument: arguments)
			{
				argument->accept(*this);
				solAssert(argument->annotation().type, "");
				argumentTypes.emplace_back(argument->annotation().type);
				if (argument->annotation().type->category() == Type::Category::FixedBytes)
					targetTypes.emplace_back(argument->annotation().type);
				else if (
					auto const* literalType = dynamic_cast(argument->annotation().type);
					literalType && literalType->value().size() <= 32
				)
					targetTypes.emplace_back(TypeProvider::fixedBytes(static_cast(literalType->value().size())));
				else
				{
					solAssert(argument->annotation().type->isImplicitlyConvertibleTo(*TypeProvider::bytesMemory()), "");
					targetTypes.emplace_back(TypeProvider::bytesMemory());
				}
			}
			utils().fetchFreeMemoryPointer();
			// stack:   ...  
			m_context << u256(32) << Instruction::ADD;
			utils().packedEncode(argumentTypes, targetTypes);
			utils().fetchFreeMemoryPointer();
			m_context.appendInlineAssembly(R"({
				mstore(mem_ptr, sub(sub(mem_end, mem_ptr), 0x20))
			})", {"mem_end", "mem_ptr"});
			m_context << Instruction::SWAP1;
			utils().storeFreeMemoryPointer();
			break;
		}
		case FunctionType::Kind::ObjectCreation:
		{
			ArrayType const& arrayType = dynamic_cast(*_functionCall.annotation().type);
			_functionCall.expression().accept(*this);
			solAssert(arguments.size() == 1, "");
			// Fetch requested length.
			acceptAndConvert(*arguments[0], *TypeProvider::uint256());
			// Make sure we can allocate memory without overflow
			m_context << u256(0xffffffffffffffff);
			m_context << Instruction::DUP2;
			m_context << Instruction::GT;
			m_context.appendConditionalPanic(PanicCode::ResourceError);
			// Stack: requested_length
			utils().fetchFreeMemoryPointer();
			// Stack: requested_length memptr
			m_context << Instruction::SWAP1;
			// Stack: memptr requested_length
			// store length
			m_context << Instruction::DUP1 << Instruction::DUP3 << Instruction::MSTORE;
			// Stack: memptr requested_length
			// update free memory pointer
			m_context << Instruction::DUP1;
			// Stack: memptr requested_length requested_length
			if (arrayType.isByteArray())
				// Round up to multiple of 32
				m_context << u256(31) << Instruction::ADD << u256(31) << Instruction::NOT << Instruction::AND;
			else
				m_context << arrayType.baseType()->memoryHeadSize() << Instruction::MUL;
			// stacK: memptr requested_length data_size
			m_context << u256(32) << Instruction::ADD;
			m_context << Instruction::DUP3 << Instruction::ADD;
			utils().storeFreeMemoryPointer();
			// Stack: memptr requested_length
			// Check if length is zero
			m_context << Instruction::DUP1 << Instruction::ISZERO;
			auto skipInit = m_context.appendConditionalJump();
			// Always initialize because the free memory pointer might point at
			// a dirty memory area.
			m_context << Instruction::DUP2 << u256(32) << Instruction::ADD;
			utils().zeroInitialiseMemoryArray(arrayType);
			m_context << skipInit;
			m_context << Instruction::POP;
			break;
		}
		case FunctionType::Kind::Assert:
		case FunctionType::Kind::Require:
		{
			acceptAndConvert(*arguments.front(), *function.parameterTypes().front(), false);
			bool haveReasonString = arguments.size() > 1 && m_context.revertStrings() != RevertStrings::Strip;
			if (arguments.size() > 1)
			{
				// Users probably expect the second argument to be evaluated
				// even if the condition is false, as would be the case for an actual
				// function call.
				solAssert(arguments.size() == 2, "");
				solAssert(function.kind() == FunctionType::Kind::Require, "");
				if (m_context.revertStrings() == RevertStrings::Strip)
				{
					if (!*arguments.at(1)->annotation().isPure)
					{
						arguments.at(1)->accept(*this);
						utils().popStackElement(*arguments.at(1)->annotation().type);
					}
				}
				else
				{
					arguments.at(1)->accept(*this);
					utils().moveIntoStack(1, arguments.at(1)->annotation().type->sizeOnStack());
				}
			}
			// Stack:  
			// jump if condition was met
			m_context << Instruction::ISZERO << Instruction::ISZERO;
			auto success = m_context.appendConditionalJump();
			if (function.kind() == FunctionType::Kind::Assert)
				// condition was not met, flag an error
				m_context.appendPanic(util::PanicCode::Assert);
			else if (haveReasonString)
			{
				utils().revertWithStringData(*arguments.at(1)->annotation().type);
				// Here, the argument is consumed, but in the other branch, it is still there.
				m_context.adjustStackOffset(static_cast(arguments.at(1)->annotation().type->sizeOnStack()));
			}
			else
				m_context.appendRevert();
			// the success branch
			m_context << success;
			if (haveReasonString)
				utils().popStackElement(*arguments.at(1)->annotation().type);
			break;
		}
		case FunctionType::Kind::ABIEncode:
		case FunctionType::Kind::ABIEncodePacked:
		case FunctionType::Kind::ABIEncodeWithSelector:
		case FunctionType::Kind::ABIEncodeWithSignature:
		{
			bool const isPacked = function.kind() == FunctionType::Kind::ABIEncodePacked;
			bool const hasSelectorOrSignature =
				function.kind() == FunctionType::Kind::ABIEncodeWithSelector ||
				function.kind() == FunctionType::Kind::ABIEncodeWithSignature;
			TypePointers argumentTypes;
			TypePointers targetTypes;
			for (unsigned i = 0; i < arguments.size(); ++i)
			{
				arguments[i]->accept(*this);
				// Do not keep the selector as part of the ABI encoded args
				if (!hasSelectorOrSignature || i > 0)
					argumentTypes.push_back(arguments[i]->annotation().type);
			}
			utils().fetchFreeMemoryPointer();
			// stack now: []  ..  
			// adjust by 32(+4) bytes to accommodate the length(+selector)
			m_context << u256(32 + (hasSelectorOrSignature ? 4 : 0)) << Instruction::ADD;
			// stack now: []  ..  
			if (isPacked)
			{
				solAssert(!function.padArguments(), "");
				utils().packedEncode(argumentTypes, TypePointers());
			}
			else
			{
				solAssert(function.padArguments(), "");
				utils().abiEncode(argumentTypes, TypePointers());
			}
			utils().fetchFreeMemoryPointer();
			// stack: []  
			// size is end minus start minus length slot
			m_context.appendInlineAssembly(R"({
				mstore(mem_ptr, sub(sub(mem_end, mem_ptr), 0x20))
			})", {"mem_end", "mem_ptr"});
			m_context << Instruction::SWAP1;
			utils().storeFreeMemoryPointer();
			// stack: [] 
			if (hasSelectorOrSignature)
			{
				// stack:  
				solAssert(arguments.size() >= 1, "");
				Type const* selectorType = arguments[0]->annotation().type;
				utils().moveIntoStack(selectorType->sizeOnStack());
				Type const* dataOnStack = selectorType;
				// stack:  
				if (function.kind() == FunctionType::Kind::ABIEncodeWithSignature)
				{
					// hash the signature
					if (auto const* stringType = dynamic_cast(selectorType))
					{
						m_context << util::selectorFromSignature(stringType->value());
						dataOnStack = TypeProvider::fixedBytes(4);
					}
					else
					{
						utils().fetchFreeMemoryPointer();
						// stack:   
						utils().packedEncode(TypePointers{selectorType}, TypePointers());
						utils().toSizeAfterFreeMemoryPointer();
						m_context << Instruction::KECCAK256;
						// stack:  
						dataOnStack = TypeProvider::fixedBytes(32);
					}
				}
				else
				{
					solAssert(function.kind() == FunctionType::Kind::ABIEncodeWithSelector, "");
				}
				utils().convertType(*dataOnStack, FixedBytesType(4), true);
				// stack:  
				// load current memory, mask and combine the selector
				string mask = formatNumber((u256(-1) >> 32));
				m_context.appendInlineAssembly(R"({
					let data_start := add(mem_ptr, 0x20)
					let data := mload(data_start)
					let mask := )" + mask + R"(
					mstore(data_start, or(and(data, mask), selector))
				})", {"mem_ptr", "selector"});
				m_context << Instruction::POP;
			}
			// stack now: 
			break;
		}
		case FunctionType::Kind::ABIDecode:
		{
			arguments.front()->accept(*this);
			Type const* firstArgType = arguments.front()->annotation().type;
			TypePointers targetTypes;
			if (TupleType const* targetTupleType = dynamic_cast(_functionCall.annotation().type))
				targetTypes = targetTupleType->components();
			else
				targetTypes = TypePointers{_functionCall.annotation().type};
			if (
				auto referenceType = dynamic_cast(firstArgType);
				referenceType && referenceType->dataStoredIn(DataLocation::CallData)
			)
			{
				solAssert(referenceType->isImplicitlyConvertibleTo(*TypeProvider::bytesCalldata()), "");
				utils().convertType(*referenceType, *TypeProvider::bytesCalldata());
				utils().abiDecode(targetTypes, false);
			}
			else
			{
				utils().convertType(*firstArgType, *TypeProvider::bytesMemory());
				m_context << Instruction::DUP1 << u256(32) << Instruction::ADD;
				m_context << Instruction::SWAP1 << Instruction::MLOAD;
				// stack now:  
				utils().abiDecode(targetTypes, true);
			}
			break;
		}
		case FunctionType::Kind::GasLeft:
			m_context << Instruction::GAS;
			break;
		case FunctionType::Kind::MetaType:
			// No code to generate.
			break;
		}
	}
	return false;
}
bool ExpressionCompiler::visit(FunctionCallOptions const& _functionCallOptions)
{
	_functionCallOptions.expression().accept(*this);
	// Desired Stack: [salt], [gas], [value]
	enum Option { Salt, Gas, Value };
	vector