/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
/**
* @author Christian
* @date 2014
* Solidity data types
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace dev;
using namespace dev::solidity;
namespace
{
unsigned int mostSignificantBit(bigint const& _number)
{
#if BOOST_VERSION < 105500
solAssert(_number > 0, "");
bigint number = _number;
unsigned int result = 0;
while (number != 0)
{
number >>= 1;
++result;
}
return --result;
#else
return boost::multiprecision::msb(_number);
#endif
}
/// Check whether (_base ** _exp) fits into 4096 bits.
bool fitsPrecisionExp(bigint const& _base, bigint const& _exp)
{
if (_base == 0)
return true;
solAssert(_base > 0, "");
size_t const bitsMax = 4096;
unsigned mostSignificantBaseBit = mostSignificantBit(_base);
if (mostSignificantBaseBit == 0) // _base == 1
return true;
if (mostSignificantBaseBit > bitsMax) // _base >= 2 ^ 4096
return false;
bigint bitsNeeded = _exp * (mostSignificantBaseBit + 1);
return bitsNeeded <= bitsMax;
}
/// Checks whether _mantissa * (X ** _exp) fits into 4096 bits,
/// where X is given indirectly via _log2OfBase = log2(X).
bool fitsPrecisionBaseX(
bigint const& _mantissa,
double _log2OfBase,
uint32_t _exp
)
{
if (_mantissa == 0)
return true;
solAssert(_mantissa > 0, "");
size_t const bitsMax = 4096;
unsigned mostSignificantMantissaBit = mostSignificantBit(_mantissa);
if (mostSignificantMantissaBit > bitsMax) // _mantissa >= 2 ^ 4096
return false;
bigint bitsNeeded = mostSignificantMantissaBit + bigint(floor(double(_exp) * _log2OfBase)) + 1;
return bitsNeeded <= bitsMax;
}
/// Checks whether _mantissa * (10 ** _expBase10) fits into 4096 bits.
bool fitsPrecisionBase10(bigint const& _mantissa, uint32_t _expBase10)
{
double const log2Of10AwayFromZero = 3.3219280948873624;
return fitsPrecisionBaseX(_mantissa, log2Of10AwayFromZero, _expBase10);
}
/// Checks whether _mantissa * (2 ** _expBase10) fits into 4096 bits.
bool fitsPrecisionBase2(bigint const& _mantissa, uint32_t _expBase2)
{
return fitsPrecisionBaseX(_mantissa, 1.0, _expBase2);
}
}
void StorageOffsets::computeOffsets(TypePointers const& _types)
{
bigint slotOffset = 0;
unsigned byteOffset = 0;
map> offsets;
for (size_t i = 0; i < _types.size(); ++i)
{
TypePointer const& type = _types[i];
if (!type->canBeStored())
continue;
if (byteOffset + type->storageBytes() > 32)
{
// would overflow, go to next slot
++slotOffset;
byteOffset = 0;
}
if (slotOffset >= bigint(1) << 256)
BOOST_THROW_EXCEPTION(Error(Error::Type::TypeError) << errinfo_comment("Object too large for storage."));
offsets[i] = make_pair(u256(slotOffset), byteOffset);
solAssert(type->storageSize() >= 1, "Invalid storage size.");
if (type->storageSize() == 1 && byteOffset + type->storageBytes() <= 32)
byteOffset += type->storageBytes();
else
{
slotOffset += type->storageSize();
byteOffset = 0;
}
}
if (byteOffset > 0)
++slotOffset;
if (slotOffset >= bigint(1) << 256)
BOOST_THROW_EXCEPTION(Error(Error::Type::TypeError) << errinfo_comment("Object too large for storage."));
m_storageSize = u256(slotOffset);
swap(m_offsets, offsets);
}
pair const* StorageOffsets::offset(size_t _index) const
{
if (m_offsets.count(_index))
return &m_offsets.at(_index);
else
return nullptr;
}
MemberList& MemberList::operator=(MemberList&& _other)
{
solAssert(&_other != this, "");
m_memberTypes = move(_other.m_memberTypes);
m_storageOffsets = move(_other.m_storageOffsets);
return *this;
}
void MemberList::combine(MemberList const & _other)
{
m_memberTypes += _other.m_memberTypes;
}
pair const* MemberList::memberStorageOffset(string const& _name) const
{
if (!m_storageOffsets)
{
TypePointers memberTypes;
memberTypes.reserve(m_memberTypes.size());
for (auto const& member: m_memberTypes)
memberTypes.push_back(member.type);
m_storageOffsets.reset(new StorageOffsets());
m_storageOffsets->computeOffsets(memberTypes);
}
for (size_t index = 0; index < m_memberTypes.size(); ++index)
if (m_memberTypes[index].name == _name)
return m_storageOffsets->offset(index);
return nullptr;
}
u256 const& MemberList::storageSize() const
{
// trigger lazy computation
memberStorageOffset("");
return m_storageOffsets->storageSize();
}
/// Helper functions for type identifier
namespace
{
string parenthesizeIdentifier(string const& _internal)
{
return "(" + _internal + ")";
}
template
string identifierList(Range const&& _list)
{
return parenthesizeIdentifier(boost::algorithm::join(_list, ","));
}
string richIdentifier(TypePointer const& _type)
{
return _type ? _type->richIdentifier() : "";
}
string identifierList(vector const& _list)
{
return identifierList(_list | boost::adaptors::transformed(richIdentifier));
}
string identifierList(TypePointer const& _type)
{
return parenthesizeIdentifier(richIdentifier(_type));
}
string identifierList(TypePointer const& _type1, TypePointer const& _type2)
{
TypePointers list;
list.push_back(_type1);
list.push_back(_type2);
return identifierList(list);
}
string parenthesizeUserIdentifier(string const& _internal)
{
return parenthesizeIdentifier(_internal);
}
}
string Type::escapeIdentifier(string const& _identifier)
{
string ret = _identifier;
// FIXME: should be _$$$_
boost::algorithm::replace_all(ret, "$", "$$$");
boost::algorithm::replace_all(ret, ",", "_$_");
boost::algorithm::replace_all(ret, "(", "$_");
boost::algorithm::replace_all(ret, ")", "_$");
return ret;
}
TypePointer Type::fromElementaryTypeName(ElementaryTypeNameToken const& _type)
{
solAssert(Token::isElementaryTypeName(_type.token()),
"Expected an elementary type name but got " + _type.toString()
);
Token::Value token = _type.token();
unsigned m = _type.firstNumber();
unsigned n = _type.secondNumber();
switch (token)
{
case Token::IntM:
return make_shared(m, IntegerType::Modifier::Signed);
case Token::UIntM:
return make_shared(m, IntegerType::Modifier::Unsigned);
case Token::BytesM:
return make_shared(m);
case Token::FixedMxN:
return make_shared(m, n, FixedPointType::Modifier::Signed);
case Token::UFixedMxN:
return make_shared(m, n, FixedPointType::Modifier::Unsigned);
case Token::Int:
return make_shared(256, IntegerType::Modifier::Signed);
case Token::UInt:
return make_shared(256, IntegerType::Modifier::Unsigned);
case Token::Fixed:
return make_shared(128, 18, FixedPointType::Modifier::Signed);
case Token::UFixed:
return make_shared(128, 18, FixedPointType::Modifier::Unsigned);
case Token::Byte:
return make_shared(1);
case Token::Address:
return make_shared(160, IntegerType::Modifier::Address);
case Token::Bool:
return make_shared();
case Token::Bytes:
return make_shared(DataLocation::Storage);
case Token::String:
return make_shared(DataLocation::Storage, true);
//no types found
default:
solAssert(
false,
"Unable to convert elementary typename " + _type.toString() + " to type."
);
}
}
TypePointer Type::fromElementaryTypeName(string const& _name)
{
vector nameParts;
boost::split(nameParts, _name, boost::is_any_of(" "));
solAssert(nameParts.size() == 1 || nameParts.size() == 2, "Cannot parse elementary type: " + _name);
Token::Value token;
unsigned short firstNum, secondNum;
tie(token, firstNum, secondNum) = Token::fromIdentifierOrKeyword(nameParts[0]);
auto t = fromElementaryTypeName(ElementaryTypeNameToken(token, firstNum, secondNum));
if (auto* ref = dynamic_cast(t.get()))
{
DataLocation location = DataLocation::Storage;
if (nameParts.size() == 2)
{
if (nameParts[1] == "storage")
location = DataLocation::Storage;
else if (nameParts[1] == "calldata")
location = DataLocation::CallData;
else if (nameParts[1] == "memory")
location = DataLocation::Memory;
else
solAssert(false, "Unknown data location: " + nameParts[1]);
}
return ref->copyForLocation(location, true);
}
else
{
solAssert(nameParts.size() == 1, "Storage location suffix only allowed for reference types");
return t;
}
}
TypePointer Type::forLiteral(Literal const& _literal)
{
switch (_literal.token())
{
case Token::TrueLiteral:
case Token::FalseLiteral:
return make_shared();
case Token::Number:
{
tuple validLiteral = RationalNumberType::isValidLiteral(_literal);
if (get<0>(validLiteral) == true)
return make_shared(get<1>(validLiteral));
else
return TypePointer();
}
case Token::StringLiteral:
return make_shared(_literal);
default:
return TypePointer();
}
}
TypePointer Type::commonType(TypePointer const& _a, TypePointer const& _b)
{
if (!_a || !_b)
return TypePointer();
else if (_a->mobileType() && _b->isImplicitlyConvertibleTo(*_a->mobileType()))
return _a->mobileType();
else if (_b->mobileType() && _a->isImplicitlyConvertibleTo(*_b->mobileType()))
return _b->mobileType();
else
return TypePointer();
}
MemberList const& Type::members(ContractDefinition const* _currentScope) const
{
if (!m_members[_currentScope])
{
MemberList::MemberMap members = nativeMembers(_currentScope);
if (_currentScope)
members += boundFunctions(*this, *_currentScope);
m_members[_currentScope] = unique_ptr(new MemberList(move(members)));
}
return *m_members[_currentScope];
}
MemberList::MemberMap Type::boundFunctions(Type const& _type, ContractDefinition const& _scope)
{
// Normalise data location of type.
TypePointer type = ReferenceType::copyForLocationIfReference(DataLocation::Storage, _type.shared_from_this());
set seenFunctions;
MemberList::MemberMap members;
for (ContractDefinition const* contract: _scope.annotation().linearizedBaseContracts)
for (UsingForDirective const* ufd: contract->usingForDirectives())
{
if (ufd->typeName() && *type != *ReferenceType::copyForLocationIfReference(
DataLocation::Storage,
ufd->typeName()->annotation().type
))
continue;
auto const& library = dynamic_cast(
*ufd->libraryName().annotation().referencedDeclaration
);
for (FunctionDefinition const* function: library.definedFunctions())
{
if (!function->isVisibleAsLibraryMember() || seenFunctions.count(function))
continue;
seenFunctions.insert(function);
FunctionType funType(*function, false);
if (auto fun = funType.asMemberFunction(true, true))
if (_type.isImplicitlyConvertibleTo(*fun->selfType()))
members.push_back(MemberList::Member(function->name(), fun, function));
}
}
return members;
}
namespace
{
bool isValidShiftAndAmountType(Token::Value _operator, Type const& _shiftAmountType)
{
// Disable >>> here.
if (_operator == Token::SHR)
return false;
else if (IntegerType const* otherInt = dynamic_cast(&_shiftAmountType))
return !otherInt->isAddress();
else if (RationalNumberType const* otherRat = dynamic_cast(&_shiftAmountType))
return !otherRat->isFractional() && otherRat->integerType() && !otherRat->integerType()->isSigned();
else
return false;
}
}
IntegerType::IntegerType(unsigned _bits, IntegerType::Modifier _modifier):
m_bits(_bits), m_modifier(_modifier)
{
if (isAddress())
solAssert(m_bits == 160, "");
solAssert(
m_bits > 0 && m_bits <= 256 && m_bits % 8 == 0,
"Invalid bit number for integer type: " + dev::toString(m_bits)
);
}
string IntegerType::richIdentifier() const
{
if (isAddress())
return "t_address";
else
return "t_" + string(isSigned() ? "" : "u") + "int" + std::to_string(numBits());
}
bool IntegerType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
if (_convertTo.category() == category())
{
IntegerType const& convertTo = dynamic_cast(_convertTo);
if (convertTo.m_bits < m_bits)
return false;
if (isAddress())
return convertTo.isAddress();
else if (isSigned())
return convertTo.isSigned();
else
return !convertTo.isSigned() || convertTo.m_bits > m_bits;
}
else if (_convertTo.category() == Category::FixedPoint)
{
FixedPointType const& convertTo = dynamic_cast(_convertTo);
if (isAddress())
return false;
else
return maxValue() <= convertTo.maxIntegerValue() && minValue() >= convertTo.minIntegerValue();
}
else
return false;
}
bool IntegerType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
return _convertTo.category() == category() ||
_convertTo.category() == Category::Contract ||
_convertTo.category() == Category::Enum ||
(_convertTo.category() == Category::FixedBytes && numBits() == dynamic_cast(_convertTo).numBytes() * 8) ||
_convertTo.category() == Category::FixedPoint;
}
TypePointer IntegerType::unaryOperatorResult(Token::Value _operator) const
{
// "delete" is ok for all integer types
if (_operator == Token::Delete)
return make_shared();
// no further unary operators for addresses
else if (isAddress())
return TypePointer();
// for non-address integers, we allow +, -, ++ and --
else if (_operator == Token::Add || _operator == Token::Sub ||
_operator == Token::Inc || _operator == Token::Dec ||
_operator == Token::BitNot)
return shared_from_this();
else
return TypePointer();
}
bool IntegerType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
IntegerType const& other = dynamic_cast(_other);
return other.m_bits == m_bits && other.m_modifier == m_modifier;
}
string IntegerType::toString(bool) const
{
if (isAddress())
return "address";
string prefix = isSigned() ? "int" : "uint";
return prefix + dev::toString(m_bits);
}
u256 IntegerType::literalValue(Literal const* _literal) const
{
solAssert(m_modifier == Modifier::Address, "");
solAssert(_literal, "");
solAssert(_literal->value().substr(0, 2) == "0x", "");
return u256(_literal->value());
}
bigint IntegerType::minValue() const
{
if (isSigned())
return -(bigint(1) << (m_bits - 1));
else
return bigint(0);
}
bigint IntegerType::maxValue() const
{
if (isSigned())
return (bigint(1) << (m_bits - 1)) - 1;
else
return (bigint(1) << m_bits) - 1;
}
TypePointer IntegerType::binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const
{
if (
_other->category() != Category::RationalNumber &&
_other->category() != Category::FixedPoint &&
_other->category() != category()
)
return TypePointer();
if (Token::isShiftOp(_operator))
{
// Shifts are not symmetric with respect to the type
if (isAddress())
return TypePointer();
if (isValidShiftAndAmountType(_operator, *_other))
return shared_from_this();
else
return TypePointer();
}
auto commonType = Type::commonType(shared_from_this(), _other); //might be a integer or fixed point
if (!commonType)
return TypePointer();
// All integer types can be compared
if (Token::isCompareOp(_operator))
return commonType;
if (Token::isBooleanOp(_operator))
return TypePointer();
if (auto intType = dynamic_pointer_cast(commonType))
{
// Nothing else can be done with addresses
if (intType->isAddress())
return TypePointer();
// Signed EXP is not allowed
if (Token::Exp == _operator && intType->isSigned())
return TypePointer();
}
else if (auto fixType = dynamic_pointer_cast(commonType))
if (Token::Exp == _operator)
return TypePointer();
return commonType;
}
MemberList::MemberMap IntegerType::nativeMembers(ContractDefinition const*) const
{
if (isAddress())
return {
{"balance", make_shared(256)},
{"call", make_shared(strings{"bytes memory"}, strings{"bool"}, FunctionType::Kind::BareCall, false, StateMutability::Payable)},
{"callcode", make_shared(strings{"bytes memory"}, strings{"bool"}, FunctionType::Kind::BareCallCode, false, StateMutability::Payable)},
{"delegatecall", make_shared(strings{"bytes memory"}, strings{"bool"}, FunctionType::Kind::BareDelegateCall, false)},
{"send", make_shared(strings{"uint"}, strings{"bool"}, FunctionType::Kind::Send)},
{"transfer", make_shared(strings{"uint"}, strings(), FunctionType::Kind::Transfer)}
};
else
return MemberList::MemberMap();
}
FixedPointType::FixedPointType(unsigned _totalBits, unsigned _fractionalDigits, FixedPointType::Modifier _modifier):
m_totalBits(_totalBits), m_fractionalDigits(_fractionalDigits), m_modifier(_modifier)
{
solAssert(
8 <= m_totalBits && m_totalBits <= 256 && m_totalBits % 8 == 0 && m_fractionalDigits <= 80,
"Invalid bit number(s) for fixed type: " +
dev::toString(_totalBits) + "x" + dev::toString(_fractionalDigits)
);
}
string FixedPointType::richIdentifier() const
{
return "t_" + string(isSigned() ? "" : "u") + "fixed" + std::to_string(m_totalBits) + "x" + std::to_string(m_fractionalDigits);
}
bool FixedPointType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
if (_convertTo.category() == category())
{
FixedPointType const& convertTo = dynamic_cast(_convertTo);
if (convertTo.numBits() < m_totalBits || convertTo.fractionalDigits() < m_fractionalDigits)
return false;
else
return convertTo.maxIntegerValue() >= maxIntegerValue() && convertTo.minIntegerValue() <= minIntegerValue();
}
return false;
}
bool FixedPointType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
return _convertTo.category() == category() ||
(_convertTo.category() == Category::Integer && !dynamic_cast(_convertTo).isAddress());
}
TypePointer FixedPointType::unaryOperatorResult(Token::Value _operator) const
{
switch(_operator)
{
case Token::Delete:
// "delete" is ok for all fixed types
return make_shared();
case Token::Add:
case Token::Sub:
case Token::Inc:
case Token::Dec:
// for fixed, we allow +, -, ++ and --
return shared_from_this();
default:
return TypePointer();
}
}
bool FixedPointType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
FixedPointType const& other = dynamic_cast(_other);
return other.m_totalBits == m_totalBits && other.m_fractionalDigits == m_fractionalDigits && other.m_modifier == m_modifier;
}
string FixedPointType::toString(bool) const
{
string prefix = isSigned() ? "fixed" : "ufixed";
return prefix + dev::toString(m_totalBits) + "x" + dev::toString(m_fractionalDigits);
}
bigint FixedPointType::maxIntegerValue() const
{
bigint maxValue = (bigint(1) << (m_totalBits - (isSigned() ? 1 : 0))) - 1;
return maxValue / boost::multiprecision::pow(bigint(10), m_fractionalDigits);
}
bigint FixedPointType::minIntegerValue() const
{
if (isSigned())
{
bigint minValue = -(bigint(1) << (m_totalBits - (isSigned() ? 1 : 0)));
return minValue / boost::multiprecision::pow(bigint(10), m_fractionalDigits);
}
else
return bigint(0);
}
TypePointer FixedPointType::binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const
{
auto commonType = Type::commonType(shared_from_this(), _other);
if (!commonType)
return TypePointer();
// All fixed types can be compared
if (Token::isCompareOp(_operator))
return commonType;
if (Token::isBitOp(_operator) || Token::isBooleanOp(_operator) || _operator == Token::Exp)
return TypePointer();
return commonType;
}
std::shared_ptr FixedPointType::asIntegerType() const
{
return make_shared(numBits(), isSigned() ? IntegerType::Modifier::Signed : IntegerType::Modifier::Unsigned);
}
tuple RationalNumberType::parseRational(string const& _value)
{
rational value;
try
{
auto radixPoint = find(_value.begin(), _value.end(), '.');
if (radixPoint != _value.end())
{
if (
!all_of(radixPoint + 1, _value.end(), ::isdigit) ||
!all_of(_value.begin(), radixPoint, ::isdigit)
)
return make_tuple(false, rational(0));
// Only decimal notation allowed here, leading zeros would switch to octal.
auto fractionalBegin = find_if_not(
radixPoint + 1,
_value.end(),
[](char const& a) { return a == '0'; }
);
rational numerator;
rational denominator(1);
denominator = bigint(string(fractionalBegin, _value.end()));
denominator /= boost::multiprecision::pow(
bigint(10),
distance(radixPoint + 1, _value.end())
);
numerator = bigint(string(_value.begin(), radixPoint));
value = numerator + denominator;
}
else
value = bigint(_value);
return make_tuple(true, value);
}
catch (...)
{
return make_tuple(false, rational(0));
}
}
tuple RationalNumberType::isValidLiteral(Literal const& _literal)
{
rational value;
try
{
auto expPoint = find(_literal.value().begin(), _literal.value().end(), 'e');
if (expPoint == _literal.value().end())
expPoint = find(_literal.value().begin(), _literal.value().end(), 'E');
if (boost::starts_with(_literal.value(), "0x"))
{
// process as hex
value = bigint(_literal.value());
}
else if (expPoint != _literal.value().end())
{
// Parse mantissa and exponent. Checks numeric limit.
tuple mantissa = parseRational(string(_literal.value().begin(), expPoint));
if (!get<0>(mantissa))
return make_tuple(false, rational(0));
value = get<1>(mantissa);
// 0E... is always zero.
if (value == 0)
return make_tuple(true, rational(0));
bigint exp = bigint(string(expPoint + 1, _literal.value().end()));
if (exp > numeric_limits::max() || exp < numeric_limits::min())
return make_tuple(false, rational(0));
uint32_t expAbs = bigint(abs(exp)).convert_to();
if (exp < 0)
{
if (!fitsPrecisionBase10(abs(value.denominator()), expAbs))
return make_tuple(false, rational(0));
value /= boost::multiprecision::pow(
bigint(10),
expAbs
);
}
else if (exp > 0)
{
if (!fitsPrecisionBase10(abs(value.numerator()), expAbs))
return make_tuple(false, rational(0));
value *= boost::multiprecision::pow(
bigint(10),
expAbs
);
}
}
else
{
// parse as rational number
tuple tmp = parseRational(_literal.value());
if (!get<0>(tmp))
return tmp;
value = get<1>(tmp);
}
}
catch (...)
{
return make_tuple(false, rational(0));
}
switch (_literal.subDenomination())
{
case Literal::SubDenomination::None:
case Literal::SubDenomination::Wei:
case Literal::SubDenomination::Second:
break;
case Literal::SubDenomination::Szabo:
value *= bigint("1000000000000");
break;
case Literal::SubDenomination::Finney:
value *= bigint("1000000000000000");
break;
case Literal::SubDenomination::Ether:
value *= bigint("1000000000000000000");
break;
case Literal::SubDenomination::Minute:
value *= bigint("60");
break;
case Literal::SubDenomination::Hour:
value *= bigint("3600");
break;
case Literal::SubDenomination::Day:
value *= bigint("86400");
break;
case Literal::SubDenomination::Week:
value *= bigint("604800");
break;
case Literal::SubDenomination::Year:
value *= bigint("31536000");
break;
}
return make_tuple(true, value);
}
bool RationalNumberType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
switch (_convertTo.category())
{
case Category::Integer:
{
if (isFractional())
return false;
IntegerType const& targetType = dynamic_cast(_convertTo);
if (targetType.isAddress())
return false;
if (m_value == rational(0))
return true;
unsigned forSignBit = (targetType.isSigned() ? 1 : 0);
if (m_value > rational(0))
{
if (m_value.numerator() <= (u256(-1) >> (256 - targetType.numBits() + forSignBit)))
return true;
return false;
}
if (targetType.isSigned())
{
if (-m_value.numerator() <= (u256(1) << (targetType.numBits() - forSignBit)))
return true;
}
return false;
}
case Category::FixedPoint:
{
if (auto fixed = fixedPointType())
return fixed->isImplicitlyConvertibleTo(_convertTo);
return false;
}
case Category::FixedBytes:
{
FixedBytesType const& fixedBytes = dynamic_cast(_convertTo);
if (isFractional())
return false;
if (integerType())
return fixedBytes.numBytes() * 8 >= integerType()->numBits();
return false;
}
default:
return false;
}
}
bool RationalNumberType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
TypePointer mobType = mobileType();
return
(mobType && mobType->isExplicitlyConvertibleTo(_convertTo)) ||
(!isFractional() && _convertTo.category() == Category::FixedBytes)
;
}
TypePointer RationalNumberType::unaryOperatorResult(Token::Value _operator) const
{
rational value;
switch (_operator)
{
case Token::BitNot:
if (isFractional())
return TypePointer();
value = ~m_value.numerator();
break;
case Token::Add:
value = +(m_value);
break;
case Token::Sub:
value = -(m_value);
break;
case Token::After:
return shared_from_this();
default:
return TypePointer();
}
return make_shared(value);
}
TypePointer RationalNumberType::binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const
{
if (_other->category() == Category::Integer || _other->category() == Category::FixedPoint)
{
auto commonType = Type::commonType(shared_from_this(), _other);
if (!commonType)
return TypePointer();
return commonType->binaryOperatorResult(_operator, _other);
}
else if (_other->category() != category())
return TypePointer();
RationalNumberType const& other = dynamic_cast(*_other);
if (Token::isCompareOp(_operator))
{
// Since we do not have a "BoolConstantType", we have to do the actual comparison
// at runtime and convert to mobile typse first. Such a comparison is not a very common
// use-case and will be optimized away.
TypePointer thisMobile = mobileType();
TypePointer otherMobile = other.mobileType();
if (!thisMobile || !otherMobile)
return TypePointer();
return thisMobile->binaryOperatorResult(_operator, otherMobile);
}
else
{
rational value;
bool fractional = isFractional() || other.isFractional();
switch (_operator)
{
//bit operations will only be enabled for integers and fixed types that resemble integers
case Token::BitOr:
if (fractional)
return TypePointer();
value = m_value.numerator() | other.m_value.numerator();
break;
case Token::BitXor:
if (fractional)
return TypePointer();
value = m_value.numerator() ^ other.m_value.numerator();
break;
case Token::BitAnd:
if (fractional)
return TypePointer();
value = m_value.numerator() & other.m_value.numerator();
break;
case Token::Add:
value = m_value + other.m_value;
break;
case Token::Sub:
value = m_value - other.m_value;
break;
case Token::Mul:
value = m_value * other.m_value;
break;
case Token::Div:
if (other.m_value == rational(0))
return TypePointer();
else
value = m_value / other.m_value;
break;
case Token::Mod:
if (other.m_value == rational(0))
return TypePointer();
else if (fractional)
{
rational tempValue = m_value / other.m_value;
value = m_value - (tempValue.numerator() / tempValue.denominator()) * other.m_value;
}
else
value = m_value.numerator() % other.m_value.numerator();
break;
case Token::Exp:
{
if (other.isFractional())
return TypePointer();
solAssert(other.m_value.denominator() == 1, "");
bigint const& exp = other.m_value.numerator();
// x ** 0 = 1
// for 0, 1 and -1 the size of the exponent doesn't have to be restricted
if (exp == 0)
value = 1;
else if (m_value.numerator() == 0 || m_value == 1)
value = m_value;
else if (m_value == -1)
{
bigint isOdd = abs(exp) & bigint(1);
value = 1 - 2 * isOdd.convert_to();
}
else
{
if (abs(exp) > numeric_limits::max())
return TypePointer(); // This will need too much memory to represent.
uint32_t absExp = bigint(abs(exp)).convert_to();
// Limit size to 4096 bits
if (!fitsPrecisionExp(abs(m_value.numerator()), absExp) || !fitsPrecisionExp(abs(m_value.denominator()), absExp))
return TypePointer();
static auto const optimizedPow = [](bigint const& _base, uint32_t _exponent) -> bigint {
if (_base == 1)
return 1;
else if (_base == -1)
return 1 - 2 * int(_exponent & 1);
else
return boost::multiprecision::pow(_base, _exponent);
};
bigint numerator = optimizedPow(m_value.numerator(), absExp);
bigint denominator = optimizedPow(m_value.denominator(), absExp);
if (exp >= 0)
value = rational(numerator, denominator);
else
// invert
value = rational(denominator, numerator);
}
break;
}
case Token::SHL:
{
if (fractional)
return TypePointer();
else if (other.m_value < 0)
return TypePointer();
else if (other.m_value > numeric_limits::max())
return TypePointer();
if (m_value.numerator() == 0)
value = 0;
else
{
uint32_t exponent = other.m_value.numerator().convert_to();
if (!fitsPrecisionBase2(abs(m_value.numerator()), exponent))
return TypePointer();
value = m_value.numerator() * boost::multiprecision::pow(bigint(2), exponent);
}
break;
}
// NOTE: we're using >> (SAR) to denote right shifting. The type of the LValue
// determines the resulting type and the type of shift (SAR or SHR).
case Token::SAR:
{
if (fractional)
return TypePointer();
else if (other.m_value < 0)
return TypePointer();
else if (other.m_value > numeric_limits::max())
return TypePointer();
if (m_value.numerator() == 0)
value = 0;
else
{
uint32_t exponent = other.m_value.numerator().convert_to();
if (exponent > mostSignificantBit(boost::multiprecision::abs(m_value.numerator())))
value = m_value.numerator() < 0 ? -1 : 0;
else
{
if (m_value.numerator() < 0)
// Add 1 to the negative value before dividing to get a result that is strictly too large,
// then subtract 1 afterwards to round towards negative infinity.
// This is the same algorithm as used in ExpressionCompiler::appendShiftOperatorCode(...).
// To see this note that for negative x, xor(x,all_ones) = (-x-1) and
// therefore xor(div(xor(x,all_ones), exp(2, shift_amount)), all_ones) is
// -(-x - 1) / 2^shift_amount - 1, which is the same as
// (x + 1) / 2^shift_amount - 1.
value = rational((m_value.numerator() + 1) / boost::multiprecision::pow(bigint(2), exponent) - bigint(1), 1);
else
value = rational(m_value.numerator() / boost::multiprecision::pow(bigint(2), exponent), 1);
}
}
break;
}
default:
return TypePointer();
}
// verify that numerator and denominator fit into 4096 bit after every operation
if (value.numerator() != 0 && max(mostSignificantBit(abs(value.numerator())), mostSignificantBit(abs(value.denominator()))) > 4096)
return TypePointer();
return make_shared(value);
}
}
string RationalNumberType::richIdentifier() const
{
return "t_rational_" + m_value.numerator().str() + "_by_" + m_value.denominator().str();
}
bool RationalNumberType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
RationalNumberType const& other = dynamic_cast(_other);
return m_value == other.m_value;
}
string RationalNumberType::bigintToReadableString(dev::bigint const& _num)
{
string str = _num.str();
if (str.size() > 32)
{
int omitted = str.size() - 8;
str = str.substr(0, 4) + "...(" + to_string(omitted) + " digits omitted)..." + str.substr(str.size() - 4, 4);
}
return str;
}
string RationalNumberType::toString(bool) const
{
if (!isFractional())
return "int_const " + bigintToReadableString(m_value.numerator());
string numerator = bigintToReadableString(m_value.numerator());
string denominator = bigintToReadableString(m_value.denominator());
return "rational_const " + numerator + " / " + denominator;
}
u256 RationalNumberType::literalValue(Literal const*) const
{
// We ignore the literal and hope that the type was correctly determined to represent
// its value.
u256 value;
bigint shiftedValue;
if (!isFractional())
shiftedValue = m_value.numerator();
else
{
auto fixed = fixedPointType();
solAssert(fixed, "");
int fractionalDigits = fixed->fractionalDigits();
shiftedValue = m_value.numerator() * boost::multiprecision::pow(bigint(10), fractionalDigits) / m_value.denominator();
}
// we ignore the literal and hope that the type was correctly determined
solAssert(shiftedValue <= u256(-1), "Integer constant too large.");
solAssert(shiftedValue >= -(bigint(1) << 255), "Number constant too small.");
if (m_value >= rational(0))
value = u256(shiftedValue);
else
value = s2u(s256(shiftedValue));
return value;
}
TypePointer RationalNumberType::mobileType() const
{
if (!isFractional())
return integerType();
else
return fixedPointType();
}
shared_ptr RationalNumberType::integerType() const
{
solAssert(!isFractional(), "integerType() called for fractional number.");
bigint value = m_value.numerator();
bool negative = (value < 0);
if (negative) // convert to positive number of same bit requirements
value = ((0 - value) - 1) << 1;
if (value > u256(-1))
return shared_ptr();
else
return make_shared(
max(bytesRequired(value), 1u) * 8,
negative ? IntegerType::Modifier::Signed : IntegerType::Modifier::Unsigned
);
}
shared_ptr RationalNumberType::fixedPointType() const
{
bool negative = (m_value < 0);
unsigned fractionalDigits = 0;
rational value = abs(m_value); // We care about the sign later.
rational maxValue = negative ?
rational(bigint(1) << 255, 1):
rational((bigint(1) << 256) - 1, 1);
while (value * 10 <= maxValue && value.denominator() != 1 && fractionalDigits < 80)
{
value *= 10;
fractionalDigits++;
}
if (value > maxValue)
return shared_ptr();
// This means we round towards zero for positive and negative values.
bigint v = value.numerator() / value.denominator();
if (negative)
// modify value to satisfy bit requirements for negative numbers:
// add one bit for sign and decrement because negative numbers can be larger
v = (v - 1) << 1;
if (v > u256(-1))
return shared_ptr();
unsigned totalBits = max(bytesRequired(v), 1u) * 8;
solAssert(totalBits <= 256, "");
return make_shared(
totalBits, fractionalDigits,
negative ? FixedPointType::Modifier::Signed : FixedPointType::Modifier::Unsigned
);
}
StringLiteralType::StringLiteralType(Literal const& _literal):
m_value(_literal.value())
{
}
bool StringLiteralType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
if (auto fixedBytes = dynamic_cast(&_convertTo))
return size_t(fixedBytes->numBytes()) >= m_value.size();
else if (auto arrayType = dynamic_cast(&_convertTo))
return
arrayType->isByteArray() &&
!(arrayType->dataStoredIn(DataLocation::Storage) && arrayType->isPointer()) &&
!(arrayType->isString() && !isValidUTF8());
else
return false;
}
string StringLiteralType::richIdentifier() const
{
// Since we have to return a valid identifier and the string itself may contain
// anything, we hash it.
return "t_stringliteral_" + toHex(keccak256(m_value).asBytes());
}
bool StringLiteralType::operator==(const Type& _other) const
{
if (_other.category() != category())
return false;
return m_value == dynamic_cast(_other).m_value;
}
std::string StringLiteralType::toString(bool) const
{
size_t invalidSequence;
if (!dev::validateUTF8(m_value, invalidSequence))
return "literal_string (contains invalid UTF-8 sequence at position " + dev::toString(invalidSequence) + ")";
return "literal_string \"" + m_value + "\"";
}
TypePointer StringLiteralType::mobileType() const
{
return make_shared(DataLocation::Memory, true);
}
bool StringLiteralType::isValidUTF8() const
{
return dev::validateUTF8(m_value);
}
FixedBytesType::FixedBytesType(unsigned _bytes): m_bytes(_bytes)
{
solAssert(
m_bytes > 0 && m_bytes <= 32,
"Invalid byte number for fixed bytes type: " + dev::toString(m_bytes)
);
}
bool FixedBytesType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
if (_convertTo.category() != category())
return false;
FixedBytesType const& convertTo = dynamic_cast(_convertTo);
return convertTo.m_bytes >= m_bytes;
}
bool FixedBytesType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
return (_convertTo.category() == Category::Integer && numBytes() * 8 == dynamic_cast(_convertTo).numBits()) ||
_convertTo.category() == Category::FixedPoint ||
_convertTo.category() == category();
}
TypePointer FixedBytesType::unaryOperatorResult(Token::Value _operator) const
{
// "delete" and "~" is okay for FixedBytesType
if (_operator == Token::Delete)
return make_shared();
else if (_operator == Token::BitNot)
return shared_from_this();
return TypePointer();
}
TypePointer FixedBytesType::binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const
{
if (Token::isShiftOp(_operator))
{
if (isValidShiftAndAmountType(_operator, *_other))
return shared_from_this();
else
return TypePointer();
}
auto commonType = dynamic_pointer_cast(Type::commonType(shared_from_this(), _other));
if (!commonType)
return TypePointer();
// FixedBytes can be compared and have bitwise operators applied to them
if (Token::isCompareOp(_operator) || Token::isBitOp(_operator))
return commonType;
return TypePointer();
}
MemberList::MemberMap FixedBytesType::nativeMembers(const ContractDefinition*) const
{
return MemberList::MemberMap{MemberList::Member{"length", make_shared(8)}};
}
string FixedBytesType::richIdentifier() const
{
return "t_bytes" + std::to_string(m_bytes);
}
bool FixedBytesType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
FixedBytesType const& other = dynamic_cast(_other);
return other.m_bytes == m_bytes;
}
u256 BoolType::literalValue(Literal const* _literal) const
{
solAssert(_literal, "");
if (_literal->token() == Token::TrueLiteral)
return u256(1);
else if (_literal->token() == Token::FalseLiteral)
return u256(0);
else
solAssert(false, "Bool type constructed from non-boolean literal.");
}
TypePointer BoolType::unaryOperatorResult(Token::Value _operator) const
{
if (_operator == Token::Delete)
return make_shared();
return (_operator == Token::Not) ? shared_from_this() : TypePointer();
}
TypePointer BoolType::binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const
{
if (category() != _other->category())
return TypePointer();
if (_operator == Token::Equal || _operator == Token::NotEqual || _operator == Token::And || _operator == Token::Or)
return _other;
else
return TypePointer();
}
bool ContractType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
if (*this == _convertTo)
return true;
if (_convertTo.category() == Category::Contract)
{
auto const& bases = contractDefinition().annotation().linearizedBaseContracts;
if (m_super && bases.size() <= 1)
return false;
return find(
m_super ? ++bases.begin() : bases.begin(), bases.end(),
&dynamic_cast(_convertTo).contractDefinition()
) != bases.end();
}
return false;
}
bool ContractType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
return
isImplicitlyConvertibleTo(_convertTo) ||
_convertTo == IntegerType(160, IntegerType::Modifier::Address);
}
bool ContractType::isPayable() const
{
auto fallbackFunction = m_contract.fallbackFunction();
return fallbackFunction && fallbackFunction->isPayable();
}
TypePointer ContractType::unaryOperatorResult(Token::Value _operator) const
{
if (isSuper())
return TypePointer{};
return _operator == Token::Delete ? make_shared() : TypePointer();
}
TypePointer ReferenceType::unaryOperatorResult(Token::Value _operator) const
{
if (_operator != Token::Delete)
return TypePointer();
// delete can be used on everything except calldata references or storage pointers
// (storage references are ok)
switch (location())
{
case DataLocation::CallData:
return TypePointer();
case DataLocation::Memory:
return make_shared();
case DataLocation::Storage:
return m_isPointer ? TypePointer() : make_shared();
default:
solAssert(false, "");
}
return TypePointer();
}
TypePointer ReferenceType::copyForLocationIfReference(DataLocation _location, TypePointer const& _type)
{
if (auto type = dynamic_cast(_type.get()))
return type->copyForLocation(_location, false);
return _type;
}
TypePointer ReferenceType::copyForLocationIfReference(TypePointer const& _type) const
{
return copyForLocationIfReference(m_location, _type);
}
string ReferenceType::stringForReferencePart() const
{
switch (m_location)
{
case DataLocation::Storage:
return string("storage ") + (m_isPointer ? "pointer" : "ref");
case DataLocation::CallData:
return "calldata";
case DataLocation::Memory:
return "memory";
}
solAssert(false, "");
return "";
}
string ReferenceType::identifierLocationSuffix() const
{
string id;
switch (location())
{
case DataLocation::Storage:
id += "_storage";
break;
case DataLocation::Memory:
id += "_memory";
break;
case DataLocation::CallData:
id += "_calldata";
break;
default:
solAssert(false, "Unknown location returned by location()");
}
if (isPointer())
id += "_ptr";
return id;
}
bool ArrayType::isImplicitlyConvertibleTo(const Type& _convertTo) const
{
if (_convertTo.category() != category())
return false;
auto& convertTo = dynamic_cast(_convertTo);
if (convertTo.isByteArray() != isByteArray() || convertTo.isString() != isString())
return false;
// memory/calldata to storage can be converted, but only to a direct storage reference
if (convertTo.location() == DataLocation::Storage && location() != DataLocation::Storage && convertTo.isPointer())
return false;
if (convertTo.location() == DataLocation::CallData && location() != convertTo.location())
return false;
if (convertTo.location() == DataLocation::Storage && !convertTo.isPointer())
{
// Less restrictive conversion, since we need to copy anyway.
if (!baseType()->isImplicitlyConvertibleTo(*convertTo.baseType()))
return false;
if (convertTo.isDynamicallySized())
return true;
return !isDynamicallySized() && convertTo.length() >= length();
}
else
{
// Conversion to storage pointer or to memory, we de not copy element-for-element here, so
// require that the base type is the same, not only convertible.
// This disallows assignment of nested dynamic arrays from storage to memory for now.
if (
*copyForLocationIfReference(location(), baseType()) !=
*copyForLocationIfReference(location(), convertTo.baseType())
)
return false;
if (isDynamicallySized() != convertTo.isDynamicallySized())
return false;
// We also require that the size is the same.
if (!isDynamicallySized() && length() != convertTo.length())
return false;
return true;
}
}
bool ArrayType::isExplicitlyConvertibleTo(const Type& _convertTo) const
{
if (isImplicitlyConvertibleTo(_convertTo))
return true;
// allow conversion bytes <-> string
if (_convertTo.category() != category())
return false;
auto& convertTo = dynamic_cast(_convertTo);
if (convertTo.location() != location())
return false;
if (!isByteArray() || !convertTo.isByteArray())
return false;
return true;
}
string ArrayType::richIdentifier() const
{
string id;
if (isString())
id = "t_string";
else if (isByteArray())
id = "t_bytes";
else
{
id = "t_array";
id += identifierList(baseType());
if (isDynamicallySized())
id += "dyn";
else
id += length().str();
}
id += identifierLocationSuffix();
return id;
}
bool ArrayType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
ArrayType const& other = dynamic_cast(_other);
if (
!ReferenceType::operator==(other) ||
other.isByteArray() != isByteArray() ||
other.isString() != isString() ||
other.isDynamicallySized() != isDynamicallySized()
)
return false;
if (*other.baseType() != *baseType())
return false;
return isDynamicallySized() || length() == other.length();
}
bool ArrayType::validForCalldata() const
{
return unlimitedCalldataEncodedSize(true) <= numeric_limits::max();
}
bigint ArrayType::unlimitedCalldataEncodedSize(bool _padded) const
{
if (isDynamicallySized())
return 32;
bigint size = bigint(length()) * (isByteArray() ? 1 : baseType()->calldataEncodedSize(_padded));
size = ((size + 31) / 32) * 32;
return size;
}
unsigned ArrayType::calldataEncodedSize(bool _padded) const
{
bigint size = unlimitedCalldataEncodedSize(_padded);
solAssert(size <= numeric_limits::max(), "Array size does not fit unsigned.");
return unsigned(size);
}
bool ArrayType::isDynamicallyEncoded() const
{
return isDynamicallySized() || baseType()->isDynamicallyEncoded();
}
u256 ArrayType::storageSize() const
{
if (isDynamicallySized())
return 1;
bigint size;
unsigned baseBytes = baseType()->storageBytes();
if (baseBytes == 0)
size = 1;
else if (baseBytes < 32)
{
unsigned itemsPerSlot = 32 / baseBytes;
size = (bigint(length()) + (itemsPerSlot - 1)) / itemsPerSlot;
}
else
size = bigint(length()) * baseType()->storageSize();
if (size >= bigint(1) << 256)
BOOST_THROW_EXCEPTION(Error(Error::Type::TypeError) << errinfo_comment("Array too large for storage."));
return max(1, u256(size));
}
unsigned ArrayType::sizeOnStack() const
{
if (m_location == DataLocation::CallData)
// offset [length] (stack top)
return 1 + (isDynamicallySized() ? 1 : 0);
else
// storage slot or memory offset
// byte offset inside storage value is omitted
return 1;
}
string ArrayType::toString(bool _short) const
{
string ret;
if (isString())
ret = "string";
else if (isByteArray())
ret = "bytes";
else
{
ret = baseType()->toString(_short) + "[";
if (!isDynamicallySized())
ret += length().str();
ret += "]";
}
if (!_short)
ret += " " + stringForReferencePart();
return ret;
}
string ArrayType::canonicalName() const
{
string ret;
if (isString())
ret = "string";
else if (isByteArray())
ret = "bytes";
else
{
ret = baseType()->canonicalName() + "[";
if (!isDynamicallySized())
ret += length().str();
ret += "]";
}
return ret;
}
string ArrayType::signatureInExternalFunction(bool _structsByName) const
{
if (isByteArray())
return canonicalName();
else
{
solAssert(baseType(), "");
return
baseType()->signatureInExternalFunction(_structsByName) +
"[" +
(isDynamicallySized() ? "" : length().str()) +
"]";
}
}
MemberList::MemberMap ArrayType::nativeMembers(ContractDefinition const*) const
{
MemberList::MemberMap members;
if (!isString())
{
members.push_back({"length", make_shared(256)});
if (isDynamicallySized() && location() == DataLocation::Storage)
{
members.push_back({"push", make_shared(
TypePointers{baseType()},
TypePointers{make_shared(256)},
strings{string()},
strings{string()},
isByteArray() ? FunctionType::Kind::ByteArrayPush : FunctionType::Kind::ArrayPush
)});
members.push_back({"pop", make_shared(
TypePointers{},
TypePointers{},
strings{string()},
strings{string()},
FunctionType::Kind::ArrayPop
)});
}
}
return members;
}
TypePointer ArrayType::encodingType() const
{
if (location() == DataLocation::Storage)
return make_shared(256);
else
return this->copyForLocation(DataLocation::Memory, true);
}
TypePointer ArrayType::decodingType() const
{
if (location() == DataLocation::Storage)
return make_shared(256);
else
return shared_from_this();
}
TypePointer ArrayType::interfaceType(bool _inLibrary) const
{
// Note: This has to fulfill canBeUsedExternally(_inLibrary) == !!interfaceType(_inLibrary)
if (_inLibrary && location() == DataLocation::Storage)
return shared_from_this();
if (m_arrayKind != ArrayKind::Ordinary)
return this->copyForLocation(DataLocation::Memory, true);
TypePointer baseExt = m_baseType->interfaceType(_inLibrary);
if (!baseExt)
return TypePointer();
if (isDynamicallySized())
return make_shared(DataLocation::Memory, baseExt);
else
return make_shared(DataLocation::Memory, baseExt, m_length);
}
bool ArrayType::canBeUsedExternally(bool _inLibrary) const
{
// Note: This has to fulfill canBeUsedExternally(_inLibrary) == !!interfaceType(_inLibrary)
if (_inLibrary && location() == DataLocation::Storage)
return true;
else if (m_arrayKind != ArrayKind::Ordinary)
return true;
else if (!m_baseType->canBeUsedExternally(_inLibrary))
return false;
else
return true;
}
u256 ArrayType::memorySize() const
{
solAssert(!isDynamicallySized(), "");
solAssert(m_location == DataLocation::Memory, "");
bigint size = bigint(m_length) * m_baseType->memoryHeadSize();
solAssert(size <= numeric_limits::max(), "Array size does not fit u256.");
return u256(size);
}
TypePointer ArrayType::copyForLocation(DataLocation _location, bool _isPointer) const
{
auto copy = make_shared(_location);
copy->m_isPointer = _isPointer;
copy->m_arrayKind = m_arrayKind;
copy->m_baseType = copy->copyForLocationIfReference(m_baseType);
copy->m_hasDynamicLength = m_hasDynamicLength;
copy->m_length = m_length;
return copy;
}
string ContractType::richIdentifier() const
{
return (m_super ? "t_super" : "t_contract") + parenthesizeUserIdentifier(m_contract.name()) + std::to_string(m_contract.id());
}
bool ContractType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
ContractType const& other = dynamic_cast(_other);
return other.m_contract == m_contract && other.m_super == m_super;
}
string ContractType::toString(bool) const
{
return
string(m_contract.isLibrary() ? "library " : "contract ") +
string(m_super ? "super " : "") +
m_contract.name();
}
string ContractType::canonicalName() const
{
return m_contract.annotation().canonicalName;
}
MemberList::MemberMap ContractType::nativeMembers(ContractDefinition const* _contract) const
{
MemberList::MemberMap members;
solAssert(_contract, "");
if (m_super)
{
// add the most derived of all functions which are visible in derived contracts
auto bases = m_contract.annotation().linearizedBaseContracts;
solAssert(bases.size() >= 1, "linearizedBaseContracts should at least contain the most derived contract.");
// `sliced(1, ...)` ignores the most derived contract, which should not be searchable from `super`.
for (ContractDefinition const* base: bases | boost::adaptors::sliced(1, bases.size()))
for (FunctionDefinition const* function: base->definedFunctions())
{
if (!function->isVisibleInDerivedContracts())
continue;
auto functionType = make_shared(*function, true);
bool functionWithEqualArgumentsFound = false;
for (auto const& member: members)
{
if (member.name != function->name())
continue;
auto memberType = dynamic_cast(member.type.get());
solAssert(!!memberType, "Override changes type.");
if (!memberType->hasEqualArgumentTypes(*functionType))
continue;
functionWithEqualArgumentsFound = true;
break;
}
if (!functionWithEqualArgumentsFound)
members.push_back(MemberList::Member(
function->name(),
functionType,
function
));
}
}
else if (!m_contract.isLibrary())
{
for (auto const& it: m_contract.interfaceFunctions())
members.push_back(MemberList::Member(
it.second->declaration().name(),
it.second->asMemberFunction(m_contract.isLibrary()),
&it.second->declaration()
));
}
return members;
}
shared_ptr const& ContractType::newExpressionType() const
{
if (!m_constructorType)
m_constructorType = FunctionType::newExpressionType(m_contract);
return m_constructorType;
}
vector> ContractType::stateVariables() const
{
vector variables;
for (ContractDefinition const* contract: boost::adaptors::reverse(m_contract.annotation().linearizedBaseContracts))
for (VariableDeclaration const* variable: contract->stateVariables())
if (!variable->isConstant())
variables.push_back(variable);
TypePointers types;
for (auto variable: variables)
types.push_back(variable->annotation().type);
StorageOffsets offsets;
offsets.computeOffsets(types);
vector> variablesAndOffsets;
for (size_t index = 0; index < variables.size(); ++index)
if (auto const* offset = offsets.offset(index))
variablesAndOffsets.push_back(make_tuple(variables[index], offset->first, offset->second));
return variablesAndOffsets;
}
bool StructType::isImplicitlyConvertibleTo(const Type& _convertTo) const
{
if (_convertTo.category() != category())
return false;
auto& convertTo = dynamic_cast(_convertTo);
// memory/calldata to storage can be converted, but only to a direct storage reference
if (convertTo.location() == DataLocation::Storage && location() != DataLocation::Storage && convertTo.isPointer())
return false;
if (convertTo.location() == DataLocation::CallData && location() != convertTo.location())
return false;
return this->m_struct == convertTo.m_struct;
}
string StructType::richIdentifier() const
{
return "t_struct" + parenthesizeUserIdentifier(m_struct.name()) + std::to_string(m_struct.id()) + identifierLocationSuffix();
}
bool StructType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
StructType const& other = dynamic_cast(_other);
return ReferenceType::operator==(other) && other.m_struct == m_struct;
}
unsigned StructType::calldataEncodedSize(bool _padded) const
{
unsigned size = 0;
for (auto const& member: members(nullptr))
if (!member.type->canLiveOutsideStorage())
return 0;
else
{
unsigned memberSize = member.type->calldataEncodedSize(_padded);
if (memberSize == 0)
return 0;
size += memberSize;
}
return size;
}
bool StructType::isDynamicallyEncoded() const
{
solAssert(!recursive(), "");
for (auto t: memoryMemberTypes())
{
solAssert(t, "Parameter should have external type.");
t = t->interfaceType(false);
if (t->isDynamicallyEncoded())
return true;
}
return false;
}
u256 StructType::memorySize() const
{
u256 size;
for (auto const& t: memoryMemberTypes())
size += t->memoryHeadSize();
return size;
}
u256 StructType::storageSize() const
{
return max(1, members(nullptr).storageSize());
}
string StructType::toString(bool _short) const
{
string ret = "struct " + m_struct.annotation().canonicalName;
if (!_short)
ret += " " + stringForReferencePart();
return ret;
}
MemberList::MemberMap StructType::nativeMembers(ContractDefinition const*) const
{
MemberList::MemberMap members;
for (ASTPointer const& variable: m_struct.members())
{
TypePointer type = variable->annotation().type;
solAssert(type, "");
// Skip all mapping members if we are not in storage.
if (location() != DataLocation::Storage && !type->canLiveOutsideStorage())
continue;
members.push_back(MemberList::Member(
variable->name(),
copyForLocationIfReference(type),
variable.get())
);
}
return members;
}
TypePointer StructType::interfaceType(bool _inLibrary) const
{
if (!canBeUsedExternally(_inLibrary))
return TypePointer();
// Has to fulfill canBeUsedExternally(_inLibrary) == !!interfaceType(_inLibrary)
if (_inLibrary && location() == DataLocation::Storage)
return shared_from_this();
else
return copyForLocation(DataLocation::Memory, true);
}
bool StructType::canBeUsedExternally(bool _inLibrary) const
{
if (_inLibrary && location() == DataLocation::Storage)
return true;
else if (recursive())
return false;
else
{
// Check that all members have interface types.
// We pass "false" to canBeUsedExternally (_inLibrary), because this struct will be
// passed by value and thus the encoding does not differ, but it will disallow
// mappings.
for (auto const& var: m_struct.members())
if (!var->annotation().type->canBeUsedExternally(false))
return false;
}
return true;
}
TypePointer StructType::copyForLocation(DataLocation _location, bool _isPointer) const
{
auto copy = make_shared(m_struct, _location);
copy->m_isPointer = _isPointer;
return copy;
}
string StructType::signatureInExternalFunction(bool _structsByName) const
{
if (_structsByName)
return canonicalName();
else
{
TypePointers memberTypes = memoryMemberTypes();
auto memberTypeStrings = memberTypes | boost::adaptors::transformed([&](TypePointer _t) -> string
{
solAssert(_t, "Parameter should have external type.");
auto t = _t->interfaceType(_structsByName);
solAssert(t, "");
return t->signatureInExternalFunction(_structsByName);
});
return "(" + boost::algorithm::join(memberTypeStrings, ",") + ")";
}
}
string StructType::canonicalName() const
{
return m_struct.annotation().canonicalName;
}
FunctionTypePointer StructType::constructorType() const
{
TypePointers paramTypes;
strings paramNames;
for (auto const& member: members(nullptr))
{
if (!member.type->canLiveOutsideStorage())
continue;
paramNames.push_back(member.name);
paramTypes.push_back(copyForLocationIfReference(DataLocation::Memory, member.type));
}
return make_shared(
paramTypes,
TypePointers{copyForLocation(DataLocation::Memory, false)},
paramNames,
strings(),
FunctionType::Kind::Internal
);
}
pair const& StructType::storageOffsetsOfMember(string const& _name) const
{
auto const* offsets = members(nullptr).memberStorageOffset(_name);
solAssert(offsets, "Storage offset of non-existing member requested.");
return *offsets;
}
u256 StructType::memoryOffsetOfMember(string const& _name) const
{
u256 offset;
for (auto const& member: members(nullptr))
if (member.name == _name)
return offset;
else
offset += member.type->memoryHeadSize();
solAssert(false, "Member not found in struct.");
return 0;
}
TypePointers StructType::memoryMemberTypes() const
{
TypePointers types;
for (ASTPointer const& variable: m_struct.members())
if (variable->annotation().type->canLiveOutsideStorage())
types.push_back(variable->annotation().type);
return types;
}
set StructType::membersMissingInMemory() const
{
set missing;
for (ASTPointer const& variable: m_struct.members())
if (!variable->annotation().type->canLiveOutsideStorage())
missing.insert(variable->name());
return missing;
}
bool StructType::recursive() const
{
if (!m_recursive.is_initialized())
{
auto visitor = [&](StructDefinition const& _struct, CycleDetector& _cycleDetector, size_t /*_depth*/)
{
for (ASTPointer const& variable: _struct.members())
{
Type const* memberType = variable->annotation().type.get();
while (dynamic_cast(memberType))
memberType = dynamic_cast(memberType)->baseType().get();
if (StructType const* innerStruct = dynamic_cast(memberType))
if (_cycleDetector.run(innerStruct->structDefinition()))
return;
}
};
m_recursive = (CycleDetector(visitor).run(structDefinition()) != nullptr);
}
return *m_recursive;
}
TypePointer EnumType::unaryOperatorResult(Token::Value _operator) const
{
return _operator == Token::Delete ? make_shared() : TypePointer();
}
string EnumType::richIdentifier() const
{
return "t_enum" + parenthesizeUserIdentifier(m_enum.name()) + std::to_string(m_enum.id());
}
bool EnumType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
EnumType const& other = dynamic_cast(_other);
return other.m_enum == m_enum;
}
unsigned EnumType::storageBytes() const
{
size_t elements = numberOfMembers();
if (elements <= 1)
return 1;
else
return dev::bytesRequired(elements - 1);
}
string EnumType::toString(bool) const
{
return string("enum ") + m_enum.annotation().canonicalName;
}
string EnumType::canonicalName() const
{
return m_enum.annotation().canonicalName;
}
size_t EnumType::numberOfMembers() const
{
return m_enum.members().size();
};
bool EnumType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
return _convertTo == *this || _convertTo.category() == Category::Integer;
}
unsigned EnumType::memberValue(ASTString const& _member) const
{
unsigned index = 0;
for (ASTPointer const& decl: m_enum.members())
{
if (decl->name() == _member)
return index;
++index;
}
solAssert(false, "Requested unknown enum value " + _member);
}
bool TupleType::isImplicitlyConvertibleTo(Type const& _other) const
{
if (auto tupleType = dynamic_cast(&_other))
{
TypePointers const& targets = tupleType->components();
if (targets.empty())
return components().empty();
if (components().size() != targets.size())
return false;
for (size_t i = 0; i < targets.size(); ++i)
if (!components()[i] && targets[i])
return false;
else if (components()[i] && targets[i] && !components()[i]->isImplicitlyConvertibleTo(*targets[i]))
return false;
return true;
}
else
return false;
}
string TupleType::richIdentifier() const
{
return "t_tuple" + identifierList(components());
}
bool TupleType::operator==(Type const& _other) const
{
if (auto tupleType = dynamic_cast(&_other))
return components() == tupleType->components();
else
return false;
}
string TupleType::toString(bool _short) const
{
if (components().empty())
return "tuple()";
string str = "tuple(";
for (auto const& t: components())
str += (t ? t->toString(_short) : "") + ",";
str.pop_back();
return str + ")";
}
u256 TupleType::storageSize() const
{
solAssert(false, "Storage size of non-storable tuple type requested.");
}
unsigned TupleType::sizeOnStack() const
{
unsigned size = 0;
for (auto const& t: components())
size += t ? t->sizeOnStack() : 0;
return size;
}
TypePointer TupleType::mobileType() const
{
TypePointers mobiles;
for (auto const& c: components())
{
if (c)
{
auto mt = c->mobileType();
if (!mt)
return TypePointer();
mobiles.push_back(mt);
}
else
mobiles.push_back(TypePointer());
}
return make_shared(mobiles);
}
TypePointer TupleType::closestTemporaryType(TypePointer const& _targetType) const
{
solAssert(!!_targetType, "");
TypePointers const& targetComponents = dynamic_cast(*_targetType).components();
bool fillRight = !targetComponents.empty() && (!targetComponents.back() || targetComponents.front());
TypePointers tempComponents(targetComponents.size());
for (size_t i = 0; i < min(targetComponents.size(), components().size()); ++i)
{
size_t si = fillRight ? i : components().size() - i - 1;
size_t ti = fillRight ? i : targetComponents.size() - i - 1;
if (components()[si] && targetComponents[ti])
{
tempComponents[ti] = components()[si]->closestTemporaryType(targetComponents[ti]);
solAssert(tempComponents[ti], "");
}
}
return make_shared(tempComponents);
}
FunctionType::FunctionType(FunctionDefinition const& _function, bool _isInternal):
m_kind(_isInternal ? Kind::Internal : Kind::External),
m_stateMutability(_function.stateMutability()),
m_declaration(&_function)
{
if (_isInternal && m_stateMutability == StateMutability::Payable)
m_stateMutability = StateMutability::NonPayable;
for (ASTPointer const& var: _function.parameters())
{
m_parameterNames.push_back(var->name());
m_parameterTypes.push_back(var->annotation().type);
}
for (ASTPointer const& var: _function.returnParameters())
{
m_returnParameterNames.push_back(var->name());
m_returnParameterTypes.push_back(var->annotation().type);
}
}
FunctionType::FunctionType(VariableDeclaration const& _varDecl):
m_kind(Kind::External),
m_stateMutability(StateMutability::View),
m_declaration(&_varDecl)
{
auto returnType = _varDecl.annotation().type;
while (true)
{
if (auto mappingType = dynamic_cast(returnType.get()))
{
m_parameterTypes.push_back(mappingType->keyType());
m_parameterNames.push_back("");
returnType = mappingType->valueType();
}
else if (auto arrayType = dynamic_cast(returnType.get()))
{
if (arrayType->isByteArray())
// Return byte arrays as as whole.
break;
returnType = arrayType->baseType();
m_parameterNames.push_back("");
m_parameterTypes.push_back(make_shared(256));
}
else
break;
}
if (auto structType = dynamic_cast(returnType.get()))
{
for (auto const& member: structType->members(nullptr))
{
solAssert(member.type, "");
if (member.type->category() != Category::Mapping)
{
if (auto arrayType = dynamic_cast(member.type.get()))
if (!arrayType->isByteArray())
continue;
m_returnParameterTypes.push_back(ReferenceType::copyForLocationIfReference(
DataLocation::Memory,
member.type
));
m_returnParameterNames.push_back(member.name);
}
}
}
else
{
m_returnParameterTypes.push_back(ReferenceType::copyForLocationIfReference(
DataLocation::Memory,
returnType
));
m_returnParameterNames.push_back("");
}
}
FunctionType::FunctionType(EventDefinition const& _event):
m_kind(Kind::Event),
m_stateMutability(StateMutability::NonPayable),
m_declaration(&_event)
{
for (ASTPointer const& var: _event.parameters())
{
m_parameterNames.push_back(var->name());
m_parameterTypes.push_back(var->annotation().type);
}
}
FunctionType::FunctionType(FunctionTypeName const& _typeName):
m_kind(_typeName.visibility() == VariableDeclaration::Visibility::External ? Kind::External : Kind::Internal),
m_stateMutability(_typeName.stateMutability())
{
if (_typeName.isPayable())
solAssert(m_kind == Kind::External, "Internal payable function type used.");
for (auto const& t: _typeName.parameterTypes())
{
solAssert(t->annotation().type, "Type not set for parameter.");
if (m_kind == Kind::External)
solAssert(
t->annotation().type->canBeUsedExternally(false),
"Internal type used as parameter for external function."
);
m_parameterTypes.push_back(t->annotation().type);
}
for (auto const& t: _typeName.returnParameterTypes())
{
solAssert(t->annotation().type, "Type not set for return parameter.");
if (m_kind == Kind::External)
solAssert(
t->annotation().type->canBeUsedExternally(false),
"Internal type used as return parameter for external function."
);
m_returnParameterTypes.push_back(t->annotation().type);
}
}
FunctionTypePointer FunctionType::newExpressionType(ContractDefinition const& _contract)
{
FunctionDefinition const* constructor = _contract.constructor();
TypePointers parameters;
strings parameterNames;
StateMutability stateMutability = StateMutability::NonPayable;
solAssert(_contract.contractKind() != ContractDefinition::ContractKind::Interface, "");
if (constructor)
{
for (ASTPointer const& var: constructor->parameters())
{
parameterNames.push_back(var->name());
parameters.push_back(var->annotation().type);
}
if (constructor->isPayable())
stateMutability = StateMutability::Payable;
}
return make_shared(
parameters,
TypePointers{make_shared(_contract)},
parameterNames,
strings{""},
Kind::Creation,
false,
stateMutability
);
}
vector FunctionType::parameterNames() const
{
if (!bound())
return m_parameterNames;
return vector(m_parameterNames.cbegin() + 1, m_parameterNames.cend());
}
TypePointers FunctionType::returnParameterTypesWithoutDynamicTypes() const
{
TypePointers returnParameterTypes = m_returnParameterTypes;
if (m_kind == Kind::External || m_kind == Kind::CallCode || m_kind == Kind::DelegateCall)
for (auto& param: returnParameterTypes)
if (param->isDynamicallySized() && !param->dataStoredIn(DataLocation::Storage))
param = make_shared();
return returnParameterTypes;
}
TypePointers FunctionType::parameterTypes() const
{
if (!bound())
return m_parameterTypes;
return TypePointers(m_parameterTypes.cbegin() + 1, m_parameterTypes.cend());
}
string FunctionType::richIdentifier() const
{
string id = "t_function_";
switch (m_kind)
{
case Kind::Internal: id += "internal"; break;
case Kind::External: id += "external"; break;
case Kind::CallCode: id += "callcode"; break;
case Kind::DelegateCall: id += "delegatecall"; break;
case Kind::BareCall: id += "barecall"; break;
case Kind::BareCallCode: id += "barecallcode"; break;
case Kind::BareDelegateCall: id += "baredelegatecall"; break;
case Kind::Creation: id += "creation"; break;
case Kind::Send: id += "send"; break;
case Kind::Transfer: id += "transfer"; break;
case Kind::SHA3: id += "sha3"; break;
case Kind::Selfdestruct: id += "selfdestruct"; break;
case Kind::Revert: id += "revert"; break;
case Kind::ECRecover: id += "ecrecover"; break;
case Kind::SHA256: id += "sha256"; break;
case Kind::RIPEMD160: id += "ripemd160"; break;
case Kind::Log0: id += "log0"; break;
case Kind::Log1: id += "log1"; break;
case Kind::Log2: id += "log2"; break;
case Kind::Log3: id += "log3"; break;
case Kind::Log4: id += "log4"; break;
case Kind::GasLeft: id += "gasleft"; break;
case Kind::Event: id += "event"; break;
case Kind::SetGas: id += "setgas"; break;
case Kind::SetValue: id += "setvalue"; break;
case Kind::BlockHash: id += "blockhash"; break;
case Kind::AddMod: id += "addmod"; break;
case Kind::MulMod: id += "mulmod"; break;
case Kind::ArrayPush: id += "arraypush"; break;
case Kind::ArrayPop: id += "arraypop"; break;
case Kind::ByteArrayPush: id += "bytearraypush"; break;
case Kind::ObjectCreation: id += "objectcreation"; break;
case Kind::Assert: id += "assert"; break;
case Kind::Require: id += "require"; break;
case Kind::ABIEncode: id += "abiencode"; break;
case Kind::ABIEncodePacked: id += "abiencodepacked"; break;
case Kind::ABIEncodeWithSelector: id += "abiencodewithselector"; break;
case Kind::ABIEncodeWithSignature: id += "abiencodewithsignature"; break;
default: solAssert(false, "Unknown function location."); break;
}
id += "_" + stateMutabilityToString(m_stateMutability);
id += identifierList(m_parameterTypes) + "returns" + identifierList(m_returnParameterTypes);
if (m_gasSet)
id += "gas";
if (m_valueSet)
id += "value";
if (bound())
id += "bound_to" + identifierList(selfType());
return id;
}
bool FunctionType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
FunctionType const& other = dynamic_cast(_other);
if (
m_kind != other.m_kind ||
m_stateMutability != other.stateMutability() ||
m_parameterTypes.size() != other.m_parameterTypes.size() ||
m_returnParameterTypes.size() != other.m_returnParameterTypes.size()
)
return false;
auto typeCompare = [](TypePointer const& _a, TypePointer const& _b) -> bool { return *_a == *_b; };
if (
!equal(m_parameterTypes.cbegin(), m_parameterTypes.cend(), other.m_parameterTypes.cbegin(), typeCompare) ||
!equal(m_returnParameterTypes.cbegin(), m_returnParameterTypes.cend(), other.m_returnParameterTypes.cbegin(), typeCompare)
)
return false;
//@todo this is ugly, but cannot be prevented right now
if (m_gasSet != other.m_gasSet || m_valueSet != other.m_valueSet)
return false;
if (bound() != other.bound())
return false;
if (bound() && *selfType() != *other.selfType())
return false;
return true;
}
bool FunctionType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
if (m_kind == Kind::External && _convertTo.category() == Category::Integer)
{
IntegerType const& convertTo = dynamic_cast(_convertTo);
if (convertTo.isAddress())
return true;
}
return _convertTo.category() == category();
}
TypePointer FunctionType::unaryOperatorResult(Token::Value _operator) const
{
if (_operator == Token::Value::Delete)
return make_shared();
return TypePointer();
}
TypePointer FunctionType::binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const
{
if (_other->category() != category() || !(_operator == Token::Equal || _operator == Token::NotEqual))
return TypePointer();
FunctionType const& other = dynamic_cast(*_other);
if (kind() == Kind::Internal && other.kind() == Kind::Internal && sizeOnStack() == 1 && other.sizeOnStack() == 1)
return commonType(shared_from_this(), _other);
return TypePointer();
}
string FunctionType::canonicalName() const
{
solAssert(m_kind == Kind::External, "");
return "function";
}
string FunctionType::toString(bool _short) const
{
string name = "function (";
for (auto it = m_parameterTypes.begin(); it != m_parameterTypes.end(); ++it)
name += (*it)->toString(_short) + (it + 1 == m_parameterTypes.end() ? "" : ",");
name += ")";
if (m_stateMutability != StateMutability::NonPayable)
name += " " + stateMutabilityToString(m_stateMutability);
if (m_kind == Kind::External)
name += " external";
if (!m_returnParameterTypes.empty())
{
name += " returns (";
for (auto it = m_returnParameterTypes.begin(); it != m_returnParameterTypes.end(); ++it)
name += (*it)->toString(_short) + (it + 1 == m_returnParameterTypes.end() ? "" : ",");
name += ")";
}
return name;
}
unsigned FunctionType::calldataEncodedSize(bool _padded) const
{
unsigned size = storageBytes();
if (_padded)
size = ((size + 31) / 32) * 32;
return size;
}
u256 FunctionType::storageSize() const
{
if (m_kind == Kind::External || m_kind == Kind::Internal)
return 1;
else
solAssert(false, "Storage size of non-storable function type requested.");
}
unsigned FunctionType::storageBytes() const
{
if (m_kind == Kind::External)
return 20 + 4;
else if (m_kind == Kind::Internal)
return 8; // it should really not be possible to create larger programs
else
solAssert(false, "Storage size of non-storable function type requested.");
}
unsigned FunctionType::sizeOnStack() const
{
Kind kind = m_kind;
if (m_kind == Kind::SetGas || m_kind == Kind::SetValue)
{
solAssert(m_returnParameterTypes.size() == 1, "");
kind = dynamic_cast(*m_returnParameterTypes.front()).m_kind;
}
unsigned size = 0;
switch(kind)
{
case Kind::External:
case Kind::CallCode:
case Kind::DelegateCall:
size = 2;
break;
case Kind::BareCall:
case Kind::BareCallCode:
case Kind::BareDelegateCall:
case Kind::Internal:
case Kind::ArrayPush:
case Kind::ArrayPop:
case Kind::ByteArrayPush:
size = 1;
break;
default:
break;
}
if (m_gasSet)
size++;
if (m_valueSet)
size++;
if (bound())
size += m_parameterTypes.front()->sizeOnStack();
return size;
}
FunctionTypePointer FunctionType::interfaceFunctionType() const
{
// Note that m_declaration might also be a state variable!
solAssert(m_declaration, "Declaration needed to determine interface function type.");
bool isLibraryFunction = dynamic_cast(*m_declaration->scope()).isLibrary();
TypePointers paramTypes;
TypePointers retParamTypes;
for (auto type: m_parameterTypes)
{
if (auto ext = type->interfaceType(isLibraryFunction))
paramTypes.push_back(ext);
else
return FunctionTypePointer();
}
for (auto type: m_returnParameterTypes)
{
if (auto ext = type->interfaceType(isLibraryFunction))
retParamTypes.push_back(ext);
else
return FunctionTypePointer();
}
auto variable = dynamic_cast(m_declaration);
if (variable && retParamTypes.empty())
return FunctionTypePointer();
return make_shared(
paramTypes,
retParamTypes,
m_parameterNames,
m_returnParameterNames,
m_kind,
m_arbitraryParameters,
m_stateMutability,
m_declaration
);
}
MemberList::MemberMap FunctionType::nativeMembers(ContractDefinition const*) const
{
switch (m_kind)
{
case Kind::External:
case Kind::Creation:
case Kind::BareCall:
case Kind::BareCallCode:
case Kind::BareDelegateCall:
{
MemberList::MemberMap members;
if (m_kind == Kind::External)
members.push_back(MemberList::Member(
"selector",
make_shared(4)
));
if (m_kind != Kind::BareDelegateCall)
{
if (isPayable())
members.push_back(MemberList::Member(
"value",
make_shared(
parseElementaryTypeVector({"uint"}),
TypePointers{copyAndSetGasOrValue(false, true)},
strings(),
strings(),
Kind::SetValue,
false,
StateMutability::NonPayable,
nullptr,
m_gasSet,
m_valueSet
)
));
}
if (m_kind != Kind::Creation)
members.push_back(MemberList::Member(
"gas",
make_shared(
parseElementaryTypeVector({"uint"}),
TypePointers{copyAndSetGasOrValue(true, false)},
strings(),
strings(),
Kind::SetGas,
false,
StateMutability::NonPayable,
nullptr,
m_gasSet,
m_valueSet
)
));
return members;
}
default:
return MemberList::MemberMap();
}
}
TypePointer FunctionType::encodingType() const
{
// Only external functions can be encoded, internal functions cannot leave code boundaries.
if (m_kind == Kind::External)
return shared_from_this();
else
return TypePointer();
}
TypePointer FunctionType::interfaceType(bool /*_inLibrary*/) const
{
if (m_kind == Kind::External)
return shared_from_this();
else
return TypePointer();
}
bool FunctionType::canTakeArguments(TypePointers const& _argumentTypes, TypePointer const& _selfType) const
{
solAssert(!bound() || _selfType, "");
if (bound() && !_selfType->isImplicitlyConvertibleTo(*selfType()))
return false;
TypePointers paramTypes = parameterTypes();
if (takesArbitraryParameters())
return true;
else if (_argumentTypes.size() != paramTypes.size())
return false;
else
return equal(
_argumentTypes.cbegin(),
_argumentTypes.cend(),
paramTypes.cbegin(),
[](TypePointer const& argumentType, TypePointer const& parameterType)
{
return argumentType->isImplicitlyConvertibleTo(*parameterType);
}
);
}
bool FunctionType::hasEqualArgumentTypes(FunctionType const& _other) const
{
if (m_parameterTypes.size() != _other.m_parameterTypes.size())
return false;
return equal(
m_parameterTypes.cbegin(),
m_parameterTypes.cend(),
_other.m_parameterTypes.cbegin(),
[](TypePointer const& _a, TypePointer const& _b) -> bool { return *_a == *_b; }
);
}
bool FunctionType::isBareCall() const
{
switch (m_kind)
{
case Kind::BareCall:
case Kind::BareCallCode:
case Kind::BareDelegateCall:
case Kind::ECRecover:
case Kind::SHA256:
case Kind::RIPEMD160:
return true;
default:
return false;
}
}
string FunctionType::externalSignature() const
{
solAssert(m_declaration != nullptr, "External signature of function needs declaration");
solAssert(!m_declaration->name().empty(), "Fallback function has no signature.");
bool const inLibrary = dynamic_cast(*m_declaration->scope()).isLibrary();
FunctionTypePointer external = interfaceFunctionType();
solAssert(!!external, "External function type requested.");
auto parameterTypes = external->parameterTypes();
auto typeStrings = parameterTypes | boost::adaptors::transformed([&](TypePointer _t) -> string
{
solAssert(_t, "Parameter should have external type.");
string typeName = _t->signatureInExternalFunction(inLibrary);
if (inLibrary && _t->dataStoredIn(DataLocation::Storage))
typeName += " storage";
return typeName;
});
return m_declaration->name() + "(" + boost::algorithm::join(typeStrings, ",") + ")";
}
u256 FunctionType::externalIdentifier() const
{
return FixedHash<4>::Arith(FixedHash<4>(dev::keccak256(externalSignature())));
}
bool FunctionType::isPure() const
{
// FIXME: replace this with m_stateMutability == StateMutability::Pure once
// the callgraph analyzer is in place
return
m_kind == Kind::SHA3 ||
m_kind == Kind::ECRecover ||
m_kind == Kind::SHA256 ||
m_kind == Kind::RIPEMD160 ||
m_kind == Kind::AddMod ||
m_kind == Kind::MulMod ||
m_kind == Kind::ObjectCreation ||
m_kind == Kind::ABIEncode ||
m_kind == Kind::ABIEncodePacked ||
m_kind == Kind::ABIEncodeWithSelector ||
m_kind == Kind::ABIEncodeWithSignature;
}
TypePointers FunctionType::parseElementaryTypeVector(strings const& _types)
{
TypePointers pointers;
pointers.reserve(_types.size());
for (string const& type: _types)
pointers.push_back(Type::fromElementaryTypeName(type));
return pointers;
}
TypePointer FunctionType::copyAndSetGasOrValue(bool _setGas, bool _setValue) const
{
return make_shared(
m_parameterTypes,
m_returnParameterTypes,
m_parameterNames,
m_returnParameterNames,
m_kind,
m_arbitraryParameters,
m_stateMutability,
m_declaration,
m_gasSet || _setGas,
m_valueSet || _setValue,
m_bound
);
}
FunctionTypePointer FunctionType::asMemberFunction(bool _inLibrary, bool _bound) const
{
if (_bound && m_parameterTypes.empty())
return FunctionTypePointer();
TypePointers parameterTypes;
for (auto const& t: m_parameterTypes)
{
auto refType = dynamic_cast(t.get());
if (refType && refType->location() == DataLocation::CallData)
parameterTypes.push_back(refType->copyForLocation(DataLocation::Memory, true));
else
parameterTypes.push_back(t);
}
Kind kind = m_kind;
if (_inLibrary)
{
solAssert(!!m_declaration, "Declaration has to be available.");
if (!m_declaration->isPublic())
kind = Kind::Internal; // will be inlined
else
kind = Kind::DelegateCall;
}
return make_shared(
parameterTypes,
m_returnParameterTypes,
m_parameterNames,
m_returnParameterNames,
kind,
m_arbitraryParameters,
m_stateMutability,
m_declaration,
m_gasSet,
m_valueSet,
_bound
);
}
TypePointer const& FunctionType::selfType() const
{
solAssert(bound(), "Function is not bound.");
solAssert(m_parameterTypes.size() > 0, "Function has no self type.");
return m_parameterTypes.at(0);
}
ASTPointer FunctionType::documentation() const
{
auto function = dynamic_cast(m_declaration);
if (function)
return function->documentation();
return ASTPointer();
}
bool FunctionType::padArguments() const
{
// No padding only for hash functions, low-level calls and the packed encoding function.
switch (m_kind)
{
case Kind::BareCall:
case Kind::BareCallCode:
case Kind::BareDelegateCall:
case Kind::SHA256:
case Kind::RIPEMD160:
case Kind::SHA3:
case Kind::ABIEncodePacked:
return false;
default:
return true;
}
return true;
}
string MappingType::richIdentifier() const
{
return "t_mapping" + identifierList(m_keyType, m_valueType);
}
bool MappingType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
MappingType const& other = dynamic_cast(_other);
return *other.m_keyType == *m_keyType && *other.m_valueType == *m_valueType;
}
string MappingType::toString(bool _short) const
{
return "mapping(" + keyType()->toString(_short) + " => " + valueType()->toString(_short) + ")";
}
string MappingType::canonicalName() const
{
return "mapping(" + keyType()->canonicalName() + " => " + valueType()->canonicalName() + ")";
}
string TypeType::richIdentifier() const
{
return "t_type" + identifierList(actualType());
}
bool TypeType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
TypeType const& other = dynamic_cast(_other);
return *actualType() == *other.actualType();
}
u256 TypeType::storageSize() const
{
solAssert(false, "Storage size of non-storable type type requested.");
}
unsigned TypeType::sizeOnStack() const
{
if (auto contractType = dynamic_cast(m_actualType.get()))
if (contractType->contractDefinition().isLibrary())
return 1;
return 0;
}
MemberList::MemberMap TypeType::nativeMembers(ContractDefinition const* _currentScope) const
{
MemberList::MemberMap members;
if (m_actualType->category() == Category::Contract)
{
ContractDefinition const& contract = dynamic_cast(*m_actualType).contractDefinition();
bool isBase = false;
if (_currentScope != nullptr)
{
auto const& currentBases = _currentScope->annotation().linearizedBaseContracts;
isBase = (find(currentBases.begin(), currentBases.end(), &contract) != currentBases.end());
}
if (contract.isLibrary())
for (FunctionDefinition const* function: contract.definedFunctions())
if (function->isVisibleAsLibraryMember())
members.push_back(MemberList::Member(
function->name(),
FunctionType(*function).asMemberFunction(true),
function
));
if (isBase)
{
// We are accessing the type of a base contract, so add all public and protected
// members. Note that this does not add inherited functions on purpose.
for (Declaration const* decl: contract.inheritableMembers())
members.push_back(MemberList::Member(decl->name(), decl->type(), decl));
}
else
{
for (auto const& stru: contract.definedStructs())
members.push_back(MemberList::Member(stru->name(), stru->type(), stru));
for (auto const& enu: contract.definedEnums())
members.push_back(MemberList::Member(enu->name(), enu->type(), enu));
}
}
else if (m_actualType->category() == Category::Enum)
{
EnumDefinition const& enumDef = dynamic_cast(*m_actualType).enumDefinition();
auto enumType = make_shared(enumDef);
for (ASTPointer const& enumValue: enumDef.members())
members.push_back(MemberList::Member(enumValue->name(), enumType));
}
return members;
}
ModifierType::ModifierType(const ModifierDefinition& _modifier)
{
TypePointers params;
params.reserve(_modifier.parameters().size());
for (ASTPointer const& var: _modifier.parameters())
params.push_back(var->annotation().type);
swap(params, m_parameterTypes);
}
u256 ModifierType::storageSize() const
{
solAssert(false, "Storage size of non-storable type type requested.");
}
string ModifierType::richIdentifier() const
{
return "t_modifier" + identifierList(m_parameterTypes);
}
bool ModifierType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
ModifierType const& other = dynamic_cast(_other);
if (m_parameterTypes.size() != other.m_parameterTypes.size())
return false;
auto typeCompare = [](TypePointer const& _a, TypePointer const& _b) -> bool { return *_a == *_b; };
if (!equal(m_parameterTypes.cbegin(), m_parameterTypes.cend(),
other.m_parameterTypes.cbegin(), typeCompare))
return false;
return true;
}
string ModifierType::toString(bool _short) const
{
string name = "modifier (";
for (auto it = m_parameterTypes.begin(); it != m_parameterTypes.end(); ++it)
name += (*it)->toString(_short) + (it + 1 == m_parameterTypes.end() ? "" : ",");
return name + ")";
}
string ModuleType::richIdentifier() const
{
return "t_module_" + std::to_string(m_sourceUnit.id());
}
bool ModuleType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
return &m_sourceUnit == &dynamic_cast(_other).m_sourceUnit;
}
MemberList::MemberMap ModuleType::nativeMembers(ContractDefinition const*) const
{
MemberList::MemberMap symbols;
for (auto const& symbolName: m_sourceUnit.annotation().exportedSymbols)
for (Declaration const* symbol: symbolName.second)
symbols.push_back(MemberList::Member(symbolName.first, symbol->type(), symbol));
return symbols;
}
string ModuleType::toString(bool) const
{
return string("module \"") + m_sourceUnit.annotation().path + string("\"");
}
string MagicType::richIdentifier() const
{
switch (m_kind)
{
case Kind::Block:
return "t_magic_block";
case Kind::Message:
return "t_magic_message";
case Kind::Transaction:
return "t_magic_transaction";
case Kind::ABI:
return "t_magic_abi";
default:
solAssert(false, "Unknown kind of magic");
}
return "";
}
bool MagicType::operator==(Type const& _other) const
{
if (_other.category() != category())
return false;
MagicType const& other = dynamic_cast(_other);
return other.m_kind == m_kind;
}
MemberList::MemberMap MagicType::nativeMembers(ContractDefinition const*) const
{
switch (m_kind)
{
case Kind::Block:
return MemberList::MemberMap({
{"coinbase", make_shared(160, IntegerType::Modifier::Address)},
{"timestamp", make_shared(256)},
{"blockhash", make_shared(strings{"uint"}, strings{"bytes32"}, FunctionType::Kind::BlockHash, false, StateMutability::View)},
{"difficulty", make_shared(256)},
{"number", make_shared(256)},
{"gaslimit", make_shared(256)}
});
case Kind::Message:
return MemberList::MemberMap({
{"sender", make_shared(160, IntegerType::Modifier::Address)},
{"gas", make_shared(256)},
{"value", make_shared(256)},
{"data", make_shared(DataLocation::CallData)},
{"sig", make_shared(4)}
});
case Kind::Transaction:
return MemberList::MemberMap({
{"origin", make_shared(160, IntegerType::Modifier::Address)},
{"gasprice", make_shared(256)}
});
case Kind::ABI:
return MemberList::MemberMap({
{"encode", make_shared(
TypePointers(),
TypePointers{make_shared(DataLocation::Memory)},
strings{},
strings{},
FunctionType::Kind::ABIEncode,
true,
StateMutability::Pure
)},
{"encodePacked", make_shared(
TypePointers(),
TypePointers{make_shared(DataLocation::Memory)},
strings{},
strings{},
FunctionType::Kind::ABIEncodePacked,
true,
StateMutability::Pure
)},
{"encodeWithSelector", make_shared(
TypePointers{make_shared(4)},
TypePointers{make_shared(DataLocation::Memory)},
strings{},
strings{},
FunctionType::Kind::ABIEncodeWithSelector,
true,
StateMutability::Pure
)},
{"encodeWithSignature", make_shared(
TypePointers{make_shared(DataLocation::Memory, true)},
TypePointers{make_shared(DataLocation::Memory)},
strings{},
strings{},
FunctionType::Kind::ABIEncodeWithSignature,
true,
StateMutability::Pure
)}
});
default:
solAssert(false, "Unknown kind of magic.");
}
}
string MagicType::toString(bool) const
{
switch (m_kind)
{
case Kind::Block:
return "block";
case Kind::Message:
return "msg";
case Kind::Transaction:
return "tx";
case Kind::ABI:
return "abi";
default:
solAssert(false, "Unknown kind of magic.");
}
}