/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Foobar is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Foobar. If not, see . */ /** @file main.cpp * @author Gav Wood * @date 2014 * Main test functions. */ #include #include #include #include "RLP.h" #include "Trie.h" #include "State.h" using namespace std; using namespace eth; // TODO: utilise the shared testdata. int main() { /* // Test transaction. bytes tx = fromUserHex("88005401010101010101010101010101010101010101011f0de0b6b3a76400001ce8d4a5100080181c373130a009ba1f10285d4e659568bfcfec85067855c5a3c150100815dad4ef98fd37cf0593828c89db94bd6c64e210a32ef8956eaa81ea9307194996a3b879441f5d"); cout << "TX: " << RLP(tx) << endl; Transaction t(tx); cout << "SENDER: " << hex << t.sender() << endl; bytes sig64 = toBigEndian(t.vrs.r) + toBigEndian(t.vrs.s); cout << "SIG: " << sig64.size() << " " << asHex(sig64) << " " << t.vrs.v << endl; auto msg = t.rlp(false); cout << "TX w/o SIG: " << RLP(msg) << endl; cout << "RLP(TX w/o SIG): " << asHex(t.rlpString(false)) << endl; std::string hmsg = sha3(t.rlpString(false), false); cout << "SHA256(RLP(TX w/o SIG)): 0x" << asHex(hmsg) << endl; bytes privkey = sha3Bytes("123"); secp256k1_start(); { bytes pubkey(65); int pubkeylen = 65; int ret = secp256k1_ecdsa_seckey_verify(privkey.data()); cout << "SEC: " << dec << ret << " " << asHex(privkey) << endl; ret = secp256k1_ecdsa_pubkey_create(pubkey.data(), &pubkeylen, privkey.data(), 1); pubkey.resize(pubkeylen); int good = secp256k1_ecdsa_pubkey_verify(pubkey.data(), pubkey.size()); cout << "PUB: " << dec << ret << " " << pubkeylen << " " << asHex(pubkey) << (good ? " GOOD" : " BAD") << endl; } // Test roundtrip... { bytes sig(64); u256 nonce = 0; int v = 0; int ret = secp256k1_ecdsa_sign_compact((byte const*)hmsg.data(), hmsg.size(), sig.data(), privkey.data(), (byte const*)&nonce, &v); cout << "MYSIG: " << dec << ret << " " << sig.size() << " " << asHex(sig) << " " << v << endl; bytes pubkey(65); int pubkeylen = 65; ret = secp256k1_ecdsa_recover_compact((byte const*)hmsg.data(), hmsg.size(), (byte const*)sig.data(), pubkey.data(), &pubkeylen, 0, v); pubkey.resize(pubkeylen); cout << "MYREC: " << dec << ret << " " << pubkeylen << " " << asHex(pubkey) << endl; } { bytes pubkey(65); int pubkeylen = 65; int ret = secp256k1_ecdsa_recover_compact((byte const*)hmsg.data(), hmsg.size(), (byte const*)sig64.data(), pubkey.data(), &pubkeylen, 0, (int)t.vrs.v - 27); pubkey.resize(pubkeylen); cout << "RECPUB: " << dec << ret << " " << pubkeylen << " " << asHex(pubkey) << endl; cout << "SENDER: " << hex << low160(eth::sha3(bytesConstRef(&pubkey).cropped(1))) << endl; } */ { Trie t; cout << hex << hash256(StringMap({})) << endl; cout << hex << t.hash256() << endl; cout << hex << hash256({{"dog", "puppy"}, {"doe", "reindeer"}}) << endl; t.insert("dog", "puppy"); t.insert("doe", "reindeer"); cout << hex << t.hash256() << endl; cout << RLP(t.rlp()) << endl; cout << asHex(t.rlp()) << endl; } { Trie t; t.insert("dog", "puppy"); assert(t.hash256() == hash256({{"dog", "puppy"}})); assert(t.at("dog") == "puppy"); t.insert("doe", "reindeer"); assert(t.hash256() == hash256({{"dog", "puppy"}, {"doe", "reindeer"}})); assert(t.at("doe") == "reindeer"); assert(t.at("dog") == "puppy"); t.insert("dogglesworth", "cat"); assert(t.hash256() == hash256({{"doe", "reindeer"}, {"dog", "puppy"}, {"dogglesworth", "cat"}})); assert(t.at("doe") == "reindeer"); assert(t.at("dog") == "puppy"); assert(t.at("dogglesworth") == "cat"); t.remove("dogglesworth"); t.remove("doe"); assert(t.at("doe").empty()); assert(t.at("dogglesworth").empty()); assert(t.at("dog") == "puppy"); assert(t.hash256() == hash256({{"dog", "puppy"}})); t.insert("horse", "stallion"); t.insert("do", "verb"); t.insert("doge", "coin"); assert(t.hash256() == hash256({{"dog", "puppy"}, {"horse", "stallion"}, {"do", "verb"}, {"doge", "coin"}})); assert(t.at("doge") == "coin"); assert(t.at("do") == "verb"); assert(t.at("horse") == "stallion"); assert(t.at("dog") == "puppy"); t.remove("horse"); t.remove("do"); t.remove("doge"); assert(t.hash256() == hash256({{"dog", "puppy"}})); assert(t.at("dog") == "puppy"); t.remove("dog"); for (int a = 0; a < 20; ++a) { StringMap m; for (int i = 0; i < 20; ++i) { auto k = randomWord(); auto v = toString(i); m.insert(make_pair(k, v)); t.insert(k, v); assert(hash256(m) == t.hash256()); } while (!m.empty()) { auto k = m.begin()->first; t.remove(k); m.erase(k); assert(hash256(m) == t.hash256()); } } } // int of value 15 assert(RLP("\x0f") == 15); assert(asString(rlp(15)) == "\x0f"); // 3-character string assert(RLP("\x43""dog") == "dog"); assert(asString(rlp("dog")) == "\x43""dog"); // 2-item list RLP twoItemList("\x82\x0f\x43""dog"); assert(twoItemList.itemCount() == 2); assert(twoItemList[0] == 15); assert(twoItemList[1] == "dog"); assert(asString(rlpList(15, "dog")) == "\x82\x0f\x43""dog"); // 1-byte (8-bit) int assert(RLP("\x18\x45") == 69); assert(asString(rlp(69)) == "\x18\x45"); // 2-byte (16-bit) int assert(RLP("\x19\x01\x01") == 257); assert(asString(rlp(257)) == "\x19\x01\x01"); // 32-byte (256-bit) int assert(RLP("\x37\x10\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f") == bigint("0x100102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f")); assert(asString(rlp(bigint("0x100102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f"))) == "\x37\x10\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f"); // 33-byte (264-bit) int assert(RLP("\x38\x21\x20\x10\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f") == bigint("0x20100102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F")); assert(asString(rlp(bigint("0x20100102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F"))) == "\x38\x21\x20\x10\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f"); // 56-character string. assert(RLP("\x78\x38""Lorem ipsum dolor sit amet, consectetur adipisicing elit") == "Lorem ipsum dolor sit amet, consectetur adipisicing elit"); assert(asString(rlp("Lorem ipsum dolor sit amet, consectetur adipisicing elit")) == "\x78\x38""Lorem ipsum dolor sit amet, consectetur adipisicing elit"); /* * Hex-prefix Notation. First nibble has flags: oddness = 2^0 & termination = 2^1 * [0,0,1,2,3,4,5] 0x10012345 * [0,1,2,3,4,5] 0x00012345 * [1,2,3,4,5] 0x112345 * [0,0,1,2,3,4] 0x00001234 * [0,1,2,3,4] 0x101234 * [1,2,3,4] 0x001234 * [0,0,1,2,3,4,5,T] 0x30012345 * [0,0,1,2,3,4,T] 0x20001234 * [0,1,2,3,4,5,T] 0x20012345 * [1,2,3,4,5,T] 0x312345 * [1,2,3,4,T] 0x201234 */ assert(asHex(hexPrefixEncode({0, 0, 1, 2, 3, 4, 5}, false)) == "10012345"); assert(asHex(hexPrefixEncode({0, 1, 2, 3, 4, 5}, false)) == "00012345"); assert(asHex(hexPrefixEncode({1, 2, 3, 4, 5}, false)) == "112345"); assert(asHex(hexPrefixEncode({0, 0, 1, 2, 3, 4}, false)) == "00001234"); assert(asHex(hexPrefixEncode({0, 1, 2, 3, 4}, false)) == "101234"); assert(asHex(hexPrefixEncode({1, 2, 3, 4}, false)) == "001234"); assert(asHex(hexPrefixEncode({0, 0, 1, 2, 3, 4, 5}, true)) == "30012345"); assert(asHex(hexPrefixEncode({0, 0, 1, 2, 3, 4}, true)) == "20001234"); assert(asHex(hexPrefixEncode({0, 1, 2, 3, 4, 5}, true)) == "20012345"); assert(asHex(hexPrefixEncode({1, 2, 3, 4, 5}, true)) == "312345"); assert(asHex(hexPrefixEncode({1, 2, 3, 4}, true)) == "201234"); return 0; }