/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * @author Christian * @date 2015 * Type analyzer and checker. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace dev; using namespace langutil; using namespace dev::solidity; bool TypeChecker::typeSupportedByOldABIEncoder(Type const& _type, bool _isLibraryCall) { if (_isLibraryCall && _type.dataStoredIn(DataLocation::Storage)) return true; if (_type.category() == Type::Category::Struct) return false; if (_type.category() == Type::Category::Array) { auto const& arrayType = dynamic_cast(_type); auto base = arrayType.baseType(); if (!typeSupportedByOldABIEncoder(*base, _isLibraryCall) || (base->category() == Type::Category::Array && base->isDynamicallySized())) return false; } return true; } bool TypeChecker::checkTypeRequirements(ASTNode const& _contract) { _contract.accept(*this); return Error::containsOnlyWarnings(m_errorReporter.errors()); } TypePointer const& TypeChecker::type(Expression const& _expression) const { solAssert(!!_expression.annotation().type, "Type requested but not present."); return _expression.annotation().type; } TypePointer const& TypeChecker::type(VariableDeclaration const& _variable) const { solAssert(!!_variable.annotation().type, "Type requested but not present."); return _variable.annotation().type; } bool TypeChecker::visit(ContractDefinition const& _contract) { m_scope = &_contract; ASTNode::listAccept(_contract.baseContracts(), *this); for (auto const& n: _contract.subNodes()) n->accept(*this); return false; } void TypeChecker::checkDoubleStorageAssignment(Assignment const& _assignment) { TupleType const& lhs = dynamic_cast(*type(_assignment.leftHandSide())); TupleType const& rhs = dynamic_cast(*type(_assignment.rightHandSide())); if (lhs.components().size() != rhs.components().size()) { solAssert(m_errorReporter.hasErrors(), ""); return; } size_t storageToStorageCopies = 0; size_t toStorageCopies = 0; for (size_t i = 0; i < lhs.components().size(); ++i) { ReferenceType const* ref = dynamic_cast(lhs.components()[i]); if (!ref || !ref->dataStoredIn(DataLocation::Storage) || ref->isPointer()) continue; toStorageCopies++; if (rhs.components()[i]->dataStoredIn(DataLocation::Storage)) storageToStorageCopies++; } if (storageToStorageCopies >= 1 && toStorageCopies >= 2) m_errorReporter.warning( _assignment.location(), "This assignment performs two copies to storage. Since storage copies do not first " "copy to a temporary location, one of them might be overwritten before the second " "is executed and thus may have unexpected effects. It is safer to perform the copies " "separately or assign to storage pointers first." ); } TypePointers TypeChecker::typeCheckABIDecodeAndRetrieveReturnType(FunctionCall const& _functionCall, bool _abiEncoderV2) { vector> arguments = _functionCall.arguments(); if (arguments.size() != 2) m_errorReporter.typeError( _functionCall.location(), "This function takes two arguments, but " + toString(arguments.size()) + " were provided." ); if (arguments.size() >= 1) { BoolResult result = type(*arguments.front())->isImplicitlyConvertibleTo(*TypeProvider::bytesMemory()); if (!result) m_errorReporter.typeErrorConcatenateDescriptions( arguments.front()->location(), "Invalid type for argument in function call. " "Invalid implicit conversion from " + type(*arguments.front())->toString() + " to bytes memory requested.", result.message() ); } if (arguments.size() < 2) return {}; // The following is a rather syntactic restriction, but we check it here anyway: // The second argument has to be a tuple expression containing type names. TupleExpression const* tupleExpression = dynamic_cast(arguments[1].get()); if (!tupleExpression) { m_errorReporter.typeError( arguments[1]->location(), "The second argument to \"abi.decode\" has to be a tuple of types." ); return {}; } TypePointers components; for (auto const& typeArgument: tupleExpression->components()) { solAssert(typeArgument, ""); if (TypeType const* argTypeType = dynamic_cast(type(*typeArgument))) { TypePointer actualType = argTypeType->actualType(); solAssert(actualType, ""); // We force memory because the parser currently cannot handle // data locations. Furthermore, storage can be a little dangerous and // calldata is not really implemented anyway. actualType = TypeProvider::withLocationIfReference(DataLocation::Memory, actualType); // We force address payable for address types. if (actualType->category() == Type::Category::Address) actualType = TypeProvider::payableAddress(); solAssert( !actualType->dataStoredIn(DataLocation::CallData) && !actualType->dataStoredIn(DataLocation::Storage), "" ); if (!actualType->fullEncodingType(false, _abiEncoderV2, false)) m_errorReporter.typeError( typeArgument->location(), "Decoding type " + actualType->toString(false) + " not supported." ); components.push_back(actualType); } else { m_errorReporter.typeError(typeArgument->location(), "Argument has to be a type name."); components.push_back(TypeProvider::emptyTuple()); } } return components; } TypePointers TypeChecker::typeCheckMetaTypeFunctionAndRetrieveReturnType(FunctionCall const& _functionCall) { vector> arguments = _functionCall.arguments(); if (arguments.size() != 1) { m_errorReporter.typeError( _functionCall.location(), "This function takes one argument, but " + toString(arguments.size()) + " were provided." ); return {}; } TypePointer firstArgType = type(*arguments.front()); if ( firstArgType->category() != Type::Category::TypeType || dynamic_cast(*firstArgType).actualType()->category() != TypeType::Category::Contract ) { m_errorReporter.typeError( arguments.front()->location(), "Invalid type for argument in function call. " "Contract type required, but " + type(*arguments.front())->toString(true) + " provided." ); return {}; } return {TypeProvider::meta(dynamic_cast(*firstArgType).actualType())}; } void TypeChecker::endVisit(InheritanceSpecifier const& _inheritance) { auto base = dynamic_cast(&dereference(_inheritance.name())); solAssert(base, "Base contract not available."); if (m_scope->isInterface()) m_errorReporter.typeError(_inheritance.location(), "Interfaces cannot inherit."); if (base->isLibrary()) m_errorReporter.typeError(_inheritance.location(), "Libraries cannot be inherited from."); auto const& arguments = _inheritance.arguments(); TypePointers parameterTypes; if (!base->isInterface()) // Interfaces do not have constructors, so there are zero parameters. parameterTypes = ContractType(*base).newExpressionType()->parameterTypes(); if (arguments) { if (parameterTypes.size() != arguments->size()) { m_errorReporter.typeError( _inheritance.location(), "Wrong argument count for constructor call: " + toString(arguments->size()) + " arguments given but expected " + toString(parameterTypes.size()) + ". Remove parentheses if you do not want to provide arguments here." ); } for (size_t i = 0; i < std::min(arguments->size(), parameterTypes.size()); ++i) { BoolResult result = type(*(*arguments)[i])->isImplicitlyConvertibleTo(*parameterTypes[i]); if (!result) m_errorReporter.typeErrorConcatenateDescriptions( (*arguments)[i]->location(), "Invalid type for argument in constructor call. " "Invalid implicit conversion from " + type(*(*arguments)[i])->toString() + " to " + parameterTypes[i]->toString() + " requested.", result.message() ); } } } void TypeChecker::endVisit(UsingForDirective const& _usingFor) { ContractDefinition const* library = dynamic_cast( _usingFor.libraryName().annotation().referencedDeclaration ); if (!library || !library->isLibrary()) m_errorReporter.fatalTypeError(_usingFor.libraryName().location(), "Library name expected."); } bool TypeChecker::visit(StructDefinition const& _struct) { for (ASTPointer const& member: _struct.members()) solAssert(type(*member)->canBeStored(), "Type cannot be used in struct."); // Check recursion, fatal error if detected. auto visitor = [&](StructDefinition const& _struct, CycleDetector& _cycleDetector, size_t _depth) { if (_depth >= 256) m_errorReporter.fatalDeclarationError(_struct.location(), "Struct definition exhausting cyclic dependency validator."); for (ASTPointer const& member: _struct.members()) { Type const* memberType = type(*member); while (auto arrayType = dynamic_cast(memberType)) { if (arrayType->isDynamicallySized()) break; memberType = arrayType->baseType(); } if (auto structType = dynamic_cast(memberType)) if (_cycleDetector.run(structType->structDefinition())) return; } }; if (CycleDetector(visitor).run(_struct) != nullptr) m_errorReporter.fatalTypeError(_struct.location(), "Recursive struct definition."); bool insideStruct = true; swap(insideStruct, m_insideStruct); ASTNode::listAccept(_struct.members(), *this); m_insideStruct = insideStruct; return false; } bool TypeChecker::visit(FunctionDefinition const& _function) { bool isLibraryFunction = _function.inContractKind() == ContractDefinition::ContractKind::Library; if (_function.isPayable()) { if (isLibraryFunction) m_errorReporter.typeError(_function.location(), "Library functions cannot be payable."); if (!_function.isConstructor() && !_function.isFallback() && !_function.isPartOfExternalInterface()) m_errorReporter.typeError(_function.location(), "Internal functions cannot be payable."); } auto checkArgumentAndReturnParameter = [&](VariableDeclaration const& var) { if (type(var)->category() == Type::Category::Mapping) { if (var.referenceLocation() != VariableDeclaration::Location::Storage) { if (!isLibraryFunction && _function.isPublic()) m_errorReporter.typeError(var.location(), "Mapping types can only have a data location of \"storage\" and thus only be parameters or return variables for internal or library functions."); else m_errorReporter.typeError(var.location(), "Mapping types can only have a data location of \"storage\"." ); } else { solAssert(isLibraryFunction || !_function.isPublic(), "Mapping types for parameters or return variables can only be used in internal or library functions."); } } else { if (!type(var)->canLiveOutsideStorage() && _function.isPublic()) m_errorReporter.typeError(var.location(), "Type is required to live outside storage."); if (_function.isPublic()) { auto iType = type(var)->interfaceType(isLibraryFunction); if (!iType) { solAssert(!iType.message().empty(), "Expected detailed error message!"); m_errorReporter.fatalTypeError(var.location(), iType.message()); } } } if ( _function.isPublic() && !_function.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2) && !typeSupportedByOldABIEncoder(*type(var), isLibraryFunction) ) m_errorReporter.typeError( var.location(), "This type is only supported in the new experimental ABI encoder. " "Use \"pragma experimental ABIEncoderV2;\" to enable the feature." ); }; for (ASTPointer const& var: _function.parameters()) { checkArgumentAndReturnParameter(*var); var->accept(*this); } for (ASTPointer const& var: _function.returnParameters()) { checkArgumentAndReturnParameter(*var); var->accept(*this); } set modifiers; for (ASTPointer const& modifier: _function.modifiers()) { visitManually( *modifier, _function.isConstructor() ? dynamic_cast(*_function.scope()).annotation().linearizedBaseContracts : vector() ); Declaration const* decl = &dereference(*modifier->name()); if (modifiers.count(decl)) { if (dynamic_cast(decl)) m_errorReporter.declarationError(modifier->location(), "Base constructor already provided."); } else modifiers.insert(decl); } if (m_scope->isInterface()) { if (_function.isImplemented()) m_errorReporter.typeError(_function.location(), "Functions in interfaces cannot have an implementation."); if (_function.visibility() != FunctionDefinition::Visibility::External) m_errorReporter.typeError(_function.location(), "Functions in interfaces must be declared external."); if (_function.isConstructor()) m_errorReporter.typeError(_function.location(), "Constructor cannot be defined in interfaces."); } else if (m_scope->contractKind() == ContractDefinition::ContractKind::Library) if (_function.isConstructor()) m_errorReporter.typeError(_function.location(), "Constructor cannot be defined in libraries."); if (_function.isImplemented()) _function.body().accept(*this); else if (_function.isConstructor()) m_errorReporter.typeError(_function.location(), "Constructor must be implemented if declared."); else if (isLibraryFunction && _function.visibility() <= FunctionDefinition::Visibility::Internal) m_errorReporter.typeError(_function.location(), "Internal library function must be implemented if declared."); return false; } bool TypeChecker::visit(VariableDeclaration const& _variable) { // Forbid any variable declarations inside interfaces unless they are part of // * a function's input/output parameters, // * or inside of a struct definition. if ( m_scope->isInterface() && !_variable.isCallableParameter() && !m_insideStruct ) m_errorReporter.typeError(_variable.location(), "Variables cannot be declared in interfaces."); if (_variable.typeName()) _variable.typeName()->accept(*this); // type is filled either by ReferencesResolver directly from the type name or by // TypeChecker at the VariableDeclarationStatement level. TypePointer varType = _variable.annotation().type; solAssert(!!varType, "Variable type not provided."); if (_variable.value()) expectType(*_variable.value(), *varType); if (_variable.isConstant()) { if (!_variable.type()->isValueType()) { bool allowed = false; if (auto arrayType = dynamic_cast(_variable.type())) allowed = arrayType->isByteArray(); if (!allowed) m_errorReporter.typeError(_variable.location(), "Constants of non-value type not yet implemented."); } if (!_variable.value()) m_errorReporter.typeError(_variable.location(), "Uninitialized \"constant\" variable."); else if (!_variable.value()->annotation().isPure) m_errorReporter.typeError( _variable.value()->location(), "Initial value for constant variable has to be compile-time constant." ); } if (!_variable.isStateVariable()) { if (varType->dataStoredIn(DataLocation::Memory) || varType->dataStoredIn(DataLocation::CallData)) if (!varType->canLiveOutsideStorage()) m_errorReporter.typeError(_variable.location(), "Type " + varType->toString() + " is only valid in storage."); } else if (_variable.visibility() >= VariableDeclaration::Visibility::Public) { FunctionType getter(_variable); if (!_variable.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2)) { vector unsupportedTypes; for (auto const& param: getter.parameterTypes() + getter.returnParameterTypes()) if (!typeSupportedByOldABIEncoder(*param, false /* isLibrary */)) unsupportedTypes.emplace_back(param->toString()); if (!unsupportedTypes.empty()) m_errorReporter.typeError(_variable.location(), "The following types are only supported for getters in the new experimental ABI encoder: " + joinHumanReadable(unsupportedTypes) + ". Either remove \"public\" or use \"pragma experimental ABIEncoderV2;\" to enable the feature." ); } if (!getter.interfaceFunctionType()) m_errorReporter.typeError(_variable.location(), "Internal or recursive type is not allowed for public state variables."); } switch (varType->category()) { case Type::Category::Array: if (auto arrayType = dynamic_cast(varType)) if ( ((arrayType->location() == DataLocation::Memory) || (arrayType->location() == DataLocation::CallData)) && !arrayType->validForCalldata() ) m_errorReporter.typeError(_variable.location(), "Array is too large to be encoded."); break; default: break; } return false; } void TypeChecker::visitManually( ModifierInvocation const& _modifier, vector const& _bases ) { std::vector> const& arguments = _modifier.arguments() ? *_modifier.arguments() : std::vector>(); for (ASTPointer const& argument: arguments) argument->accept(*this); _modifier.name()->accept(*this); auto const* declaration = &dereference(*_modifier.name()); vector> emptyParameterList; vector> const* parameters = nullptr; if (auto modifierDecl = dynamic_cast(declaration)) parameters = &modifierDecl->parameters(); else // check parameters for Base constructors for (ContractDefinition const* base: _bases) if (declaration == base) { if (auto referencedConstructor = base->constructor()) parameters = &referencedConstructor->parameters(); else parameters = &emptyParameterList; break; } if (!parameters) { m_errorReporter.typeError(_modifier.location(), "Referenced declaration is neither modifier nor base class."); return; } if (parameters->size() != arguments.size()) { m_errorReporter.typeError( _modifier.location(), "Wrong argument count for modifier invocation: " + toString(arguments.size()) + " arguments given but expected " + toString(parameters->size()) + "." ); return; } for (size_t i = 0; i < arguments.size(); ++i) { BoolResult result = type(*arguments[i])->isImplicitlyConvertibleTo(*type(*(*parameters)[i])); if (!result) m_errorReporter.typeErrorConcatenateDescriptions( arguments[i]->location(), "Invalid type for argument in modifier invocation. " "Invalid implicit conversion from " + type(*arguments[i])->toString() + " to " + type(*(*parameters)[i])->toString() + " requested.", result.message() ); } } bool TypeChecker::visit(EventDefinition const& _eventDef) { solAssert(_eventDef.visibility() > Declaration::Visibility::Internal, ""); unsigned numIndexed = 0; for (ASTPointer const& var: _eventDef.parameters()) { if (var->isIndexed()) numIndexed++; if (!type(*var)->canLiveOutsideStorage()) m_errorReporter.typeError(var->location(), "Type is required to live outside storage."); if (!type(*var)->interfaceType(false)) m_errorReporter.typeError(var->location(), "Internal or recursive type is not allowed as event parameter type."); if ( !_eventDef.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2) && !typeSupportedByOldABIEncoder(*type(*var), false /* isLibrary */) ) m_errorReporter.typeError( var->location(), "This type is only supported in the new experimental ABI encoder. " "Use \"pragma experimental ABIEncoderV2;\" to enable the feature." ); } if (_eventDef.isAnonymous() && numIndexed > 4) m_errorReporter.typeError(_eventDef.location(), "More than 4 indexed arguments for anonymous event."); else if (!_eventDef.isAnonymous() && numIndexed > 3) m_errorReporter.typeError(_eventDef.location(), "More than 3 indexed arguments for event."); return false; } void TypeChecker::endVisit(FunctionTypeName const& _funType) { FunctionType const& fun = dynamic_cast(*_funType.annotation().type); if (fun.kind() == FunctionType::Kind::External) solAssert(fun.interfaceType(false), "External function type uses internal types."); } bool TypeChecker::visit(InlineAssembly const& _inlineAssembly) { // External references have already been resolved in a prior stage and stored in the annotation. // We run the resolve step again regardless. yul::ExternalIdentifierAccess::Resolver identifierAccess = [&]( yul::Identifier const& _identifier, yul::IdentifierContext _context, bool ) { auto ref = _inlineAssembly.annotation().externalReferences.find(&_identifier); if (ref == _inlineAssembly.annotation().externalReferences.end()) return size_t(-1); Declaration const* declaration = ref->second.declaration; solAssert(!!declaration, ""); bool requiresStorage = ref->second.isSlot || ref->second.isOffset; if (auto var = dynamic_cast(declaration)) { solAssert(var->type(), "Expected variable type!"); if (var->isConstant()) { m_errorReporter.typeError(_identifier.location, "Constant variables not supported by inline assembly."); return size_t(-1); } else if (requiresStorage) { if (!var->isStateVariable() && !var->type()->dataStoredIn(DataLocation::Storage)) { m_errorReporter.typeError(_identifier.location, "The suffixes _offset and _slot can only be used on storage variables."); return size_t(-1); } else if (_context != yul::IdentifierContext::RValue) { m_errorReporter.typeError(_identifier.location, "Storage variables cannot be assigned to."); return size_t(-1); } } else if (!var->isLocalVariable()) { m_errorReporter.typeError(_identifier.location, "Only local variables are supported. To access storage variables, use the _slot and _offset suffixes."); return size_t(-1); } else if (var->type()->dataStoredIn(DataLocation::Storage)) { m_errorReporter.typeError(_identifier.location, "You have to use the _slot or _offset suffix to access storage reference variables."); return size_t(-1); } else if (var->type()->sizeOnStack() != 1) { if (var->type()->dataStoredIn(DataLocation::CallData)) m_errorReporter.typeError(_identifier.location, "Call data elements cannot be accessed directly. Copy to a local variable first or use \"calldataload\" or \"calldatacopy\" with manually determined offsets and sizes."); else m_errorReporter.typeError(_identifier.location, "Only types that use one stack slot are supported."); return size_t(-1); } } else if (requiresStorage) { m_errorReporter.typeError(_identifier.location, "The suffixes _offset and _slot can only be used on storage variables."); return size_t(-1); } else if (_context == yul::IdentifierContext::LValue) { m_errorReporter.typeError(_identifier.location, "Only local variables can be assigned to in inline assembly."); return size_t(-1); } if (_context == yul::IdentifierContext::RValue) { solAssert(!!declaration->type(), "Type of declaration required but not yet determined."); if (dynamic_cast(declaration)) { } else if (dynamic_cast(declaration)) { } else if (auto contract = dynamic_cast(declaration)) { if (!contract->isLibrary()) { m_errorReporter.typeError(_identifier.location, "Expected a library."); return size_t(-1); } } else return size_t(-1); } ref->second.valueSize = 1; return size_t(1); }; solAssert(!_inlineAssembly.annotation().analysisInfo, ""); _inlineAssembly.annotation().analysisInfo = make_shared(); yul::AsmAnalyzer analyzer( *_inlineAssembly.annotation().analysisInfo, m_errorReporter, Error::Type::SyntaxError, _inlineAssembly.dialect(), identifierAccess ); if (!analyzer.analyze(_inlineAssembly.operations())) return false; return true; } bool TypeChecker::visit(IfStatement const& _ifStatement) { expectType(_ifStatement.condition(), *TypeProvider::boolean()); _ifStatement.trueStatement().accept(*this); if (_ifStatement.falseStatement()) _ifStatement.falseStatement()->accept(*this); return false; } bool TypeChecker::visit(WhileStatement const& _whileStatement) { expectType(_whileStatement.condition(), *TypeProvider::boolean()); _whileStatement.body().accept(*this); return false; } bool TypeChecker::visit(ForStatement const& _forStatement) { if (_forStatement.initializationExpression()) _forStatement.initializationExpression()->accept(*this); if (_forStatement.condition()) expectType(*_forStatement.condition(), *TypeProvider::boolean()); if (_forStatement.loopExpression()) _forStatement.loopExpression()->accept(*this); _forStatement.body().accept(*this); return false; } void TypeChecker::endVisit(Return const& _return) { ParameterList const* params = _return.annotation().functionReturnParameters; if (!_return.expression()) { if (params && !params->parameters().empty()) m_errorReporter.typeError(_return.location(), "Return arguments required."); return; } if (!params) { m_errorReporter.typeError(_return.location(), "Return arguments not allowed."); return; } TypePointers returnTypes; for (auto const& var: params->parameters()) returnTypes.push_back(type(*var)); if (auto tupleType = dynamic_cast(type(*_return.expression()))) { if (tupleType->components().size() != params->parameters().size()) m_errorReporter.typeError(_return.location(), "Different number of arguments in return statement than in returns declaration."); else { BoolResult result = tupleType->isImplicitlyConvertibleTo(TupleType(returnTypes)); if (!result) m_errorReporter.typeErrorConcatenateDescriptions( _return.expression()->location(), "Return argument type " + type(*_return.expression())->toString() + " is not implicitly convertible to expected type " + TupleType(returnTypes).toString(false) + ".", result.message() ); } } else if (params->parameters().size() != 1) m_errorReporter.typeError(_return.location(), "Different number of arguments in return statement than in returns declaration."); else { TypePointer const& expected = type(*params->parameters().front()); BoolResult result = type(*_return.expression())->isImplicitlyConvertibleTo(*expected); if (!result) m_errorReporter.typeErrorConcatenateDescriptions( _return.expression()->location(), "Return argument type " + type(*_return.expression())->toString() + " is not implicitly convertible to expected type (type of first return variable) " + expected->toString() + ".", result.message() ); } } void TypeChecker::endVisit(EmitStatement const& _emit) { if ( _emit.eventCall().annotation().kind != FunctionCallKind::FunctionCall || type(_emit.eventCall().expression())->category() != Type::Category::Function || dynamic_cast(*type(_emit.eventCall().expression())).kind() != FunctionType::Kind::Event ) m_errorReporter.typeError(_emit.eventCall().expression().location(), "Expression has to be an event invocation."); m_insideEmitStatement = false; } namespace { /** * @returns a suggested left-hand-side of a multi-variable declaration contairing * the variable declarations given in @a _decls. */ string createTupleDecl(vector> const& _decls) { vector components; for (ASTPointer const& decl: _decls) if (decl) { solAssert(decl->annotation().type, ""); components.emplace_back(decl->annotation().type->toString(false) + " " + decl->name()); } else components.emplace_back(); if (_decls.size() == 1) return components.front(); else return "(" + boost::algorithm::join(components, ", ") + ")"; } bool typeCanBeExpressed(vector> const& decls) { for (ASTPointer const& decl: decls) { // skip empty tuples (they can be expressed of course) if (!decl) continue; if (!decl->annotation().type) return false; if (auto functionType = dynamic_cast(decl->annotation().type)) if ( functionType->kind() != FunctionType::Kind::Internal && functionType->kind() != FunctionType::Kind::External ) return false; } return true; } } bool TypeChecker::visit(VariableDeclarationStatement const& _statement) { if (!_statement.initialValue()) { // No initial value is only permitted for single variables with specified type. if (_statement.declarations().size() != 1 || !_statement.declarations().front()) { if (boost::algorithm::all_of_equal(_statement.declarations(), nullptr)) { // The syntax checker has already generated an error for this case (empty LHS tuple). solAssert(m_errorReporter.hasErrors(), ""); // It is okay to return here, as there are no named components on the // left-hand-side that could cause any damage later. return false; } else // Bailing out *fatal* here, as those (untyped) vars may be used later, and diagnostics wouldn't be helpful then. m_errorReporter.fatalTypeError(_statement.location(), "Use of the \"var\" keyword is disallowed."); } VariableDeclaration const& varDecl = *_statement.declarations().front(); if (!varDecl.annotation().type) m_errorReporter.fatalTypeError(_statement.location(), "Use of the \"var\" keyword is disallowed."); if (auto ref = dynamic_cast(type(varDecl))) { if (ref->dataStoredIn(DataLocation::Storage)) { string errorText{"Uninitialized storage pointer."}; solAssert(varDecl.referenceLocation() != VariableDeclaration::Location::Unspecified, "Expected a specified location at this point"); solAssert(m_scope, ""); m_errorReporter.declarationError(varDecl.location(), errorText); } } else if (dynamic_cast(type(varDecl))) m_errorReporter.typeError( varDecl.location(), "Uninitialized mapping. Mappings cannot be created dynamically, you have to assign them from a state variable." ); varDecl.accept(*this); return false; } // Here we have an initial value and might have to derive some types before we can visit // the variable declaration(s). _statement.initialValue()->accept(*this); TypePointers valueTypes; if (auto tupleType = dynamic_cast(type(*_statement.initialValue()))) valueTypes = tupleType->components(); else valueTypes = TypePointers{type(*_statement.initialValue())}; vector> const& variables = _statement.declarations(); if (variables.empty()) // We already have an error for this in the SyntaxChecker. solAssert(m_errorReporter.hasErrors(), ""); else if (valueTypes.size() != variables.size()) m_errorReporter.typeError( _statement.location(), "Different number of components on the left hand side (" + toString(variables.size()) + ") than on the right hand side (" + toString(valueTypes.size()) + ")." ); bool autoTypeDeductionNeeded = false; for (size_t i = 0; i < min(variables.size(), valueTypes.size()); ++i) { if (!variables[i]) continue; VariableDeclaration const& var = *variables[i]; solAssert(!var.value(), "Value has to be tied to statement."); TypePointer const& valueComponentType = valueTypes[i]; solAssert(!!valueComponentType, ""); if (!var.annotation().type) { autoTypeDeductionNeeded = true; // Infer type from value. solAssert(!var.typeName(), ""); var.annotation().type = valueComponentType->mobileType(); if (!var.annotation().type) { if (valueComponentType->category() == Type::Category::RationalNumber) m_errorReporter.fatalTypeError( _statement.initialValue()->location(), "Invalid rational " + valueComponentType->toString() + " (absolute value too large or division by zero)." ); else solAssert(false, ""); } else if (*var.annotation().type == *TypeProvider::emptyTuple()) solAssert(false, "Cannot declare variable with void (empty tuple) type."); else if (valueComponentType->category() == Type::Category::RationalNumber) { string typeName = var.annotation().type->toString(true); string extension; if (auto type = dynamic_cast(var.annotation().type)) { unsigned numBits = type->numBits(); bool isSigned = type->isSigned(); solAssert(numBits > 0, ""); string minValue; string maxValue; if (isSigned) { numBits--; minValue = "-" + bigint(bigint(1) << numBits).str(); } else minValue = "0"; maxValue = bigint((bigint(1) << numBits) - 1).str(); extension = ", which can hold values between " + minValue + " and " + maxValue; } else solAssert(dynamic_cast(var.annotation().type), "Unknown type."); } var.accept(*this); } else { var.accept(*this); BoolResult result = valueComponentType->isImplicitlyConvertibleTo(*var.annotation().type); if (!result) { auto errorMsg = "Type " + valueComponentType->toString() + " is not implicitly convertible to expected type " + var.annotation().type->toString(); if ( valueComponentType->category() == Type::Category::RationalNumber && dynamic_cast(*valueComponentType).isFractional() && valueComponentType->mobileType() ) { if (var.annotation().type->operator==(*valueComponentType->mobileType())) m_errorReporter.typeError( _statement.location(), errorMsg + ", but it can be explicitly converted." ); else m_errorReporter.typeError( _statement.location(), errorMsg + ". Try converting to type " + valueComponentType->mobileType()->toString() + " or use an explicit conversion." ); } else m_errorReporter.typeErrorConcatenateDescriptions( _statement.location(), errorMsg + ".", result.message() ); } } } if (valueTypes.size() != variables.size()) { solAssert(m_errorReporter.hasErrors(), "Should have errors!"); for (auto const& var: variables) if (var && !var->annotation().type) BOOST_THROW_EXCEPTION(FatalError()); } if (autoTypeDeductionNeeded) { if (!typeCanBeExpressed(variables)) m_errorReporter.syntaxError( _statement.location(), "Use of the \"var\" keyword is disallowed. " "Type cannot be expressed in syntax." ); else m_errorReporter.syntaxError( _statement.location(), "Use of the \"var\" keyword is disallowed. " "Use explicit declaration `" + createTupleDecl(variables) + " = ...ยด instead." ); } return false; } void TypeChecker::endVisit(ExpressionStatement const& _statement) { if (type(_statement.expression())->category() == Type::Category::RationalNumber) if (!dynamic_cast(*type(_statement.expression())).mobileType()) m_errorReporter.typeError(_statement.expression().location(), "Invalid rational number."); if (auto call = dynamic_cast(&_statement.expression())) { if (auto callType = dynamic_cast(type(call->expression()))) { auto kind = callType->kind(); if ( kind == FunctionType::Kind::BareCall || kind == FunctionType::Kind::BareCallCode || kind == FunctionType::Kind::BareDelegateCall || kind == FunctionType::Kind::BareStaticCall ) m_errorReporter.warning(_statement.location(), "Return value of low-level calls not used."); else if (kind == FunctionType::Kind::Send) m_errorReporter.warning(_statement.location(), "Failure condition of 'send' ignored. Consider using 'transfer' instead."); } } } bool TypeChecker::visit(Conditional const& _conditional) { expectType(_conditional.condition(), *TypeProvider::boolean()); _conditional.trueExpression().accept(*this); _conditional.falseExpression().accept(*this); TypePointer trueType = type(_conditional.trueExpression())->mobileType(); TypePointer falseType = type(_conditional.falseExpression())->mobileType(); TypePointer commonType = nullptr; if (!trueType) m_errorReporter.typeError(_conditional.trueExpression().location(), "Invalid mobile type in true expression."); else commonType = trueType; if (!falseType) m_errorReporter.typeError(_conditional.falseExpression().location(), "Invalid mobile type in false expression."); else commonType = falseType; if (!trueType && !falseType) BOOST_THROW_EXCEPTION(FatalError()); else if (trueType && falseType) { commonType = Type::commonType(trueType, falseType); if (!commonType) { m_errorReporter.typeError( _conditional.location(), "True expression's type " + trueType->toString() + " doesn't match false expression's type " + falseType->toString() + "." ); // even we can't find a common type, we have to set a type here, // otherwise the upper statement will not be able to check the type. commonType = trueType; } } _conditional.annotation().type = commonType; _conditional.annotation().isPure = _conditional.condition().annotation().isPure && _conditional.trueExpression().annotation().isPure && _conditional.falseExpression().annotation().isPure; if (_conditional.annotation().lValueRequested) m_errorReporter.typeError( _conditional.location(), "Conditional expression as left value is not supported yet." ); return false; } void TypeChecker::checkExpressionAssignment(Type const& _type, Expression const& _expression) { if (auto const* tupleExpression = dynamic_cast(&_expression)) { auto const* tupleType = dynamic_cast(&_type); auto const& types = tupleType ? tupleType->components() : vector { &_type }; solAssert( tupleExpression->components().size() == types.size() || m_errorReporter.hasErrors(), "Array sizes don't match or no errors generated." ); for (size_t i = 0; i < min(tupleExpression->components().size(), types.size()); i++) if (types[i]) { solAssert(!!tupleExpression->components()[i], ""); checkExpressionAssignment(*types[i], *tupleExpression->components()[i]); } } else if (_type.category() == Type::Category::Mapping) { bool isLocalOrReturn = false; if (auto const* identifier = dynamic_cast(&_expression)) if (auto const *variableDeclaration = dynamic_cast(identifier->annotation().referencedDeclaration)) if (variableDeclaration->isLocalOrReturn()) isLocalOrReturn = true; if (!isLocalOrReturn) m_errorReporter.typeError(_expression.location(), "Mappings cannot be assigned to."); } } bool TypeChecker::visit(Assignment const& _assignment) { requireLValue(_assignment.leftHandSide()); TypePointer t = type(_assignment.leftHandSide()); _assignment.annotation().type = t; checkExpressionAssignment(*t, _assignment.leftHandSide()); if (TupleType const* tupleType = dynamic_cast(t)) { if (_assignment.assignmentOperator() != Token::Assign) m_errorReporter.typeError( _assignment.location(), "Compound assignment is not allowed for tuple types." ); // Sequenced assignments of tuples is not valid, make the result a "void" type. _assignment.annotation().type = TypeProvider::emptyTuple(); expectType(_assignment.rightHandSide(), *tupleType); // expectType does not cause fatal errors, so we have to check again here. if (dynamic_cast(type(_assignment.rightHandSide()))) checkDoubleStorageAssignment(_assignment); } else if (_assignment.assignmentOperator() == Token::Assign) expectType(_assignment.rightHandSide(), *t); else { // compound assignment _assignment.rightHandSide().accept(*this); TypePointer resultType = t->binaryOperatorResult( TokenTraits::AssignmentToBinaryOp(_assignment.assignmentOperator()), type(_assignment.rightHandSide()) ); if (!resultType || *resultType != *t) m_errorReporter.typeError( _assignment.location(), "Operator " + string(TokenTraits::toString(_assignment.assignmentOperator())) + " not compatible with types " + t->toString() + " and " + type(_assignment.rightHandSide())->toString() ); } return false; } bool TypeChecker::visit(TupleExpression const& _tuple) { vector> const& components = _tuple.components(); TypePointers types; if (_tuple.annotation().lValueRequested) { if (_tuple.isInlineArray()) m_errorReporter.fatalTypeError(_tuple.location(), "Inline array type cannot be declared as LValue."); for (auto const& component: components) if (component) { requireLValue(*component); types.push_back(type(*component)); } else types.push_back(TypePointer()); if (components.size() == 1) _tuple.annotation().type = type(*components[0]); else _tuple.annotation().type = TypeProvider::tuple(move(types)); // If some of the components are not LValues, the error is reported above. _tuple.annotation().isLValue = true; } else { bool isPure = true; TypePointer inlineArrayType = nullptr; for (size_t i = 0; i < components.size(); ++i) { if (!components[i]) m_errorReporter.fatalTypeError(_tuple.location(), "Tuple component cannot be empty."); else if (components[i]) { components[i]->accept(*this); types.push_back(type(*components[i])); if (types[i]->category() == Type::Category::Tuple) if (dynamic_cast(*types[i]).components().empty()) { if (_tuple.isInlineArray()) m_errorReporter.fatalTypeError(components[i]->location(), "Array component cannot be empty."); m_errorReporter.typeError(components[i]->location(), "Tuple component cannot be empty."); } // Note: code generation will visit each of the expression even if they are not assigned from. if (types[i]->category() == Type::Category::RationalNumber && components.size() > 1) if (!dynamic_cast(*types[i]).mobileType()) m_errorReporter.fatalTypeError(components[i]->location(), "Invalid rational number."); if (_tuple.isInlineArray()) { solAssert(!!types[i], "Inline array cannot have empty components"); if ((i == 0 || inlineArrayType) && !types[i]->mobileType()) m_errorReporter.fatalTypeError(components[i]->location(), "Invalid mobile type."); if (i == 0) inlineArrayType = types[i]->mobileType(); else if (inlineArrayType) inlineArrayType = Type::commonType(inlineArrayType, types[i]); } if (!components[i]->annotation().isPure) isPure = false; } else types.push_back(TypePointer()); } _tuple.annotation().isPure = isPure; if (_tuple.isInlineArray()) { if (!inlineArrayType) m_errorReporter.fatalTypeError(_tuple.location(), "Unable to deduce common type for array elements."); else if (!inlineArrayType->canLiveOutsideStorage()) m_errorReporter.fatalTypeError(_tuple.location(), "Type " + inlineArrayType->toString() + " is only valid in storage."); _tuple.annotation().type = TypeProvider::array(DataLocation::Memory, inlineArrayType, types.size()); } else { if (components.size() == 1) _tuple.annotation().type = type(*components[0]); else _tuple.annotation().type = TypeProvider::tuple(move(types)); } } return false; } bool TypeChecker::visit(UnaryOperation const& _operation) { // Inc, Dec, Add, Sub, Not, BitNot, Delete Token op = _operation.getOperator(); bool const modifying = (op == Token::Inc || op == Token::Dec || op == Token::Delete); if (modifying) requireLValue(_operation.subExpression()); else _operation.subExpression().accept(*this); TypePointer const& subExprType = type(_operation.subExpression()); TypePointer t = type(_operation.subExpression())->unaryOperatorResult(op); if (!t) { m_errorReporter.typeError( _operation.location(), "Unary operator " + string(TokenTraits::toString(op)) + " cannot be applied to type " + subExprType->toString() ); t = subExprType; } _operation.annotation().type = t; _operation.annotation().isPure = !modifying && _operation.subExpression().annotation().isPure; return false; } void TypeChecker::endVisit(BinaryOperation const& _operation) { TypePointer const& leftType = type(_operation.leftExpression()); TypePointer const& rightType = type(_operation.rightExpression()); TypeResult result = leftType->binaryOperatorResult(_operation.getOperator(), rightType); TypePointer commonType = result.get(); if (!commonType) { m_errorReporter.typeError( _operation.location(), "Operator " + string(TokenTraits::toString(_operation.getOperator())) + " not compatible with types " + leftType->toString() + " and " + rightType->toString() + (!result.message().empty() ? ". " + result.message() : "") ); commonType = leftType; } _operation.annotation().commonType = commonType; _operation.annotation().type = TokenTraits::isCompareOp(_operation.getOperator()) ? TypeProvider::boolean() : commonType; _operation.annotation().isPure = _operation.leftExpression().annotation().isPure && _operation.rightExpression().annotation().isPure; if (_operation.getOperator() == Token::Exp || _operation.getOperator() == Token::SHL) { string operation = _operation.getOperator() == Token::Exp ? "exponentiation" : "shift"; if ( leftType->category() == Type::Category::RationalNumber && rightType->category() != Type::Category::RationalNumber ) if (( commonType->category() == Type::Category::Integer && dynamic_cast(*commonType).numBits() != 256 ) || ( commonType->category() == Type::Category::FixedPoint && dynamic_cast(*commonType).numBits() != 256 )) m_errorReporter.warning( _operation.location(), "Result of " + operation + " has type " + commonType->toString() + " and thus " "might overflow. Silence this warning by converting the literal to the " "expected type." ); } } TypePointer TypeChecker::typeCheckTypeConversionAndRetrieveReturnType( FunctionCall const& _functionCall ) { solAssert(_functionCall.annotation().kind == FunctionCallKind::TypeConversion, ""); TypePointer const& expressionType = type(_functionCall.expression()); vector> const& arguments = _functionCall.arguments(); bool const isPositionalCall = _functionCall.names().empty(); TypePointer resultType = dynamic_cast(*expressionType).actualType(); if (arguments.size() != 1) m_errorReporter.typeError( _functionCall.location(), "Exactly one argument expected for explicit type conversion." ); else if (!isPositionalCall) m_errorReporter.typeError( _functionCall.location(), "Type conversion cannot allow named arguments." ); else { Type const* argType = type(*arguments.front()); // Resulting data location is memory unless we are converting from a reference // type with a different data location. // (data location cannot yet be specified for type conversions) DataLocation dataLoc = DataLocation::Memory; if (auto argRefType = dynamic_cast(argType)) dataLoc = argRefType->location(); if (auto type = dynamic_cast(resultType)) resultType = TypeProvider::withLocation(type, dataLoc, type->isPointer()); if (argType->isExplicitlyConvertibleTo(*resultType)) { if (auto argArrayType = dynamic_cast(argType)) { auto resultArrayType = dynamic_cast(resultType); solAssert(!!resultArrayType, ""); solAssert( argArrayType->location() != DataLocation::Storage || ( ( resultArrayType->isPointer() || (argArrayType->isByteArray() && resultArrayType->isByteArray()) ) && resultArrayType->location() == DataLocation::Storage ), "Invalid explicit conversion to storage type." ); } } else { if ( resultType->category() == Type::Category::Contract && argType->category() == Type::Category::Address ) { solAssert(dynamic_cast(resultType)->isPayable(), ""); solAssert( dynamic_cast(argType)->stateMutability() < StateMutability::Payable, "" ); SecondarySourceLocation ssl; if ( auto const* identifier = dynamic_cast(arguments.front().get()) ) if ( auto const* variableDeclaration = dynamic_cast( identifier->annotation().referencedDeclaration ) ) ssl.append( "Did you mean to declare this variable as \"address payable\"?", variableDeclaration->location() ); m_errorReporter.typeError( _functionCall.location(), ssl, "Explicit type conversion not allowed from non-payable \"address\" to \"" + resultType->toString() + "\", which has a payable fallback function." ); } else m_errorReporter.typeError( _functionCall.location(), "Explicit type conversion not allowed from \"" + argType->toString() + "\" to \"" + resultType->toString() + "\"." ); } if (resultType->category() == Type::Category::Address) { bool const payable = argType->isExplicitlyConvertibleTo(*TypeProvider::payableAddress()); resultType = payable ? TypeProvider::payableAddress() : TypeProvider::address(); } } return resultType; } void TypeChecker::typeCheckFunctionCall( FunctionCall const& _functionCall, FunctionTypePointer _functionType ) { // Actual function call or struct constructor call. solAssert(!!_functionType, ""); solAssert(_functionType->kind() != FunctionType::Kind::ABIDecode, ""); // Check for unsupported use of bare static call if ( _functionType->kind() == FunctionType::Kind::BareStaticCall && !m_evmVersion.hasStaticCall() ) m_errorReporter.typeError( _functionCall.location(), "\"staticcall\" is not supported by the VM version." ); // Check for event outside of emit statement if (!m_insideEmitStatement && _functionType->kind() == FunctionType::Kind::Event) m_errorReporter.typeError( _functionCall.location(), "Event invocations have to be prefixed by \"emit\"." ); // Perform standard function call type checking typeCheckFunctionGeneralChecks(_functionCall, _functionType); } void TypeChecker::typeCheckABIEncodeFunctions( FunctionCall const& _functionCall, FunctionTypePointer _functionType ) { solAssert(!!_functionType, ""); solAssert( _functionType->kind() == FunctionType::Kind::ABIEncode || _functionType->kind() == FunctionType::Kind::ABIEncodePacked || _functionType->kind() == FunctionType::Kind::ABIEncodeWithSelector || _functionType->kind() == FunctionType::Kind::ABIEncodeWithSignature, "ABI function has unexpected FunctionType::Kind." ); solAssert(_functionType->takesArbitraryParameters(), "ABI functions should be variadic."); bool const isPacked = _functionType->kind() == FunctionType::Kind::ABIEncodePacked; solAssert(_functionType->padArguments() != isPacked, "ABI function with unexpected padding"); bool const abiEncoderV2 = m_scope->sourceUnit().annotation().experimentalFeatures.count( ExperimentalFeature::ABIEncoderV2 ); // Check for named arguments if (!_functionCall.names().empty()) { m_errorReporter.typeError( _functionCall.location(), "Named arguments cannot be used for functions that take arbitrary parameters." ); return; } // Perform standard function call type checking typeCheckFunctionGeneralChecks(_functionCall, _functionType); // Check additional arguments for variadic functions vector> const& arguments = _functionCall.arguments(); for (size_t i = 0; i < arguments.size(); ++i) { auto const& argType = type(*arguments[i]); if (argType->category() == Type::Category::RationalNumber) { auto const& rationalType = dynamic_cast(*argType); if (rationalType.isFractional()) { m_errorReporter.typeError( arguments[i]->location(), "Fractional numbers cannot yet be encoded." ); continue; } else if (!argType->mobileType()) { m_errorReporter.typeError( arguments[i]->location(), "Invalid rational number (too large or division by zero)." ); continue; } else if (isPacked) { m_errorReporter.typeError( arguments[i]->location(), "Cannot perform packed encoding for a literal." " Please convert it to an explicit type first." ); continue; } } if (isPacked && !typeSupportedByOldABIEncoder(*argType, false /* isLibrary */)) { m_errorReporter.typeError( arguments[i]->location(), "Type not supported in packed mode." ); continue; } if (!argType->fullEncodingType(false, abiEncoderV2, !_functionType->padArguments())) m_errorReporter.typeError( arguments[i]->location(), "This type cannot be encoded." ); } } void TypeChecker::typeCheckFunctionGeneralChecks( FunctionCall const& _functionCall, FunctionTypePointer _functionType ) { // Actual function call or struct constructor call. solAssert(!!_functionType, ""); solAssert(_functionType->kind() != FunctionType::Kind::ABIDecode, ""); bool const isPositionalCall = _functionCall.names().empty(); bool const isVariadic = _functionType->takesArbitraryParameters(); solAssert( !isVariadic || _functionCall.annotation().kind == FunctionCallKind::FunctionCall, "Struct constructor calls cannot be variadic." ); TypePointers const& parameterTypes = _functionType->parameterTypes(); vector> const& arguments = _functionCall.arguments(); vector> const& argumentNames = _functionCall.names(); // Check number of passed in arguments if ( arguments.size() < parameterTypes.size() || (!isVariadic && arguments.size() > parameterTypes.size()) ) { bool const isStructConstructorCall = _functionCall.annotation().kind == FunctionCallKind::StructConstructorCall; string msg; if (isVariadic) msg += "Need at least " + toString(parameterTypes.size()) + " arguments for " + string(isStructConstructorCall ? "struct constructor" : "function call") + ", but provided only " + toString(arguments.size()) + "."; else msg += "Wrong argument count for " + string(isStructConstructorCall ? "struct constructor" : "function call") + ": " + toString(arguments.size()) + " arguments given but " + string(isVariadic ? "need at least " : "expected ") + toString(parameterTypes.size()) + "."; // Extend error message in case we try to construct a struct with mapping member. if (isStructConstructorCall) { /// For error message: Struct members that were removed during conversion to memory. TypePointer const expressionType = type(_functionCall.expression()); TypeType const& t = dynamic_cast(*expressionType); auto const& structType = dynamic_cast(*t.actualType()); set membersRemovedForStructConstructor = structType.membersMissingInMemory(); if (!membersRemovedForStructConstructor.empty()) { msg += " Members that have to be skipped in memory:"; for (auto const& member: membersRemovedForStructConstructor) msg += " " + member; } } else if ( _functionType->kind() == FunctionType::Kind::BareCall || _functionType->kind() == FunctionType::Kind::BareCallCode || _functionType->kind() == FunctionType::Kind::BareDelegateCall || _functionType->kind() == FunctionType::Kind::BareStaticCall ) { if (arguments.empty()) msg += " This function requires a single bytes argument." " Use \"\" as argument to provide empty calldata."; else msg += " This function requires a single bytes argument." " If all your arguments are value types, you can use" " abi.encode(...) to properly generate it."; } else if ( _functionType->kind() == FunctionType::Kind::KECCAK256 || _functionType->kind() == FunctionType::Kind::SHA256 || _functionType->kind() == FunctionType::Kind::RIPEMD160 ) msg += " This function requires a single bytes argument." " Use abi.encodePacked(...) to obtain the pre-0.5.0" " behaviour or abi.encode(...) to use ABI encoding."; m_errorReporter.typeError(_functionCall.location(), msg); return; } // Parameter to argument map std::vector paramArgMap(parameterTypes.size()); // Map parameters to arguments - trivially for positional calls, less so for named calls if (isPositionalCall) for (size_t i = 0; i < paramArgMap.size(); ++i) paramArgMap[i] = arguments[i].get(); else { auto const& parameterNames = _functionType->parameterNames(); solAssert( parameterNames.size() == argumentNames.size(), "Unexpected parameter length mismatch!" ); // Check for duplicate argument names { bool duplication = false; for (size_t i = 0; i < argumentNames.size(); i++) for (size_t j = i + 1; j < argumentNames.size(); j++) if (*argumentNames[i] == *argumentNames[j]) { duplication = true; m_errorReporter.typeError( arguments[i]->location(), "Duplicate named argument \"" + *argumentNames[i] + "\"." ); } if (duplication) return; } // map parameter names to argument names { bool not_all_mapped = false; for (size_t i = 0; i < paramArgMap.size(); i++) { size_t j; for (j = 0; j < argumentNames.size(); j++) if (parameterNames[i] == *argumentNames[j]) break; if (j < argumentNames.size()) paramArgMap[i] = arguments[j].get(); else { paramArgMap[i] = nullptr; not_all_mapped = true; m_errorReporter.typeError( _functionCall.location(), "Named argument \"" + *argumentNames[i] + "\" does not match function declaration." ); } } if (not_all_mapped) return; } } // Check for compatible types between arguments and parameters for (size_t i = 0; i < paramArgMap.size(); ++i) { solAssert(!!paramArgMap[i], "unmapped parameter"); if (!type(*paramArgMap[i])->isImplicitlyConvertibleTo(*parameterTypes[i])) { string msg = "Invalid type for argument in function call. " "Invalid implicit conversion from " + type(*paramArgMap[i])->toString() + " to " + parameterTypes[i]->toString() + " requested."; if ( _functionType->kind() == FunctionType::Kind::BareCall || _functionType->kind() == FunctionType::Kind::BareCallCode || _functionType->kind() == FunctionType::Kind::BareDelegateCall || _functionType->kind() == FunctionType::Kind::BareStaticCall ) msg += " This function requires a single bytes argument." " If all your arguments are value types, you can" " use abi.encode(...) to properly generate it."; else if ( _functionType->kind() == FunctionType::Kind::KECCAK256 || _functionType->kind() == FunctionType::Kind::SHA256 || _functionType->kind() == FunctionType::Kind::RIPEMD160 ) msg += " This function requires a single bytes argument." " Use abi.encodePacked(...) to obtain the pre-0.5.0" " behaviour or abi.encode(...) to use ABI encoding."; m_errorReporter.typeError(paramArgMap[i]->location(), msg); } } } bool TypeChecker::visit(FunctionCall const& _functionCall) { vector> const& arguments = _functionCall.arguments(); bool argumentsArePure = true; // We need to check arguments' type first as they will be needed for overload resolution. for (ASTPointer const& argument: arguments) { argument->accept(*this); if (!argument->annotation().isPure) argumentsArePure = false; } // Store argument types - and names if given - for overload resolution { FuncCallArguments funcCallArgs; funcCallArgs.names = _functionCall.names(); for (ASTPointer const& argument: arguments) funcCallArgs.types.push_back(type(*argument)); _functionCall.expression().annotation().arguments = std::move(funcCallArgs); } _functionCall.expression().accept(*this); Type const* expressionType = type(_functionCall.expression()); // Determine function call kind and function type for this FunctionCall node FunctionCallAnnotation& funcCallAnno = _functionCall.annotation(); FunctionTypePointer functionType = nullptr; // Determine and assign function call kind, purity and function type for this FunctionCall node switch (expressionType->category()) { case Type::Category::Function: functionType = dynamic_cast(expressionType); funcCallAnno.kind = FunctionCallKind::FunctionCall; // Purity for function calls also depends upon the callee and its FunctionType funcCallAnno.isPure = argumentsArePure && _functionCall.expression().annotation().isPure && functionType && functionType->isPure(); break; case Type::Category::TypeType: { // Determine type for type conversion or struct construction expressions TypePointer const& actualType = dynamic_cast(*expressionType).actualType(); solAssert(!!actualType, ""); if (actualType->category() == Type::Category::Struct) { functionType = dynamic_cast(*actualType).constructorType(); funcCallAnno.kind = FunctionCallKind::StructConstructorCall; funcCallAnno.isPure = argumentsArePure; } else { funcCallAnno.kind = FunctionCallKind::TypeConversion; funcCallAnno.isPure = argumentsArePure; } break; } default: m_errorReporter.typeError(_functionCall.location(), "Type is not callable"); funcCallAnno.kind = FunctionCallKind::Unset; funcCallAnno.isPure = argumentsArePure; break; } // Determine return types switch (funcCallAnno.kind) { case FunctionCallKind::TypeConversion: funcCallAnno.type = typeCheckTypeConversionAndRetrieveReturnType(_functionCall); break; case FunctionCallKind::StructConstructorCall: // fall-through case FunctionCallKind::FunctionCall: { TypePointers returnTypes; switch (functionType->kind()) { case FunctionType::Kind::ABIDecode: { bool const abiEncoderV2 = m_scope->sourceUnit().annotation().experimentalFeatures.count( ExperimentalFeature::ABIEncoderV2 ); returnTypes = typeCheckABIDecodeAndRetrieveReturnType(_functionCall, abiEncoderV2); break; } case FunctionType::Kind::ABIEncode: case FunctionType::Kind::ABIEncodePacked: case FunctionType::Kind::ABIEncodeWithSelector: case FunctionType::Kind::ABIEncodeWithSignature: { typeCheckABIEncodeFunctions(_functionCall, functionType); returnTypes = functionType->returnParameterTypes(); break; } case FunctionType::Kind::MetaType: returnTypes = typeCheckMetaTypeFunctionAndRetrieveReturnType(_functionCall); break; default: { typeCheckFunctionCall(_functionCall, functionType); returnTypes = m_evmVersion.supportsReturndata() ? functionType->returnParameterTypes() : functionType->returnParameterTypesWithoutDynamicTypes(); break; } } funcCallAnno.type = returnTypes.size() == 1 ? move(returnTypes.front()) : TypeProvider::tuple(move(returnTypes)); break; } case FunctionCallKind::Unset: // fall-through default: // for non-callables, ensure error reported and annotate node to void function solAssert(m_errorReporter.hasErrors(), ""); funcCallAnno.kind = FunctionCallKind::FunctionCall; funcCallAnno.type = TypeProvider::emptyTuple(); break; } return false; } void TypeChecker::endVisit(NewExpression const& _newExpression) { TypePointer type = _newExpression.typeName().annotation().type; solAssert(!!type, "Type name not resolved."); if (auto contractName = dynamic_cast(&_newExpression.typeName())) { auto contract = dynamic_cast(&dereference(*contractName)); if (!contract) m_errorReporter.fatalTypeError(_newExpression.location(), "Identifier is not a contract."); if (contract->isInterface()) m_errorReporter.fatalTypeError(_newExpression.location(), "Cannot instantiate an interface."); if (!contract->annotation().unimplementedFunctions.empty()) { SecondarySourceLocation ssl; for (auto function: contract->annotation().unimplementedFunctions) ssl.append("Missing implementation:", function->location()); string msg = "Trying to create an instance of an abstract contract."; ssl.limitSize(msg); m_errorReporter.typeError( _newExpression.location(), ssl, msg ); } if (!contract->constructorIsPublic()) m_errorReporter.typeError(_newExpression.location(), "Contract with internal constructor cannot be created directly."); solAssert(!!m_scope, ""); m_scope->annotation().contractDependencies.insert(contract); solAssert( !contract->annotation().linearizedBaseContracts.empty(), "Linearized base contracts not yet available." ); if (contractDependenciesAreCyclic(*m_scope)) m_errorReporter.typeError( _newExpression.location(), "Circular reference for contract creation (cannot create instance of derived or same contract)." ); _newExpression.annotation().type = FunctionType::newExpressionType(*contract); } else if (type->category() == Type::Category::Array) { if (!type->canLiveOutsideStorage()) m_errorReporter.fatalTypeError( _newExpression.typeName().location(), "Type cannot live outside storage." ); if (!type->isDynamicallySized()) m_errorReporter.typeError( _newExpression.typeName().location(), "Length has to be placed in parentheses after the array type for new expression." ); type = TypeProvider::withLocationIfReference(DataLocation::Memory, type); _newExpression.annotation().type = TypeProvider::function( TypePointers{TypeProvider::uint256()}, TypePointers{type}, strings(1, ""), strings(1, ""), FunctionType::Kind::ObjectCreation, false, StateMutability::Pure ); _newExpression.annotation().isPure = true; } else m_errorReporter.fatalTypeError(_newExpression.location(), "Contract or array type expected."); } bool TypeChecker::visit(MemberAccess const& _memberAccess) { _memberAccess.expression().accept(*this); TypePointer exprType = type(_memberAccess.expression()); ASTString const& memberName = _memberAccess.memberName(); // Retrieve the types of the arguments if this is used to call a function. auto const& arguments = _memberAccess.annotation().arguments; MemberList::MemberMap possibleMembers = exprType->members(m_scope).membersByName(memberName); size_t const initialMemberCount = possibleMembers.size(); if (initialMemberCount > 1 && arguments) { // do overload resolution for (auto it = possibleMembers.begin(); it != possibleMembers.end();) if ( it->type->category() == Type::Category::Function && !dynamic_cast(*it->type).canTakeArguments(*arguments, exprType) ) it = possibleMembers.erase(it); else ++it; } auto& annotation = _memberAccess.annotation(); if (possibleMembers.empty()) { if (initialMemberCount == 0) { // Try to see if the member was removed because it is only available for storage types. auto storageType = TypeProvider::withLocationIfReference( DataLocation::Storage, exprType ); if (!storageType->members(m_scope).membersByName(memberName).empty()) m_errorReporter.fatalTypeError( _memberAccess.location(), "Member \"" + memberName + "\" is not available in " + exprType->toString() + " outside of storage." ); } string errorMsg = "Member \"" + memberName + "\" not found or not visible " "after argument-dependent lookup in " + exprType->toString() + "."; if (auto const& funType = dynamic_cast(exprType)) { auto const& t = funType->returnParameterTypes(); if (memberName == "value") { if (funType->kind() == FunctionType::Kind::Creation) errorMsg = "Constructor for " + t.front()->toString() + " must be payable for member \"value\" to be available."; else if ( funType->kind() == FunctionType::Kind::DelegateCall || funType->kind() == FunctionType::Kind::BareDelegateCall ) errorMsg = "Member \"value\" is not allowed in delegated calls due to \"msg.value\" persisting."; else errorMsg = "Member \"value\" is only available for payable functions."; } else if ( t.size() == 1 && (t.front()->category() == Type::Category::Struct || t.front()->category() == Type::Category::Contract) ) errorMsg += " Did you intend to call the function?"; } else if (exprType->category() == Type::Category::Contract) { for (auto const& addressMember: TypeProvider::payableAddress()->nativeMembers(nullptr)) if (addressMember.name == memberName) { Identifier const* var = dynamic_cast(&_memberAccess.expression()); string varName = var ? var->name() : "..."; errorMsg += " Use \"address(" + varName + ")." + memberName + "\" to access this address member."; break; } } else if (auto addressType = dynamic_cast(exprType)) { // Trigger error when using send or transfer with a non-payable fallback function. if (memberName == "send" || memberName == "transfer") { solAssert( addressType->stateMutability() != StateMutability::Payable, "Expected address not-payable as members were not found" ); errorMsg = "\"send\" and \"transfer\" are only available for objects of type \"address payable\", not \"" + exprType->toString() + "\"."; } } m_errorReporter.fatalTypeError( _memberAccess.location(), errorMsg ); } else if (possibleMembers.size() > 1) m_errorReporter.fatalTypeError( _memberAccess.location(), "Member \"" + memberName + "\" not unique " "after argument-dependent lookup in " + exprType->toString() + (memberName == "value" ? " - did you forget the \"payable\" modifier?" : ".") ); annotation.referencedDeclaration = possibleMembers.front().declaration; annotation.type = possibleMembers.front().type; if (auto funType = dynamic_cast(annotation.type)) solAssert( !funType->bound() || exprType->isImplicitlyConvertibleTo(*funType->selfType()), "Function \"" + memberName + "\" cannot be called on an object of type " + exprType->toString() + " (expected " + funType->selfType()->toString() + ")." ); if (auto const* structType = dynamic_cast(exprType)) annotation.isLValue = !structType->dataStoredIn(DataLocation::CallData); else if (exprType->category() == Type::Category::Array) { auto const& arrayType(dynamic_cast(*exprType)); annotation.isLValue = ( memberName == "length" && arrayType.location() == DataLocation::Storage && arrayType.isDynamicallySized() ); } else if (exprType->category() == Type::Category::FixedBytes) annotation.isLValue = false; else if (TypeType const* typeType = dynamic_cast(exprType)) { if (ContractType const* contractType = dynamic_cast(typeType->actualType())) annotation.isLValue = annotation.referencedDeclaration->isLValue(); } // TODO some members might be pure, but for example `address(0x123).balance` is not pure // although every subexpression is, so leaving this limited for now. if (auto tt = dynamic_cast(exprType)) if (tt->actualType()->category() == Type::Category::Enum) annotation.isPure = true; if (auto magicType = dynamic_cast(exprType)) { if (magicType->kind() == MagicType::Kind::ABI) annotation.isPure = true; else if (magicType->kind() == MagicType::Kind::MetaType && ( memberName == "creationCode" || memberName == "runtimeCode" )) { annotation.isPure = true; m_scope->annotation().contractDependencies.insert( &dynamic_cast(*magicType->typeArgument()).contractDefinition() ); if (contractDependenciesAreCyclic(*m_scope)) m_errorReporter.typeError( _memberAccess.location(), "Circular reference for contract code access." ); } else if (magicType->kind() == MagicType::Kind::MetaType && memberName == "name") annotation.isPure = true; } return false; } bool TypeChecker::visit(IndexAccess const& _access) { _access.baseExpression().accept(*this); TypePointer baseType = type(_access.baseExpression()); TypePointer resultType = nullptr; bool isLValue = false; bool isPure = _access.baseExpression().annotation().isPure; Expression const* index = _access.indexExpression(); switch (baseType->category()) { case Type::Category::Array: { ArrayType const& actualType = dynamic_cast(*baseType); if (!index) m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted."); else if (actualType.isString()) { m_errorReporter.typeError(_access.location(), "Index access for string is not possible."); index->accept(*this); } else { expectType(*index, *TypeProvider::uint256()); if (!m_errorReporter.hasErrors()) if (auto numberType = dynamic_cast(type(*index))) { solAssert(!numberType->isFractional(), ""); if (!actualType.isDynamicallySized() && actualType.length() <= numberType->literalValue(nullptr)) m_errorReporter.typeError(_access.location(), "Out of bounds array access."); } } resultType = actualType.baseType(); isLValue = actualType.location() != DataLocation::CallData; break; } case Type::Category::Mapping: { MappingType const& actualType = dynamic_cast(*baseType); if (!index) m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted."); else expectType(*index, *actualType.keyType()); resultType = actualType.valueType(); isLValue = true; break; } case Type::Category::TypeType: { TypeType const& typeType = dynamic_cast(*baseType); if (dynamic_cast(typeType.actualType())) m_errorReporter.typeError(_access.location(), "Index access for contracts or libraries is not possible."); if (!index) resultType = TypeProvider::typeType(TypeProvider::array(DataLocation::Memory, typeType.actualType())); else { u256 length = 1; if (expectType(*index, *TypeProvider::uint256())) { if (auto indexValue = dynamic_cast(type(*index))) length = indexValue->literalValue(nullptr); else m_errorReporter.fatalTypeError(index->location(), "Integer constant expected."); } else solAssert(m_errorReporter.hasErrors(), "Expected errors as expectType returned false"); resultType = TypeProvider::typeType(TypeProvider::array( DataLocation::Memory, typeType.actualType(), length )); } break; } case Type::Category::FixedBytes: { FixedBytesType const& bytesType = dynamic_cast(*baseType); if (!index) m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted."); else { if (!expectType(*index, *TypeProvider::uint256())) m_errorReporter.fatalTypeError(_access.location(), "Index expression cannot be represented as an unsigned integer."); if (auto integerType = dynamic_cast(type(*index))) if (bytesType.numBytes() <= integerType->literalValue(nullptr)) m_errorReporter.typeError(_access.location(), "Out of bounds array access."); } resultType = TypeProvider::fixedBytes(1); isLValue = false; // @todo this heavily depends on how it is embedded break; } default: m_errorReporter.fatalTypeError( _access.baseExpression().location(), "Indexed expression has to be a type, mapping or array (is " + baseType->toString() + ")" ); } _access.annotation().type = resultType; _access.annotation().isLValue = isLValue; if (index && !index->annotation().isPure) isPure = false; _access.annotation().isPure = isPure; return false; } bool TypeChecker::visit(Identifier const& _identifier) { IdentifierAnnotation& annotation = _identifier.annotation(); if (!annotation.referencedDeclaration) { if (!annotation.arguments) { // The identifier should be a public state variable shadowing other functions vector candidates; for (Declaration const* declaration: annotation.overloadedDeclarations) { if (VariableDeclaration const* variableDeclaration = dynamic_cast(declaration)) candidates.push_back(declaration); } if (candidates.empty()) m_errorReporter.fatalTypeError(_identifier.location(), "No matching declaration found after variable lookup."); else if (candidates.size() == 1) annotation.referencedDeclaration = candidates.front(); else m_errorReporter.fatalTypeError(_identifier.location(), "No unique declaration found after variable lookup."); } else if (annotation.overloadedDeclarations.empty()) m_errorReporter.fatalTypeError(_identifier.location(), "No candidates for overload resolution found."); else if (annotation.overloadedDeclarations.size() == 1) annotation.referencedDeclaration = *annotation.overloadedDeclarations.begin(); else { vector candidates; for (Declaration const* declaration: annotation.overloadedDeclarations) { FunctionTypePointer functionType = declaration->functionType(true); solAssert(!!functionType, "Requested type not present."); if (functionType->canTakeArguments(*annotation.arguments)) candidates.push_back(declaration); } if (candidates.empty()) m_errorReporter.fatalTypeError(_identifier.location(), "No matching declaration found after argument-dependent lookup."); else if (candidates.size() == 1) annotation.referencedDeclaration = candidates.front(); else m_errorReporter.fatalTypeError(_identifier.location(), "No unique declaration found after argument-dependent lookup."); } } solAssert( !!annotation.referencedDeclaration, "Referenced declaration is null after overload resolution." ); annotation.isLValue = annotation.referencedDeclaration->isLValue(); annotation.type = annotation.referencedDeclaration->type(); if (!annotation.type) m_errorReporter.fatalTypeError(_identifier.location(), "Declaration referenced before type could be determined."); if (auto variableDeclaration = dynamic_cast(annotation.referencedDeclaration)) annotation.isPure = annotation.isConstant = variableDeclaration->isConstant(); else if (dynamic_cast(annotation.referencedDeclaration)) { if (dynamic_cast(annotation.type)) annotation.isPure = true; } else if (dynamic_cast(annotation.type)) annotation.isPure = true; // Check for deprecated function names. // The check is done here for the case without an actual function call. if (FunctionType const* fType = dynamic_cast(_identifier.annotation().type)) { if (_identifier.name() == "sha3" && fType->kind() == FunctionType::Kind::KECCAK256) m_errorReporter.typeError( _identifier.location(), "\"sha3\" has been deprecated in favour of \"keccak256\"" ); else if (_identifier.name() == "suicide" && fType->kind() == FunctionType::Kind::Selfdestruct) m_errorReporter.typeError( _identifier.location(), "\"suicide\" has been deprecated in favour of \"selfdestruct\"" ); } return false; } void TypeChecker::endVisit(ElementaryTypeNameExpression const& _expr) { _expr.annotation().type = TypeProvider::typeType(TypeProvider::fromElementaryTypeName(_expr.typeName())); _expr.annotation().isPure = true; } void TypeChecker::endVisit(Literal const& _literal) { if (_literal.looksLikeAddress()) { // Assign type here if it even looks like an address. This prevents double errors for invalid addresses _literal.annotation().type = TypeProvider::payableAddress(); string msg; if (_literal.valueWithoutUnderscores().length() != 42) // "0x" + 40 hex digits // looksLikeAddress enforces that it is a hex literal starting with "0x" msg = "This looks like an address but is not exactly 40 hex digits. It is " + to_string(_literal.valueWithoutUnderscores().length() - 2) + " hex digits."; else if (!_literal.passesAddressChecksum()) { msg = "This looks like an address but has an invalid checksum."; if (!_literal.getChecksummedAddress().empty()) msg += " Correct checksummed address: \"" + _literal.getChecksummedAddress() + "\"."; } if (!msg.empty()) m_errorReporter.syntaxError( _literal.location(), msg + " If this is not used as an address, please prepend '00'. " + "For more information please see https://solidity.readthedocs.io/en/develop/types.html#address-literals" ); } if (_literal.isHexNumber() && _literal.subDenomination() != Literal::SubDenomination::None) m_errorReporter.fatalTypeError( _literal.location(), "Hexadecimal numbers cannot be used with unit denominations. " "You can use an expression of the form \"0x1234 * 1 day\" instead." ); if (_literal.subDenomination() == Literal::SubDenomination::Year) m_errorReporter.typeError( _literal.location(), "Using \"years\" as a unit denomination is deprecated." ); if (!_literal.annotation().type) _literal.annotation().type = TypeProvider::forLiteral(_literal); if (!_literal.annotation().type) m_errorReporter.fatalTypeError(_literal.location(), "Invalid literal value."); _literal.annotation().isPure = true; } bool TypeChecker::contractDependenciesAreCyclic( ContractDefinition const& _contract, std::set const& _seenContracts ) const { // Naive depth-first search that remembers nodes already seen. if (_seenContracts.count(&_contract)) return true; set seen(_seenContracts); seen.insert(&_contract); for (auto const* c: _contract.annotation().contractDependencies) if (contractDependenciesAreCyclic(*c, seen)) return true; return false; } Declaration const& TypeChecker::dereference(Identifier const& _identifier) const { solAssert(!!_identifier.annotation().referencedDeclaration, "Declaration not stored."); return *_identifier.annotation().referencedDeclaration; } Declaration const& TypeChecker::dereference(UserDefinedTypeName const& _typeName) const { solAssert(!!_typeName.annotation().referencedDeclaration, "Declaration not stored."); return *_typeName.annotation().referencedDeclaration; } bool TypeChecker::expectType(Expression const& _expression, Type const& _expectedType) { _expression.accept(*this); if (!type(_expression)->isImplicitlyConvertibleTo(_expectedType)) { auto errorMsg = "Type " + type(_expression)->toString() + " is not implicitly convertible to expected type " + _expectedType.toString(); if ( type(_expression)->category() == Type::Category::RationalNumber && dynamic_cast(type(_expression))->isFractional() && type(_expression)->mobileType() ) { if (_expectedType.operator==(*type(_expression)->mobileType())) m_errorReporter.typeError( _expression.location(), errorMsg + ", but it can be explicitly converted." ); else m_errorReporter.typeError( _expression.location(), errorMsg + ". Try converting to type " + type(_expression)->mobileType()->toString() + " or use an explicit conversion." ); } else m_errorReporter.typeError(_expression.location(), errorMsg + "."); return false; } return true; } void TypeChecker::requireLValue(Expression const& _expression) { _expression.annotation().lValueRequested = true; _expression.accept(*this); if (_expression.annotation().isConstant) m_errorReporter.typeError(_expression.location(), "Cannot assign to a constant variable."); else if (!_expression.annotation().isLValue) m_errorReporter.typeError(_expression.location(), "Expression has to be an lvalue."); }