/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * @author Christian * @date 2014 * Solidity data types */ #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include namespace dev { namespace solidity { class Type; // forward class FunctionType; // forward using TypePointer = std::shared_ptr; using FunctionTypePointer = std::shared_ptr; using TypePointers = std::vector; using rational = boost::rational; enum class DataLocation { Storage, CallData, Memory }; /** * Helper class to compute storage offsets of members of structs and contracts. */ class StorageOffsets { public: /// Resets the StorageOffsets objects and determines the position in storage for each /// of the elements of @a _types. void computeOffsets(TypePointers const& _types); /// @returns the offset of the given member, might be null if the member is not part of storage. std::pair const* offset(size_t _index) const; /// @returns the total number of slots occupied by all members. u256 const& storageSize() const { return m_storageSize; } private: u256 m_storageSize; std::map> m_offsets; }; /** * List of members of a type. */ class MemberList { public: struct Member { Member(std::string const& _name, TypePointer const& _type, Declaration const* _declaration = nullptr): name(_name), type(_type), declaration(_declaration) { } std::string name; TypePointer type; Declaration const* declaration = nullptr; }; using MemberMap = std::vector; MemberList() {} explicit MemberList(MemberMap const& _members): m_memberTypes(_members) {} MemberList& operator=(MemberList&& _other); void combine(MemberList const& _other); TypePointer memberType(std::string const& _name) const { TypePointer type; for (auto const& it: m_memberTypes) if (it.name == _name) { solAssert(!type, "Requested member type by non-unique name."); type = it.type; } return type; } MemberMap membersByName(std::string const& _name) const { MemberMap members; for (auto const& it: m_memberTypes) if (it.name == _name) members.push_back(it); return members; } /// @returns the offset of the given member in storage slots and bytes inside a slot or /// a nullptr if the member is not part of storage. std::pair const* memberStorageOffset(std::string const& _name) const; /// @returns the number of storage slots occupied by the members. u256 const& storageSize() const; MemberMap::const_iterator begin() const { return m_memberTypes.begin(); } MemberMap::const_iterator end() const { return m_memberTypes.end(); } private: MemberMap m_memberTypes; mutable std::unique_ptr m_storageOffsets; }; /** * Abstract base class that forms the root of the type hierarchy. */ class Type: private boost::noncopyable, public std::enable_shared_from_this { public: enum class Category { Integer, RationalNumber, StringLiteral, Bool, FixedPoint, Array, FixedBytes, Contract, Struct, Function, Enum, Tuple, Mapping, TypeType, Modifier, Magic, Module, InaccessibleDynamic }; /// @{ /// @name Factory functions /// Factory functions that convert an AST @ref TypeName to a Type. static TypePointer fromElementaryTypeName(ElementaryTypeNameToken const& _type); /// Converts a given elementary type name with optional suffix " memory" to a type pointer. static TypePointer fromElementaryTypeName(std::string const& _name); /// @} /// Auto-detect the proper type for a literal. @returns an empty pointer if the literal does /// not fit any type. static TypePointer forLiteral(Literal const& _literal); /// @returns a pointer to _a or _b if the other is implicitly convertible to it or nullptr otherwise static TypePointer commonType(TypePointer const& _a, TypePointer const& _b); virtual Category category() const = 0; /// @returns a valid solidity identifier such that two types should compare equal if and /// only if they have the same identifier. /// The identifier should start with "t_". /// Can contain characters which are invalid in identifiers. virtual std::string richIdentifier() const = 0; /// @returns a valid solidity identifier such that two types should compare equal if and /// only if they have the same identifier. /// The identifier should start with "t_". /// Will not contain any character which would be invalid as an identifier. std::string identifier() const { return escapeIdentifier(richIdentifier()); } /// More complex identifier strings use "parentheses", where $_ is interpreted as as /// "opening parenthesis", _$ as "closing parenthesis", _$_ as "comma" and any $ that /// appears as part of a user-supplied identifier is escaped as _$$$_. /// @returns an escaped identifier (will not contain any parenthesis or commas) static std::string escapeIdentifier(std::string const& _identifier); virtual bool isImplicitlyConvertibleTo(Type const& _other) const { return *this == _other; } virtual bool isExplicitlyConvertibleTo(Type const& _convertTo) const { return isImplicitlyConvertibleTo(_convertTo); } /// @returns the resulting type of applying the given unary operator or an empty pointer if /// this is not possible. /// The default implementation does not allow any unary operator. virtual TypePointer unaryOperatorResult(Token::Value) const { return TypePointer(); } /// @returns the resulting type of applying the given binary operator or an empty pointer if /// this is not possible. /// The default implementation allows comparison operators if a common type exists virtual TypePointer binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const { return Token::isCompareOp(_operator) ? commonType(shared_from_this(), _other) : TypePointer(); } virtual bool operator==(Type const& _other) const { return category() == _other.category(); } virtual bool operator!=(Type const& _other) const { return !this->operator ==(_other); } /// @returns number of bytes used by this type when encoded for CALL. If it is a dynamic type, /// returns the size of the pointer (usually 32). Returns 0 if the type cannot be encoded /// in calldata. /// @note: This should actually not be called on types, where isDynamicallyEncoded returns true. /// If @a _padded then it is assumed that each element is padded to a multiple of 32 bytes. virtual unsigned calldataEncodedSize(bool _padded) const { (void)_padded; return 0; } /// @returns the size of this data type in bytes when stored in memory. For memory-reference /// types, this is the size of the memory pointer. virtual unsigned memoryHeadSize() const { return calldataEncodedSize(); } /// Convenience version of @see calldataEncodedSize(bool) unsigned calldataEncodedSize() const { return calldataEncodedSize(true); } /// @returns true if the type is a dynamic array virtual bool isDynamicallySized() const { return false; } /// @returns true if the type is dynamically encoded in the ABI virtual bool isDynamicallyEncoded() const { return false; } /// @returns the number of storage slots required to hold this value in storage. /// For dynamically "allocated" types, it returns the size of the statically allocated head, virtual u256 storageSize() const { return 1; } /// Multiple small types can be packed into a single storage slot. If such a packing is possible /// this function @returns the size in bytes smaller than 32. Data is moved to the next slot if /// it does not fit. /// In order to avoid computation at runtime of whether such moving is necessary, structs and /// array data (not each element) always start a new slot. virtual unsigned storageBytes() const { return 32; } /// Returns true if the type can be stored in storage. virtual bool canBeStored() const { return true; } /// Returns false if the type cannot live outside the storage, i.e. if it includes some mapping. virtual bool canLiveOutsideStorage() const { return true; } /// Returns true if the type can be stored as a value (as opposed to a reference) on the stack, /// i.e. it behaves differently in lvalue context and in value context. virtual bool isValueType() const { return false; } virtual unsigned sizeOnStack() const { return 1; } /// If it is possible to initialize such a value in memory by just writing zeros /// of the size memoryHeadSize(). virtual bool hasSimpleZeroValueInMemory() const { return true; } /// @returns the mobile (in contrast to static) type corresponding to the given type. /// This returns the corresponding IntegerType or FixedPointType for RationalNumberType /// and the pointer type for storage reference types. /// Might return a null pointer if there is no fitting type. virtual TypePointer mobileType() const { return shared_from_this(); } /// @returns true if this is a non-value type and the data of this type is stored at the /// given location. virtual bool dataStoredIn(DataLocation) const { return false; } /// @returns the type of a temporary during assignment to a variable of the given type. /// Specifically, returns the requested itself if it can be dynamically allocated (or is a value type) /// and the mobile type otherwise. virtual TypePointer closestTemporaryType(TypePointer const& _targetType) const { return _targetType->dataStoredIn(DataLocation::Storage) ? mobileType() : _targetType; } /// Returns the list of all members of this type. Default implementation: no members apart from bound. /// @param _currentScope scope in which the members are accessed. MemberList const& members(ContractDefinition const* _currentScope) const; /// Convenience method, returns the type of the given named member or an empty pointer if no such member exists. TypePointer memberType(std::string const& _name, ContractDefinition const* _currentScope = nullptr) const { return members(_currentScope).memberType(_name); } virtual std::string toString(bool _short) const = 0; std::string toString() const { return toString(false); } /// @returns the canonical name of this type for use in library function signatures. virtual std::string canonicalName() const { return toString(true); } /// @returns the signature of this type in external functions, i.e. `uint256` for integers /// or `(uint256,bytes8)[2]` for an array of structs. If @a _structsByName, /// structs are given by canonical name like `ContractName.StructName[2]`. virtual std::string signatureInExternalFunction(bool /*_structsByName*/) const { return canonicalName(); } virtual u256 literalValue(Literal const*) const { solAssert(false, "Literal value requested for type without literals: " + toString(false)); } /// @returns a (simpler) type that is encoded in the same way for external function calls. /// This for example returns address for contract types. /// If there is no such type, returns an empty shared pointer. virtual TypePointer encodingType() const { return TypePointer(); } /// @returns a (simpler) type that is used when decoding this type in calldata. virtual TypePointer decodingType() const { return encodingType(); } /// @returns a type that will be used outside of Solidity for e.g. function signatures. /// This for example returns address for contract types. /// If there is no such type, returns an empty shared pointer. /// @param _inLibrary if set, returns types as used in a library, e.g. struct and contract types /// are returned without modification. virtual TypePointer interfaceType(bool /*_inLibrary*/) const { return TypePointer(); } /// @returns true iff this type can be passed on via calls (to libraries if _inLibrary is true), /// should be have identical to !!interfaceType(_inLibrary) but might do optimizations. virtual bool canBeUsedExternally(bool _inLibrary) const { return !!interfaceType(_inLibrary); } private: /// @returns a member list containing all members added to this type by `using for` directives. static MemberList::MemberMap boundFunctions(Type const& _type, ContractDefinition const& _scope); protected: /// @returns the members native to this type depending on the given context. This function /// is used (in conjunction with boundFunctions to fill m_members below. virtual MemberList::MemberMap nativeMembers(ContractDefinition const* /*_currentScope*/) const { return MemberList::MemberMap(); } /// List of member types (parameterised by scape), will be lazy-initialized. mutable std::map> m_members; }; /** * Any kind of integer type (signed, unsigned, address). */ class IntegerType: public Type { public: enum class Modifier { Unsigned, Signed, Address }; virtual Category category() const override { return Category::Integer; } explicit IntegerType(int _bits, Modifier _modifier = Modifier::Unsigned); virtual std::string richIdentifier() const override; virtual bool isImplicitlyConvertibleTo(Type const& _convertTo) const override; virtual bool isExplicitlyConvertibleTo(Type const& _convertTo) const override; virtual TypePointer unaryOperatorResult(Token::Value _operator) const override; virtual TypePointer binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const override; virtual bool operator==(Type const& _other) const override; virtual unsigned calldataEncodedSize(bool _padded = true) const override { return _padded ? 32 : m_bits / 8; } virtual unsigned storageBytes() const override { return m_bits / 8; } virtual bool isValueType() const override { return true; } virtual MemberList::MemberMap nativeMembers(ContractDefinition const*) const override; virtual std::string toString(bool _short) const override; virtual u256 literalValue(Literal const* _literal) const override; virtual TypePointer encodingType() const override { return shared_from_this(); } virtual TypePointer interfaceType(bool) const override { return shared_from_this(); } int numBits() const { return m_bits; } bool isAddress() const { return m_modifier == Modifier::Address; } bool isSigned() const { return m_modifier == Modifier::Signed; } bigint minValue() const; bigint maxValue() const; private: int m_bits; Modifier m_modifier; }; /** * A fixed point type number (signed, unsigned). */ class FixedPointType: public Type { public: enum class Modifier { Unsigned, Signed }; virtual Category category() const override { return Category::FixedPoint; } explicit FixedPointType(int _totalBits, int _fractionalDigits, Modifier _modifier = Modifier::Unsigned); virtual std::string richIdentifier() const override; virtual bool isImplicitlyConvertibleTo(Type const& _convertTo) const override; virtual bool isExplicitlyConvertibleTo(Type const& _convertTo) const override; virtual TypePointer unaryOperatorResult(Token::Value _operator) const override; virtual TypePointer binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const override; virtual bool operator==(Type const& _other) const override; virtual unsigned calldataEncodedSize(bool _padded = true) const override { return _padded ? 32 : m_totalBits / 8; } virtual unsigned storageBytes() const override { return m_totalBits / 8; } virtual bool isValueType() const override { return true; } virtual std::string toString(bool _short) const override; virtual TypePointer encodingType() const override { return shared_from_this(); } virtual TypePointer interfaceType(bool) const override { return shared_from_this(); } /// Number of bits used for this type in total. int numBits() const { return m_totalBits; } /// Number of decimal digits after the radix point. int fractionalDigits() const { return m_fractionalDigits; } bool isSigned() const { return m_modifier == Modifier::Signed; } /// @returns the largest integer value this type con hold. Note that this is not the /// largest value in general. bigint maxIntegerValue() const; /// @returns the smallest integer value this type can hold. Note hat this is not the /// smallest value in general. bigint minIntegerValue() const; private: int m_totalBits; int m_fractionalDigits; Modifier m_modifier; }; /** * Integer and fixed point constants either literals or computed. * Example expressions: 2, 3.14, 2+10.2, ~10. * There is one distinct type per value. */ class RationalNumberType: public Type { public: virtual Category category() const override { return Category::RationalNumber; } /// @returns true if the literal is a valid integer. static std::tuple isValidLiteral(Literal const& _literal); explicit RationalNumberType(rational const& _value): m_value(_value) {} virtual bool isImplicitlyConvertibleTo(Type const& _convertTo) const override; virtual bool isExplicitlyConvertibleTo(Type const& _convertTo) const override; virtual TypePointer unaryOperatorResult(Token::Value _operator) const override; virtual TypePointer binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const override; virtual std::string richIdentifier() const override; virtual bool operator==(Type const& _other) const override; virtual bool canBeStored() const override { return false; } virtual bool canLiveOutsideStorage() const override { return false; } virtual std::string toString(bool _short) const override; virtual u256 literalValue(Literal const* _literal) const override; virtual TypePointer mobileType() const override; /// @returns the smallest integer type that can hold the value or an empty pointer if not possible. std::shared_ptr integerType() const; /// @returns the smallest fixed type that can hold the value or incurs the least precision loss. /// If the integer part does not fit, returns an empty pointer. std::shared_ptr fixedPointType() const; /// @returns true if the value is not an integer. bool isFractional() const { return m_value.denominator() != 1; } /// @returns true if the value is negative. bool isNegative() const { return m_value < 0; } private: rational m_value; /// @returns true if the literal is a valid rational number. static std::tuple parseRational(std::string const& _value); /// @returns a truncated readable representation of the bigint keeping only /// up to 4 leading and 4 trailing digits. static std::string bigintToReadableString(dev::bigint const& num); }; /** * Literal string, can be converted to bytes, bytesX or string. */ class StringLiteralType: public Type { public: virtual Category category() const override { return Category::StringLiteral; } explicit StringLiteralType(Literal const& _literal); virtual bool isImplicitlyConvertibleTo(Type const& _convertTo) const override; virtual TypePointer binaryOperatorResult(Token::Value, TypePointer const&) const override { return TypePointer(); } virtual std::string richIdentifier() const override; virtual bool operator==(Type const& _other) const override; virtual bool canBeStored() const override { return false; } virtual bool canLiveOutsideStorage() const override { return false; } virtual unsigned sizeOnStack() const override { return 0; } virtual std::string toString(bool) const override; virtual TypePointer mobileType() const override; bool isValidUTF8() const; std::string const& value() const { return m_value; } private: std::string m_value; }; /** * Bytes type with fixed length of up to 32 bytes. */ class FixedBytesType: public Type { public: virtual Category category() const override { return Category::FixedBytes; } /// @returns the smallest bytes type for the given literal or an empty pointer /// if no type fits. static std::shared_ptr smallestTypeForLiteral(std::string const& _literal); explicit FixedBytesType(int _bytes); virtual bool isImplicitlyConvertibleTo(Type const& _convertTo) const override; virtual bool isExplicitlyConvertibleTo(Type const& _convertTo) const override; virtual std::string richIdentifier() const override; virtual bool operator==(Type const& _other) const override; virtual TypePointer unaryOperatorResult(Token::Value _operator) const override; virtual TypePointer binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const override; virtual unsigned calldataEncodedSize(bool _padded) const override { return _padded && m_bytes > 0 ? 32 : m_bytes; } virtual unsigned storageBytes() const override { return m_bytes; } virtual bool isValueType() const override { return true; } virtual std::string toString(bool) const override { return "bytes" + dev::toString(m_bytes); } virtual MemberList::MemberMap nativeMembers(ContractDefinition const*) const override; virtual TypePointer encodingType() const override { return shared_from_this(); } virtual TypePointer interfaceType(bool) const override { return shared_from_this(); } int numBytes() const { return m_bytes; } private: int m_bytes; }; /** * The boolean type. */ class BoolType: public Type { public: BoolType() {} virtual Category category() const override { return Category::Bool; } virtual std::string richIdentifier() const override { return "t_bool"; } virtual TypePointer unaryOperatorResult(Token::Value _operator) const override; virtual TypePointer binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const override; virtual unsigned calldataEncodedSize(bool _padded) const override{ return _padded ? 32 : 1; } virtual unsigned storageBytes() const override { return 1; } virtual bool isValueType() const override { return true; } virtual std::string toString(bool) const override { return "bool"; } virtual u256 literalValue(Literal const* _literal) const override; virtual TypePointer encodingType() const override { return shared_from_this(); } virtual TypePointer interfaceType(bool) const override { return shared_from_this(); } }; /** * Base class used by types which are not value types and can be stored either in storage, memory * or calldata. This is currently used by arrays and structs. */ class ReferenceType: public Type { public: explicit ReferenceType(DataLocation _location): m_location(_location) {} DataLocation location() const { return m_location; } virtual TypePointer unaryOperatorResult(Token::Value _operator) const override; virtual TypePointer binaryOperatorResult(Token::Value, TypePointer const&) const override { return TypePointer(); } virtual unsigned memoryHeadSize() const override { return 32; } /// @returns a copy of this type with location (recursively) changed to @a _location, /// whereas isPointer is only shallowly changed - the deep copy is always a bound reference. virtual TypePointer copyForLocation(DataLocation _location, bool _isPointer) const = 0; virtual TypePointer mobileType() const override { return copyForLocation(m_location, true); } virtual bool dataStoredIn(DataLocation _location) const override { return m_location == _location; } virtual bool hasSimpleZeroValueInMemory() const override { return false; } /// Storage references can be pointers or bound references. In general, local variables are of /// pointer type, state variables are bound references. Assignments to pointers or deleting /// them will not modify storage (that will only change the pointer). Assignment from /// non-storage objects to a variable of storage pointer type is not possible. bool isPointer() const { return m_isPointer; } bool operator==(ReferenceType const& _other) const { return location() == _other.location() && isPointer() == _other.isPointer(); } /// @returns a copy of @a _type having the same location as this (and is not a pointer type) /// if _type is a reference type and an unmodified copy of _type otherwise. /// This function is mostly useful to modify inner types appropriately. static TypePointer copyForLocationIfReference(DataLocation _location, TypePointer const& _type); protected: TypePointer copyForLocationIfReference(TypePointer const& _type) const; /// @returns a human-readable description of the reference part of the type. std::string stringForReferencePart() const; /// @returns the suffix computed from the reference part to be used by identifier(); std::string identifierLocationSuffix() const; DataLocation m_location = DataLocation::Storage; bool m_isPointer = true; }; /** * The type of an array. The flavours are byte array (bytes), statically- ([]) * and dynamically-sized array ([]). * In storage, all arrays are packed tightly (as long as more than one elementary type fits in * one slot). Dynamically sized arrays (including byte arrays) start with their size as a uint and * thus start on their own slot. */ class ArrayType: public ReferenceType { public: virtual Category category() const override { return Category::Array; } /// Constructor for a byte array ("bytes") and string. explicit ArrayType(DataLocation _location, bool _isString = false): ReferenceType(_location), m_arrayKind(_isString ? ArrayKind::String : ArrayKind::Bytes), m_baseType(std::make_shared(1)) { } /// Constructor for a dynamically sized array type ("type[]") ArrayType(DataLocation _location, TypePointer const& _baseType): ReferenceType(_location), m_baseType(copyForLocationIfReference(_baseType)) { } /// Constructor for a fixed-size array type ("type[20]") ArrayType(DataLocation _location, TypePointer const& _baseType, u256 const& _length): ReferenceType(_location), m_baseType(copyForLocationIfReference(_baseType)), m_hasDynamicLength(false), m_length(_length) {} virtual bool isImplicitlyConvertibleTo(Type const& _convertTo) const override; virtual bool isExplicitlyConvertibleTo(Type const& _convertTo) const override; virtual std::string richIdentifier() const override; virtual bool operator==(const Type& _other) const override; virtual unsigned calldataEncodedSize(bool _padded) const override; virtual bool isDynamicallySized() const override { return m_hasDynamicLength; } virtual bool isDynamicallyEncoded() const override; virtual u256 storageSize() const override; virtual bool canLiveOutsideStorage() const override { return m_baseType->canLiveOutsideStorage(); } virtual unsigned sizeOnStack() const override; virtual std::string toString(bool _short) const override; virtual std::string canonicalName() const override; virtual std::string signatureInExternalFunction(bool _structsByName) const override; virtual MemberList::MemberMap nativeMembers(ContractDefinition const* _currentScope) const override; virtual TypePointer encodingType() const override; virtual TypePointer decodingType() const override; virtual TypePointer interfaceType(bool _inLibrary) const override; virtual bool canBeUsedExternally(bool _inLibrary) const override; /// @returns true if this is valid to be stored in calldata bool validForCalldata() const; /// @returns true if this is a byte array or a string bool isByteArray() const { return m_arrayKind != ArrayKind::Ordinary; } /// @returns true if this is a string bool isString() const { return m_arrayKind == ArrayKind::String; } TypePointer const& baseType() const { solAssert(!!m_baseType, ""); return m_baseType;} u256 const& length() const { return m_length; } u256 memorySize() const; TypePointer copyForLocation(DataLocation _location, bool _isPointer) const override; private: /// String is interpreted as a subtype of Bytes. enum class ArrayKind { Ordinary, Bytes, String }; bigint unlimitedCalldataEncodedSize(bool _padded) const; ///< Byte arrays ("bytes") and strings have different semantics from ordinary arrays. ArrayKind m_arrayKind = ArrayKind::Ordinary; TypePointer m_baseType; bool m_hasDynamicLength = true; u256 m_length; }; /** * The type of a contract instance or library, there is one distinct type for each contract definition. */ class ContractType: public Type { public: virtual Category category() const override { return Category::Contract; } explicit ContractType(ContractDefinition const& _contract, bool _super = false): m_contract(_contract), m_super(_super) {} /// Contracts can be implicitly converted to super classes and to addresses. virtual bool isImplicitlyConvertibleTo(Type const& _convertTo) const override; /// Contracts can be converted to themselves and to integers. virtual bool isExplicitlyConvertibleTo(Type const& _convertTo) const override; virtual TypePointer unaryOperatorResult(Token::Value _operator) const override; virtual std::string richIdentifier() const override; virtual bool operator==(Type const& _other) const override; virtual unsigned calldataEncodedSize(bool _padded ) const override { solAssert(!isSuper(), ""); return encodingType()->calldataEncodedSize(_padded); } virtual unsigned storageBytes() const override { solAssert(!isSuper(), ""); return 20; } virtual bool canLiveOutsideStorage() const override { return !isSuper(); } virtual unsigned sizeOnStack() const override { return m_super ? 0 : 1; } virtual bool isValueType() const override { return !isSuper(); } virtual std::string toString(bool _short) const override; virtual std::string canonicalName() const override; virtual MemberList::MemberMap nativeMembers(ContractDefinition const* _currentScope) const override; virtual TypePointer encodingType() const override { if (isSuper()) return TypePointer{}; return std::make_shared(160, IntegerType::Modifier::Address); } virtual TypePointer interfaceType(bool _inLibrary) const override { if (isSuper()) return TypePointer{}; return _inLibrary ? shared_from_this() : encodingType(); } bool isSuper() const { return m_super; } // @returns true if and only if the contract has a payable fallback function bool isPayable() const; ContractDefinition const& contractDefinition() const { return m_contract; } /// Returns the function type of the constructor modified to return an object of the contract's type. FunctionTypePointer const& newExpressionType() const; /// @returns a list of all state variables (including inherited) of the contract and their /// offsets in storage. std::vector> stateVariables() const; private: static void addNonConflictingAddressMembers(MemberList::MemberMap& _members); ContractDefinition const& m_contract; /// If true, it is the "super" type of the current contract, i.e. it contains only inherited /// members. bool m_super = false; /// Type of the constructor, @see constructorType. Lazily initialized. mutable FunctionTypePointer m_constructorType; }; /** * The type of a struct instance, there is one distinct type per struct definition. */ class StructType: public ReferenceType { public: virtual Category category() const override { return Category::Struct; } explicit StructType(StructDefinition const& _struct, DataLocation _location = DataLocation::Storage): ReferenceType(_location), m_struct(_struct) {} virtual bool isImplicitlyConvertibleTo(const Type& _convertTo) const override; virtual std::string richIdentifier() const override; virtual bool operator==(Type const& _other) const override; virtual unsigned calldataEncodedSize(bool _padded) const override; virtual bool isDynamicallyEncoded() const override; u256 memorySize() const; virtual u256 storageSize() const override; virtual bool canLiveOutsideStorage() const override { return true; } virtual std::string toString(bool _short) const override; virtual MemberList::MemberMap nativeMembers(ContractDefinition const* _currentScope) const override; virtual TypePointer encodingType() const override { return location() == DataLocation::Storage ? std::make_shared(256) : shared_from_this(); } virtual TypePointer interfaceType(bool _inLibrary) const override; virtual bool canBeUsedExternally(bool _inLibrary) const override; TypePointer copyForLocation(DataLocation _location, bool _isPointer) const override; virtual std::string canonicalName() const override; virtual std::string signatureInExternalFunction(bool _structsByName) const override; /// @returns a function that peforms the type conversion between a list of struct members /// and a memory struct of this type. FunctionTypePointer constructorType() const; std::pair const& storageOffsetsOfMember(std::string const& _name) const; u256 memoryOffsetOfMember(std::string const& _name) const; StructDefinition const& structDefinition() const { return m_struct; } /// @returns the vector of types of members available in memory. TypePointers memoryMemberTypes() const; /// @returns the set of all members that are removed in the memory version (typically mappings). std::set membersMissingInMemory() const; /// @returns true if the same struct is used recursively in one of its members. Only /// analyses the "memory" representation, i.e. mappings are ignored in all structs. bool recursive() const; private: StructDefinition const& m_struct; /// Cache for the recursive() function. mutable boost::optional m_recursive; }; /** * The type of an enum instance, there is one distinct type per enum definition. */ class EnumType: public Type { public: virtual Category category() const override { return Category::Enum; } explicit EnumType(EnumDefinition const& _enum): m_enum(_enum) {} virtual TypePointer unaryOperatorResult(Token::Value _operator) const override; virtual std::string richIdentifier() const override; virtual bool operator==(Type const& _other) const override; virtual unsigned calldataEncodedSize(bool _padded) const override { return encodingType()->calldataEncodedSize(_padded); } virtual unsigned storageBytes() const override; virtual bool canLiveOutsideStorage() const override { return true; } virtual std::string toString(bool _short) const override; virtual std::string canonicalName() const override; virtual bool isValueType() const override { return true; } virtual bool isExplicitlyConvertibleTo(Type const& _convertTo) const override; virtual TypePointer encodingType() const override { return std::make_shared(8 * int(storageBytes())); } virtual TypePointer interfaceType(bool _inLibrary) const override { return _inLibrary ? shared_from_this() : encodingType(); } EnumDefinition const& enumDefinition() const { return m_enum; } /// @returns the value that the string has in the Enum unsigned int memberValue(ASTString const& _member) const; size_t numberOfMembers() const; private: EnumDefinition const& m_enum; }; /** * Type that can hold a finite sequence of values of different types. * In some cases, the components are empty pointers (when used as placeholders). */ class TupleType: public Type { public: virtual Category category() const override { return Category::Tuple; } explicit TupleType(std::vector const& _types = std::vector()): m_components(_types) {} virtual bool isImplicitlyConvertibleTo(Type const& _other) const override; virtual std::string richIdentifier() const override; virtual bool operator==(Type const& _other) const override; virtual TypePointer binaryOperatorResult(Token::Value, TypePointer const&) const override { return TypePointer(); } virtual std::string toString(bool) const override; virtual bool canBeStored() const override { return false; } virtual u256 storageSize() const override; virtual bool canLiveOutsideStorage() const override { return false; } virtual unsigned sizeOnStack() const override; virtual bool hasSimpleZeroValueInMemory() const override { return false; } virtual TypePointer mobileType() const override; /// Converts components to their temporary types and performs some wildcard matching. virtual TypePointer closestTemporaryType(TypePointer const& _targetType) const override; std::vector const& components() const { return m_components; } private: std::vector const m_components; }; /** * The type of a function, identified by its (return) parameter types. * @todo the return parameters should also have names, i.e. return parameters should be a struct * type. */ class FunctionType: public Type { public: /// How this function is invoked on the EVM. enum class Kind { Internal, ///< stack-call using plain JUMP External, ///< external call using CALL CallCode, ///< external call using CALLCODE, i.e. not exchanging the storage DelegateCall, ///< external call using DELEGATECALL, i.e. not exchanging the storage BareCall, ///< CALL without function hash BareCallCode, ///< CALLCODE without function hash BareDelegateCall, ///< DELEGATECALL without function hash Creation, ///< external call using CREATE Send, ///< CALL, but without data and gas Transfer, ///< CALL, but without data and throws on error SHA3, ///< SHA3 Selfdestruct, ///< SELFDESTRUCT Revert, ///< REVERT ECRecover, ///< CALL to special contract for ecrecover SHA256, ///< CALL to special contract for sha256 RIPEMD160, ///< CALL to special contract for ripemd160 Log0, Log1, Log2, Log3, Log4, Event, ///< syntactic sugar for LOG* SetGas, ///< modify the default gas value for the function call SetValue, ///< modify the default value transfer for the function call BlockHash, ///< BLOCKHASH AddMod, ///< ADDMOD MulMod, ///< MULMOD ArrayPush, ///< .push() to a dynamically sized array in storage ByteArrayPush, ///< .push() to a dynamically sized byte array in storage ObjectCreation, ///< array creation using new Assert, ///< assert() Require, ///< require() GasLeft ///< gasleft() }; virtual Category category() const override { return Category::Function; } /// Creates the type of a function. explicit FunctionType(FunctionDefinition const& _function, bool _isInternal = true); /// Creates the accessor function type of a state variable. explicit FunctionType(VariableDeclaration const& _varDecl); /// Creates the function type of an event. explicit FunctionType(EventDefinition const& _event); /// Creates the type of a function type name. explicit FunctionType(FunctionTypeName const& _typeName); /// Function type constructor to be used for a plain type (not derived from a declaration). FunctionType( strings const& _parameterTypes, strings const& _returnParameterTypes, Kind _kind = Kind::Internal, bool _arbitraryParameters = false, StateMutability _stateMutability = StateMutability::NonPayable ): FunctionType( parseElementaryTypeVector(_parameterTypes), parseElementaryTypeVector(_returnParameterTypes), strings(), strings(), _kind, _arbitraryParameters, _stateMutability ) { } /// @returns the type of the "new Contract" function, i.e. basically the constructor. static FunctionTypePointer newExpressionType(ContractDefinition const& _contract); /// Detailed constructor, use with care. FunctionType( TypePointers const& _parameterTypes, TypePointers const& _returnParameterTypes, strings _parameterNames = strings(), strings _returnParameterNames = strings(), Kind _kind = Kind::Internal, bool _arbitraryParameters = false, StateMutability _stateMutability = StateMutability::NonPayable, Declaration const* _declaration = nullptr, bool _gasSet = false, bool _valueSet = false, bool _bound = false ): m_parameterTypes(_parameterTypes), m_returnParameterTypes(_returnParameterTypes), m_parameterNames(_parameterNames), m_returnParameterNames(_returnParameterNames), m_kind(_kind), m_stateMutability(_stateMutability), m_arbitraryParameters(_arbitraryParameters), m_gasSet(_gasSet), m_valueSet(_valueSet), m_bound(_bound), m_declaration(_declaration) { solAssert( !m_bound || !m_parameterTypes.empty(), "Attempted construction of bound function without self type" ); } TypePointers parameterTypes() const; std::vector parameterNames() const; TypePointers const& returnParameterTypes() const { return m_returnParameterTypes; } /// @returns the list of return parameter types. All dynamically-sized types (this excludes /// storage pointers) are replaced by InaccessibleDynamicType instances. TypePointers returnParameterTypesWithoutDynamicTypes() const; std::vector const& returnParameterNames() const { return m_returnParameterNames; } /// @returns the "self" parameter type for a bound function TypePointer const& selfType() const; virtual std::string richIdentifier() const override; virtual bool operator==(Type const& _other) const override; virtual bool isExplicitlyConvertibleTo(Type const& _convertTo) const override; virtual TypePointer unaryOperatorResult(Token::Value _operator) const override; virtual TypePointer binaryOperatorResult(Token::Value, TypePointer const&) const override; virtual std::string canonicalName() const override; virtual std::string toString(bool _short) const override; virtual unsigned calldataEncodedSize(bool _padded) const override; virtual bool canBeStored() const override { return m_kind == Kind::Internal || m_kind == Kind::External; } virtual u256 storageSize() const override; virtual unsigned storageBytes() const override; virtual bool isValueType() const override { return true; } virtual bool canLiveOutsideStorage() const override { return m_kind == Kind::Internal || m_kind == Kind::External; } virtual unsigned sizeOnStack() const override; virtual bool hasSimpleZeroValueInMemory() const override { return false; } virtual MemberList::MemberMap nativeMembers(ContractDefinition const* _currentScope) const override; virtual TypePointer encodingType() const override; virtual TypePointer interfaceType(bool _inLibrary) const override; /// @returns TypePointer of a new FunctionType object. All input/return parameters are an /// appropriate external types (i.e. the interfaceType()s) of input/return parameters of /// current function. /// @returns an empty shared pointer if one of the input/return parameters does not have an /// external type. FunctionTypePointer interfaceFunctionType() const; /// @returns true if this function can take the given argument types (possibly /// after implicit conversion). /// @param _selfType if the function is bound, this has to be supplied and is the type of the /// expression the function is called on. bool canTakeArguments(TypePointers const& _arguments, TypePointer const& _selfType = TypePointer()) const; /// @returns true if the types of parameters are equal (does't check return parameter types) bool hasEqualArgumentTypes(FunctionType const& _other) const; /// @returns true if the ABI is used for this call (only meaningful for external calls) bool isBareCall() const; Kind const& kind() const { return m_kind; } StateMutability stateMutability() const { return m_stateMutability; } /// @returns the external signature of this function type given the function name std::string externalSignature() const; /// @returns the external identifier of this function (the hash of the signature). u256 externalIdentifier() const; Declaration const& declaration() const { solAssert(m_declaration, "Requested declaration from a FunctionType that has none"); return *m_declaration; } bool hasDeclaration() const { return !!m_declaration; } /// @returns true if the the result of this function only depends on its arguments /// and it does not modify the state. /// Currently, this will only return true for internal functions like keccak and ecrecover. bool isPure() const; bool isPayable() const { return m_stateMutability == StateMutability::Payable; } /// @return A shared pointer of an ASTString. /// Can contain a nullptr in which case indicates absence of documentation ASTPointer documentation() const; /// true iff arguments are to be padded to multiples of 32 bytes for external calls bool padArguments() const { return !(m_kind == Kind::SHA3 || m_kind == Kind::SHA256 || m_kind == Kind::RIPEMD160); } bool takesArbitraryParameters() const { return m_arbitraryParameters; } bool gasSet() const { return m_gasSet; } bool valueSet() const { return m_valueSet; } bool bound() const { return m_bound; } /// @returns a copy of this type, where gas or value are set manually. This will never set one /// of the parameters to fals. TypePointer copyAndSetGasOrValue(bool _setGas, bool _setValue) const; /// @returns a copy of this function type where all return parameters of dynamic size are /// removed and the location of reference types is changed from CallData to Memory. /// This is needed if external functions are called on other contracts, as they cannot return /// dynamic values. /// Returns empty shared pointer on a failure. Namely, if a bound function has no parameters. /// @param _inLibrary if true, uses DelegateCall as location. /// @param _bound if true, the arguments are placed as `arg1.functionName(arg2, ..., argn)`. FunctionTypePointer asMemberFunction(bool _inLibrary, bool _bound = false) const; private: static TypePointers parseElementaryTypeVector(strings const& _types); TypePointers m_parameterTypes; TypePointers m_returnParameterTypes; std::vector m_parameterNames; std::vector m_returnParameterNames; Kind const m_kind; StateMutability m_stateMutability = StateMutability::NonPayable; /// true if the function takes an arbitrary number of arguments of arbitrary types bool const m_arbitraryParameters = false; bool const m_gasSet = false; ///< true iff the gas value to be used is on the stack bool const m_valueSet = false; ///< true iff the value to be sent is on the stack bool const m_bound = false; ///< true iff the function is called as arg1.fun(arg2, ..., argn) Declaration const* m_declaration = nullptr; }; /** * The type of a mapping, there is one distinct type per key/value type pair. * Mappings always occupy their own storage slot, but do not actually use it. */ class MappingType: public Type { public: virtual Category category() const override { return Category::Mapping; } MappingType(TypePointer const& _keyType, TypePointer const& _valueType): m_keyType(_keyType), m_valueType(_valueType) {} virtual std::string richIdentifier() const override; virtual bool operator==(Type const& _other) const override; virtual std::string toString(bool _short) const override; virtual std::string canonicalName() const override; virtual bool canLiveOutsideStorage() const override { return false; } virtual TypePointer binaryOperatorResult(Token::Value, TypePointer const&) const override { return TypePointer(); } virtual TypePointer encodingType() const override { return std::make_shared(256); } virtual TypePointer interfaceType(bool _inLibrary) const override { return _inLibrary ? shared_from_this() : TypePointer(); } virtual bool dataStoredIn(DataLocation _location) const override { return _location == DataLocation::Storage; } /// Cannot be stored in memory, but just in case. virtual bool hasSimpleZeroValueInMemory() const override { solAssert(false, ""); } TypePointer const& keyType() const { return m_keyType; } TypePointer const& valueType() const { return m_valueType; } private: TypePointer m_keyType; TypePointer m_valueType; }; /** * The type of a type reference. The type of "uint32" when used in "a = uint32(2)" is an example * of a TypeType. * For super contracts or libraries, this has members directly. */ class TypeType: public Type { public: virtual Category category() const override { return Category::TypeType; } explicit TypeType(TypePointer const& _actualType): m_actualType(_actualType) {} TypePointer const& actualType() const { return m_actualType; } virtual TypePointer binaryOperatorResult(Token::Value, TypePointer const&) const override { return TypePointer(); } virtual std::string richIdentifier() const override; virtual bool operator==(Type const& _other) const override; virtual bool canBeStored() const override { return false; } virtual u256 storageSize() const override; virtual bool canLiveOutsideStorage() const override { return false; } virtual unsigned sizeOnStack() const override; virtual bool hasSimpleZeroValueInMemory() const override { solAssert(false, ""); } virtual std::string toString(bool _short) const override { return "type(" + m_actualType->toString(_short) + ")"; } virtual MemberList::MemberMap nativeMembers(ContractDefinition const* _currentScope) const override; private: TypePointer m_actualType; }; /** * The type of a function modifier. Not used for anything for now. */ class ModifierType: public Type { public: virtual Category category() const override { return Category::Modifier; } explicit ModifierType(ModifierDefinition const& _modifier); virtual TypePointer binaryOperatorResult(Token::Value, TypePointer const&) const override { return TypePointer(); } virtual bool canBeStored() const override { return false; } virtual u256 storageSize() const override; virtual bool canLiveOutsideStorage() const override { return false; } virtual unsigned sizeOnStack() const override { return 0; } virtual bool hasSimpleZeroValueInMemory() const override { solAssert(false, ""); } virtual std::string richIdentifier() const override; virtual bool operator==(Type const& _other) const override; virtual std::string toString(bool _short) const override; private: TypePointers m_parameterTypes; }; /** * Special type for imported modules. These mainly give access to their scope via members. */ class ModuleType: public Type { public: virtual Category category() const override { return Category::Module; } explicit ModuleType(SourceUnit const& _source): m_sourceUnit(_source) {} virtual TypePointer binaryOperatorResult(Token::Value, TypePointer const&) const override { return TypePointer(); } virtual std::string richIdentifier() const override; virtual bool operator==(Type const& _other) const override; virtual bool canBeStored() const override { return false; } virtual bool canLiveOutsideStorage() const override { return true; } virtual bool hasSimpleZeroValueInMemory() const override { solAssert(false, ""); } virtual unsigned sizeOnStack() const override { return 0; } virtual MemberList::MemberMap nativeMembers(ContractDefinition const*) const override; virtual std::string toString(bool _short) const override; private: SourceUnit const& m_sourceUnit; }; /** * Special type for magic variables (block, msg, tx), similar to a struct but without any reference * (it always references a global singleton by name). */ class MagicType: public Type { public: enum class Kind { Block, Message, Transaction }; virtual Category category() const override { return Category::Magic; } explicit MagicType(Kind _kind): m_kind(_kind) {} virtual TypePointer binaryOperatorResult(Token::Value, TypePointer const&) const override { return TypePointer(); } virtual std::string richIdentifier() const override; virtual bool operator==(Type const& _other) const override; virtual bool canBeStored() const override { return false; } virtual bool canLiveOutsideStorage() const override { return true; } virtual bool hasSimpleZeroValueInMemory() const override { solAssert(false, ""); } virtual unsigned sizeOnStack() const override { return 0; } virtual MemberList::MemberMap nativeMembers(ContractDefinition const*) const override; virtual std::string toString(bool _short) const override; Kind kind() const { return m_kind; } private: Kind m_kind; }; /** * Special type that is used for dynamic types in returns from external function calls * (The EVM currently cannot access dynamically-sized return values). */ class InaccessibleDynamicType: public Type { public: virtual Category category() const override { return Category::InaccessibleDynamic; } virtual std::string richIdentifier() const override { return "t_inaccessible"; } virtual bool isImplicitlyConvertibleTo(Type const&) const override { return false; } virtual bool isExplicitlyConvertibleTo(Type const&) const override { return false; } virtual TypePointer binaryOperatorResult(Token::Value, TypePointer const&) const override { return TypePointer(); } virtual unsigned calldataEncodedSize(bool _padded) const override { (void)_padded; return 32; } virtual bool canBeStored() const override { return false; } virtual bool canLiveOutsideStorage() const override { return false; } virtual bool isValueType() const override { return true; } virtual unsigned sizeOnStack() const override { return 1; } virtual bool hasSimpleZeroValueInMemory() const override { solAssert(false, ""); } virtual std::string toString(bool) const override { return "inaccessible dynamic type"; } virtual TypePointer decodingType() const override { return std::make_shared(256); } }; } }