/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
// SPDX-License-Identifier: GPL-3.0
/**
* @author Christian
* @date 2015
* Evaluator for types of constant expressions.
*/
#include
#include
#include
#include
using namespace std;
using namespace solidity;
using namespace solidity::frontend;
using namespace solidity::langutil;
namespace
{
/// Check whether (_base ** _exp) fits into 4096 bits.
bool fitsPrecisionExp(bigint const& _base, bigint const& _exp)
{
if (_base == 0)
return true;
solAssert(_base > 0, "");
size_t const bitsMax = 4096;
unsigned mostSignificantBaseBit = boost::multiprecision::msb(_base);
if (mostSignificantBaseBit == 0) // _base == 1
return true;
if (mostSignificantBaseBit > bitsMax) // _base >= 2 ^ 4096
return false;
bigint bitsNeeded = _exp * (mostSignificantBaseBit + 1);
return bitsNeeded <= bitsMax;
}
/// Checks whether _mantissa * (2 ** _expBase10) fits into 4096 bits.
bool fitsPrecisionBase2(bigint const& _mantissa, uint32_t _expBase2)
{
return fitsPrecisionBaseX(_mantissa, 1.0, _expBase2);
}
}
optional ConstantEvaluator::evaluateBinaryOperator(Token _operator, rational const& _left, rational const& _right)
{
bool fractional = _left.denominator() != 1 || _right.denominator() != 1;
switch (_operator)
{
//bit operations will only be enabled for integers and fixed types that resemble integers
case Token::BitOr:
if (fractional)
return nullopt;
else
return _left.numerator() | _right.numerator();
case Token::BitXor:
if (fractional)
return nullopt;
else
return _left.numerator() ^ _right.numerator();
case Token::BitAnd:
if (fractional)
return nullopt;
else
return _left.numerator() & _right.numerator();
case Token::Add: return _left + _right;
case Token::Sub: return _left - _right;
case Token::Mul: return _left * _right;
case Token::Div:
if (_right == rational(0))
return nullopt;
else
return _left / _right;
case Token::Mod:
if (_right == rational(0))
return nullopt;
else if (fractional)
{
rational tempValue = _left / _right;
return _left - (tempValue.numerator() / tempValue.denominator()) * _right;
}
else
return _left.numerator() % _right.numerator();
break;
case Token::Exp:
{
if (_right.denominator() != 1)
return nullopt;
bigint const& exp = _right.numerator();
// x ** 0 = 1
// for 0, 1 and -1 the size of the exponent doesn't have to be restricted
if (exp == 0)
return 1;
else if (_left == 0 || _left == 1)
return _left;
else if (_left == -1)
{
bigint isOdd = abs(exp) & bigint(1);
return 1 - 2 * isOdd.convert_to();
}
else
{
if (abs(exp) > numeric_limits::max())
return nullopt; // This will need too much memory to represent.
uint32_t absExp = bigint(abs(exp)).convert_to();
if (!fitsPrecisionExp(abs(_left.numerator()), absExp) || !fitsPrecisionExp(abs(_left.denominator()), absExp))
return nullopt;
static auto const optimizedPow = [](bigint const& _base, uint32_t _exponent) -> bigint {
if (_base == 1)
return 1;
else if (_base == -1)
return 1 - 2 * static_cast(_exponent & 1);
else
return boost::multiprecision::pow(_base, _exponent);
};
bigint numerator = optimizedPow(_left.numerator(), absExp);
bigint denominator = optimizedPow(_left.denominator(), absExp);
if (exp >= 0)
return makeRational(numerator, denominator);
else
// invert
return makeRational(denominator, numerator);
}
break;
}
case Token::SHL:
{
if (fractional)
return nullopt;
else if (_right < 0)
return nullopt;
else if (_right > numeric_limits::max())
return nullopt;
if (_left.numerator() == 0)
return 0;
else
{
uint32_t exponent = _right.numerator().convert_to();
if (!fitsPrecisionBase2(abs(_left.numerator()), exponent))
return nullopt;
return _left.numerator() * boost::multiprecision::pow(bigint(2), exponent);
}
break;
}
// NOTE: we're using >> (SAR) to denote right shifting. The type of the LValue
// determines the resulting type and the type of shift (SAR or SHR).
case Token::SAR:
{
if (fractional)
return nullopt;
else if (_right < 0)
return nullopt;
else if (_right > numeric_limits::max())
return nullopt;
if (_left.numerator() == 0)
return 0;
else
{
uint32_t exponent = _right.numerator().convert_to();
if (exponent > boost::multiprecision::msb(boost::multiprecision::abs(_left.numerator())))
return _left.numerator() < 0 ? -1 : 0;
else
{
if (_left.numerator() < 0)
// Add 1 to the negative value before dividing to get a result that is strictly too large,
// then subtract 1 afterwards to round towards negative infinity.
// This is the same algorithm as used in ExpressionCompiler::appendShiftOperatorCode(...).
// To see this note that for negative x, xor(x,all_ones) = (-x-1) and
// therefore xor(div(xor(x,all_ones), exp(2, shift_amount)), all_ones) is
// -(-x - 1) / 2^shift_amount - 1, which is the same as
// (x + 1) / 2^shift_amount - 1.
return rational((_left.numerator() + 1) / boost::multiprecision::pow(bigint(2), exponent) - bigint(1), 1);
else
return rational(_left.numerator() / boost::multiprecision::pow(bigint(2), exponent), 1);
}
}
break;
}
default:
return nullopt;
}
}
optional ConstantEvaluator::evaluateUnaryOperator(Token _operator, rational const& _input)
{
switch (_operator)
{
case Token::BitNot:
if (_input.denominator() != 1)
return nullopt;
else
return ~_input.numerator();
case Token::Add:
return +_input;
case Token::Sub:
return -_input;
default:
return nullopt;
}
}
void ConstantEvaluator::endVisit(UnaryOperation const& _operation)
{
auto sub = type(_operation.subExpression());
if (sub)
setType(_operation, sub->unaryOperatorResult(_operation.getOperator()));
}
void ConstantEvaluator::endVisit(BinaryOperation const& _operation)
{
auto left = type(_operation.leftExpression());
auto right = type(_operation.rightExpression());
if (left && right)
{
TypePointer commonType = left->binaryOperatorResult(_operation.getOperator(), right);
if (!commonType)
m_errorReporter.fatalTypeError(
6020_error,
_operation.location(),
"Operator " +
string(TokenTraits::toString(_operation.getOperator())) +
" not compatible with types " +
left->toString() +
" and " +
right->toString()
);
setType(
_operation,
TokenTraits::isCompareOp(_operation.getOperator()) ?
TypeProvider::boolean() :
commonType
);
}
}
void ConstantEvaluator::endVisit(Literal const& _literal)
{
setType(_literal, TypeProvider::forLiteral(_literal));
}
void ConstantEvaluator::endVisit(Identifier const& _identifier)
{
VariableDeclaration const* variableDeclaration = dynamic_cast(_identifier.annotation().referencedDeclaration);
if (!variableDeclaration)
return;
if (!variableDeclaration->isConstant())
return;
ASTPointer const& value = variableDeclaration->value();
if (!value)
return;
else if (!m_types->count(value.get()))
{
if (m_depth > 32)
m_errorReporter.fatalTypeError(5210_error, _identifier.location(), "Cyclic constant definition (or maximum recursion depth exhausted).");
ConstantEvaluator(m_errorReporter, m_depth + 1, m_types).evaluate(*value);
}
setType(_identifier, type(*value));
}
void ConstantEvaluator::endVisit(TupleExpression const& _tuple)
{
if (!_tuple.isInlineArray() && _tuple.components().size() == 1)
setType(_tuple, type(*_tuple.components().front()));
}
void ConstantEvaluator::setType(ASTNode const& _node, TypePointer const& _type)
{
if (_type && _type->category() == Type::Category::RationalNumber)
(*m_types)[&_node] = _type;
}
TypePointer ConstantEvaluator::type(ASTNode const& _node)
{
return (*m_types)[&_node];
}
TypePointer ConstantEvaluator::evaluate(Expression const& _expr)
{
_expr.accept(*this);
return type(_expr);
}