/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ // SPDX-License-Identifier: GPL-3.0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace solidity; using namespace solidity::langutil; using namespace solidity::util; using namespace solidity::yul; using namespace solidity::phaser; namespace po = boost::program_options; namespace { map const PhaserModeToStringMap = { {PhaserMode::RunAlgorithm, "run-algorithm"}, {PhaserMode::PrintOptimisedPrograms, "print-optimised-programs"}, {PhaserMode::PrintOptimisedASTs, "print-optimised-asts"}, }; map const StringToPhaserModeMap = invertMap(PhaserModeToStringMap); map const AlgorithmToStringMap = { {Algorithm::Random, "random"}, {Algorithm::GEWEP, "GEWEP"}, {Algorithm::Classic, "classic"}, }; map const StringToAlgorithmMap = invertMap(AlgorithmToStringMap); map MetricChoiceToStringMap = { {MetricChoice::CodeSize, "code-size"}, {MetricChoice::RelativeCodeSize, "relative-code-size"}, }; map const StringToMetricChoiceMap = invertMap(MetricChoiceToStringMap); map const MetricAggregatorChoiceToStringMap = { {MetricAggregatorChoice::Average, "average"}, {MetricAggregatorChoice::Sum, "sum"}, {MetricAggregatorChoice::Maximum, "maximum"}, {MetricAggregatorChoice::Minimum, "minimum"}, }; map const StringToMetricAggregatorChoiceMap = invertMap(MetricAggregatorChoiceToStringMap); map const CrossoverChoiceToStringMap = { {CrossoverChoice::SinglePoint, "single-point"}, {CrossoverChoice::TwoPoint, "two-point"}, {CrossoverChoice::Uniform, "uniform"}, }; map const StringToCrossoverChoiceMap = invertMap(CrossoverChoiceToStringMap); } istream& phaser::operator>>(istream& _inputStream, PhaserMode& _phaserMode) { return deserializeChoice(_inputStream, _phaserMode, StringToPhaserModeMap); } ostream& phaser::operator<<(ostream& _outputStream, PhaserMode _phaserMode) { return serializeChoice(_outputStream, _phaserMode, PhaserModeToStringMap); } istream& phaser::operator>>(istream& _inputStream, Algorithm& _algorithm) { return deserializeChoice(_inputStream, _algorithm, StringToAlgorithmMap); } ostream& phaser::operator<<(ostream& _outputStream, Algorithm _algorithm) { return serializeChoice(_outputStream, _algorithm, AlgorithmToStringMap); } istream& phaser::operator>>(istream& _inputStream, MetricChoice& _metric) { return deserializeChoice(_inputStream, _metric, StringToMetricChoiceMap); } ostream& phaser::operator<<(ostream& _outputStream, MetricChoice _metric) { return serializeChoice(_outputStream, _metric, MetricChoiceToStringMap); } istream& phaser::operator>>(istream& _inputStream, MetricAggregatorChoice& _aggregator) { return deserializeChoice(_inputStream, _aggregator, StringToMetricAggregatorChoiceMap); } ostream& phaser::operator<<(ostream& _outputStream, MetricAggregatorChoice _aggregator) { return serializeChoice(_outputStream, _aggregator, MetricAggregatorChoiceToStringMap); } istream& phaser::operator>>(istream& _inputStream, CrossoverChoice& _crossover) { return deserializeChoice(_inputStream, _crossover, StringToCrossoverChoiceMap); } ostream& phaser::operator<<(ostream& _outputStream, CrossoverChoice _crossover) { return serializeChoice(_outputStream, _crossover, CrossoverChoiceToStringMap); } GeneticAlgorithmFactory::Options GeneticAlgorithmFactory::Options::fromCommandLine(po::variables_map const& _arguments) { return { _arguments["algorithm"].as(), _arguments["min-chromosome-length"].as(), _arguments["max-chromosome-length"].as(), _arguments["crossover"].as(), _arguments["uniform-crossover-swap-chance"].as(), _arguments.count("random-elite-pool-size") > 0 ? _arguments["random-elite-pool-size"].as() : optional{}, _arguments["gewep-mutation-pool-size"].as(), _arguments["gewep-crossover-pool-size"].as(), _arguments["gewep-randomisation-chance"].as(), _arguments["gewep-deletion-vs-addition-chance"].as(), _arguments.count("gewep-genes-to-randomise") > 0 ? _arguments["gewep-genes-to-randomise"].as() : optional{}, _arguments.count("gewep-genes-to-add-or-delete") > 0 ? _arguments["gewep-genes-to-add-or-delete"].as() : optional{}, _arguments["classic-elite-pool-size"].as(), _arguments["classic-crossover-chance"].as(), _arguments["classic-mutation-chance"].as(), _arguments["classic-deletion-chance"].as(), _arguments["classic-addition-chance"].as(), }; } unique_ptr GeneticAlgorithmFactory::build( Options const& _options, size_t _populationSize ) { assert(_populationSize > 0); switch (_options.algorithm) { case Algorithm::Random: { double elitePoolSize = 1.0 / double(_populationSize); if (_options.randomElitePoolSize.has_value()) elitePoolSize = _options.randomElitePoolSize.value(); return make_unique(RandomAlgorithm::Options{ /* elitePoolSize = */ elitePoolSize, /* minChromosomeLength = */ _options.minChromosomeLength, /* maxChromosomeLength = */ _options.maxChromosomeLength, }); } case Algorithm::GEWEP: { double percentGenesToRandomise = 1.0 / double(_options.maxChromosomeLength); double percentGenesToAddOrDelete = percentGenesToRandomise; if (_options.gewepGenesToRandomise.has_value()) percentGenesToRandomise = _options.gewepGenesToRandomise.value(); if (_options.gewepGenesToAddOrDelete.has_value()) percentGenesToAddOrDelete = _options.gewepGenesToAddOrDelete.value(); return make_unique(GenerationalElitistWithExclusivePools::Options{ /* mutationPoolSize = */ _options.gewepMutationPoolSize, /* crossoverPoolSize = */ _options.gewepCrossoverPoolSize, /* randomisationChance = */ _options.gewepRandomisationChance, /* deletionVsAdditionChance = */ _options.gewepDeletionVsAdditionChance, /* percentGenesToRandomise = */ percentGenesToRandomise, /* percentGenesToAddOrDelete = */ percentGenesToAddOrDelete, /* crossover = */ _options.crossover, /* uniformCrossoverSwapChance = */ _options.uniformCrossoverSwapChance, }); } case Algorithm::Classic: { return make_unique(ClassicGeneticAlgorithm::Options{ /* elitePoolSize = */ _options.classicElitePoolSize, /* crossoverChance = */ _options.classicCrossoverChance, /* mutationChance = */ _options.classicMutationChance, /* deletionChance = */ _options.classicDeletionChance, /* additionChance = */ _options.classicAdditionChance, /* crossover = */ _options.crossover, /* uniformCrossoverSwapChance = */ _options.uniformCrossoverSwapChance, }); } default: assertThrow(false, solidity::util::Exception, "Invalid Algorithm value."); } } CodeWeights CodeWeightFactory::buildFromCommandLine(po::variables_map const& _arguments) { return { _arguments["expression-statement-cost"].as(), _arguments["assignment-cost"].as(), _arguments["variable-declaration-cost"].as(), _arguments["function-definition-cost"].as(), _arguments["if-cost"].as(), _arguments["switch-cost"].as(), _arguments["case-cost"].as(), _arguments["for-loop-cost"].as(), _arguments["break-cost"].as(), _arguments["continue-cost"].as(), _arguments["leave-cost"].as(), _arguments["block-cost"].as(), _arguments["function-call-cost"].as(), _arguments["identifier-cost"].as(), _arguments["literal-cost"].as(), }; } FitnessMetricFactory::Options FitnessMetricFactory::Options::fromCommandLine(po::variables_map const& _arguments) { return { _arguments["metric"].as(), _arguments["metric-aggregator"].as(), _arguments["relative-metric-scale"].as(), _arguments["chromosome-repetitions"].as(), }; } unique_ptr FitnessMetricFactory::build( Options const& _options, vector _programs, vector> _programCaches, CodeWeights const& _weights ) { assert(_programCaches.size() == _programs.size()); assert(_programs.size() > 0 && "Validations should prevent this from being executed with zero files."); vector> metrics; switch (_options.metric) { case MetricChoice::CodeSize: { for (size_t i = 0; i < _programs.size(); ++i) metrics.push_back(make_unique( _programCaches[i] != nullptr ? optional{} : move(_programs[i]), move(_programCaches[i]), _weights, _options.chromosomeRepetitions )); break; } case MetricChoice::RelativeCodeSize: { for (size_t i = 0; i < _programs.size(); ++i) metrics.push_back(make_unique( _programCaches[i] != nullptr ? optional{} : move(_programs[i]), move(_programCaches[i]), _options.relativeMetricScale, _weights, _options.chromosomeRepetitions )); break; } default: assertThrow(false, solidity::util::Exception, "Invalid MetricChoice value."); } switch (_options.metricAggregator) { case MetricAggregatorChoice::Average: return make_unique(move(metrics)); case MetricAggregatorChoice::Sum: return make_unique(move(metrics)); case MetricAggregatorChoice::Maximum: return make_unique(move(metrics)); case MetricAggregatorChoice::Minimum: return make_unique(move(metrics)); default: assertThrow(false, solidity::util::Exception, "Invalid MetricAggregatorChoice value."); } } PopulationFactory::Options PopulationFactory::Options::fromCommandLine(po::variables_map const& _arguments) { return { _arguments["min-chromosome-length"].as(), _arguments["max-chromosome-length"].as(), _arguments.count("population") > 0 ? _arguments["population"].as>() : vector{}, _arguments.count("random-population") > 0 ? _arguments["random-population"].as>() : vector{}, _arguments.count("population-from-file") > 0 ? _arguments["population-from-file"].as>() : vector{}, }; } Population PopulationFactory::build( Options const& _options, shared_ptr _fitnessMetric ) { Population population = buildFromStrings(_options.population, _fitnessMetric); size_t combinedSize = 0; for (size_t populationSize: _options.randomPopulation) combinedSize += populationSize; population = move(population) + buildRandom( combinedSize, _options.minChromosomeLength, _options.maxChromosomeLength, _fitnessMetric ); for (string const& populationFilePath: _options.populationFromFile) population = move(population) + buildFromFile(populationFilePath, _fitnessMetric); return population; } Population PopulationFactory::buildFromStrings( vector const& _geneSequences, shared_ptr _fitnessMetric ) { vector chromosomes; for (string const& geneSequence: _geneSequences) chromosomes.emplace_back(geneSequence); return Population(move(_fitnessMetric), move(chromosomes)); } Population PopulationFactory::buildRandom( size_t _populationSize, size_t _minChromosomeLength, size_t _maxChromosomeLength, shared_ptr _fitnessMetric ) { return Population::makeRandom( move(_fitnessMetric), _populationSize, _minChromosomeLength, _maxChromosomeLength ); } Population PopulationFactory::buildFromFile( string const& _filePath, shared_ptr _fitnessMetric ) { return buildFromStrings(readLinesFromFile(_filePath), move(_fitnessMetric)); } ProgramCacheFactory::Options ProgramCacheFactory::Options::fromCommandLine(po::variables_map const& _arguments) { return { _arguments["program-cache"].as(), }; } vector> ProgramCacheFactory::build( Options const& _options, vector _programs ) { vector> programCaches; for (Program& program: _programs) programCaches.push_back(_options.programCacheEnabled ? make_shared(move(program)) : nullptr); return programCaches; } ProgramFactory::Options ProgramFactory::Options::fromCommandLine(po::variables_map const& _arguments) { return { _arguments["input-files"].as>(), _arguments["prefix"].as(), }; } vector ProgramFactory::build(Options const& _options) { vector inputPrograms; for (auto& path: _options.inputFiles) { CharStream sourceCode = loadSource(path); variant programOrErrors = Program::load(sourceCode); if (holds_alternative(programOrErrors)) { SourceReferenceFormatter{cerr, SingletonCharStreamProvider(sourceCode), true, false} .printErrorInformation(get(programOrErrors)); cerr << endl; assertThrow(false, InvalidProgram, "Failed to load program " + path); } get(programOrErrors).optimise(Chromosome(_options.prefix).optimisationSteps()); inputPrograms.push_back(move(get(programOrErrors))); } return inputPrograms; } CharStream ProgramFactory::loadSource(string const& _sourcePath) { assertThrow(boost::filesystem::exists(_sourcePath), MissingFile, "Source file does not exist: " + _sourcePath); string sourceCode = readFileAsString(_sourcePath); return CharStream(sourceCode, _sourcePath); } void Phaser::main(int _argc, char** _argv) { optional arguments = parseCommandLine(_argc, _argv); if (!arguments.has_value()) return; initialiseRNG(arguments.value()); runPhaser(arguments.value()); } Phaser::CommandLineDescription Phaser::buildCommandLineDescription() { unsigned const lineLength = po::options_description::m_default_line_length; unsigned const minDescriptionLength = lineLength - 23; po::options_description keywordDescription( "yul-phaser, a tool for finding the best sequence of Yul optimisation phases.\n" "\n" "Usage: yul-phaser [options] \n" "Reads as Yul code and tries to find the best order in which to run optimisation" " phases using a genetic algorithm.\n" "Example:\n" "yul-phaser program.yul\n" "\n" "Allowed options", lineLength, minDescriptionLength ); po::options_description generalDescription("GENERAL", lineLength, minDescriptionLength); generalDescription.add_options() ("help", "Show help message and exit.") ("input-files", po::value>()->required()->value_name(""), "Input files.") ( "prefix", po::value()->value_name("")->default_value(""), "Initial optimisation steps automatically applied to every input program.\n" "The result is treated as if it was the actual input, i.e. the steps are not considered " "a part of the chromosomes and cannot be mutated. The values of relative metric values " "are also relative to the fitness of a program with these steps applied rather than the " "fitness of the original program.\n" "Note that phaser always adds a 'hgo' prefix to ensure that chromosomes can " "contain arbitrary optimisation steps. This implicit prefix cannot be changed or " "or removed using this option. The value given here is applied after it." ) ("seed", po::value()->value_name(""), "Seed for the random number generator.") ( "rounds", po::value()->value_name(""), "The number of rounds after which the algorithm should stop. (default=no limit)." ) ( "mode", po::value()->value_name("")->default_value(PhaserMode::RunAlgorithm), ( "Mode of operation. The default is to run the algorithm but you can also tell phaser " "to do something else with its parameters, e.g. just print the optimised programs and exit.\n" "\n" "AVAILABLE MODES:\n" "* " + toString(PhaserMode::RunAlgorithm) + "\n" + "* " + toString(PhaserMode::PrintOptimisedPrograms) + "\n" + "* " + toString(PhaserMode::PrintOptimisedASTs) ).c_str() ) ; keywordDescription.add(generalDescription); po::options_description algorithmDescription("ALGORITHM", lineLength, minDescriptionLength); algorithmDescription.add_options() ( "algorithm", po::value()->value_name("")->default_value(Algorithm::GEWEP), ( "Algorithm\n" "\n" "AVAILABLE ALGORITHMS:\n" "* " + toString(Algorithm::GEWEP) + "\n" + "* " + toString(Algorithm::Classic) + "\n" + "* " + toString(Algorithm::Random) ).c_str() ) ( "no-randomise-duplicates", po::bool_switch(), "By default, after each round of the algorithm duplicate chromosomes are removed from" "the population and replaced with randomly generated ones. " "This option disables this postprocessing." ) ( "min-chromosome-length", po::value()->value_name("")->default_value(100), "Minimum length of randomly generated chromosomes." ) ( "max-chromosome-length", po::value()->value_name("")->default_value(100), "Maximum length of randomly generated chromosomes." ) ( "crossover", po::value()->value_name("")->default_value(CrossoverChoice::Uniform), ( "Type of the crossover operator to use.\n" "\n" "AVAILABLE CROSSOVER OPERATORS:\n" "* " + toString(CrossoverChoice::SinglePoint) + "\n" + "* " + toString(CrossoverChoice::TwoPoint) + "\n" + "* " + toString(CrossoverChoice::Uniform) ).c_str() ) ( "uniform-crossover-swap-chance", po::value()->value_name("")->default_value(0.5), "Chance of two genes being swapped between chromosomes in uniform crossover." ) ; keywordDescription.add(algorithmDescription); po::options_description gewepAlgorithmDescription("GEWEP ALGORITHM", lineLength, minDescriptionLength); gewepAlgorithmDescription.add_options() ( "gewep-mutation-pool-size", po::value()->value_name("")->default_value(0.25), "Percentage of population to regenerate using mutations in each round." ) ( "gewep-crossover-pool-size", po::value()->value_name("")->default_value(0.25), "Percentage of population to regenerate using crossover in each round." ) ( "gewep-randomisation-chance", po::value()->value_name("")->default_value(0.9), "The chance of choosing gene randomisation as the mutation to perform." ) ( "gewep-deletion-vs-addition-chance", po::value()->value_name("")->default_value(0.5), "The chance of choosing gene deletion as the mutation if randomisation was not chosen." ) ( "gewep-genes-to-randomise", po::value()->value_name(""), "The chance of any given gene being mutated in gene randomisation. " "(default=1/max-chromosome-length)" ) ( "gewep-genes-to-add-or-delete", po::value()->value_name(""), "The chance of a gene being added (or deleted) in gene addition (or deletion). " "(default=1/max-chromosome-length)" ) ; keywordDescription.add(gewepAlgorithmDescription); po::options_description classicGeneticAlgorithmDescription("CLASSIC GENETIC ALGORITHM", lineLength, minDescriptionLength); classicGeneticAlgorithmDescription.add_options() ( "classic-elite-pool-size", po::value()->value_name("")->default_value(0.25), "Percentage of population to regenerate using mutations in each round." ) ( "classic-crossover-chance", po::value()->value_name("")->default_value(0.75), "Chance of a chromosome being selected for crossover." ) ( "classic-mutation-chance", po::value()->value_name("")->default_value(0.01), "Chance of a gene being mutated." ) ( "classic-deletion-chance", po::value()->value_name("")->default_value(0.01), "Chance of a gene being deleted." ) ( "classic-addition-chance", po::value()->value_name("")->default_value(0.01), "Chance of a random gene being added." ) ; keywordDescription.add(classicGeneticAlgorithmDescription); po::options_description randomAlgorithmDescription("RANDOM ALGORITHM", lineLength, minDescriptionLength); randomAlgorithmDescription.add_options() ( "random-elite-pool-size", po::value()->value_name(""), "Percentage of the population preserved in each round. " "(default=one individual, regardless of population size)" ) ; keywordDescription.add(randomAlgorithmDescription); po::options_description populationDescription("POPULATION", lineLength, minDescriptionLength); populationDescription.add_options() ( "population", po::value>()->multitoken()->value_name(""), "List of chromosomes to be included in the initial population. " "You can specify multiple values separated with spaces or invoke the option multiple times " "and all the values will be included." ) ( "random-population", po::value>()->value_name(""), "The number of randomly generated chromosomes to be included in the initial population." ) ( "population-from-file", po::value>()->value_name(""), "A text file with a list of chromosomes (one per line) to be included in the initial population." ) ( "population-autosave", po::value()->value_name(""), "If specified, the population is saved in the specified file after each round. (default=autosave disabled)" ) ; keywordDescription.add(populationDescription); po::options_description metricsDescription("METRICS", lineLength, minDescriptionLength); metricsDescription.add_options() ( "metric", po::value()->value_name("")->default_value(MetricChoice::RelativeCodeSize), ( "Metric used to evaluate the fitness of a chromosome.\n" "\n" "AVAILABLE METRICS:\n" "* " + toString(MetricChoice::CodeSize) + "\n" + "* " + toString(MetricChoice::RelativeCodeSize) ).c_str() ) ( "metric-aggregator", po::value()->value_name("")->default_value(MetricAggregatorChoice::Average), ( "Operator used to combine multiple fitness metric values obtained by evaluating a " "chromosome separately for each input program.\n" "\n" "AVAILABLE METRIC AGGREGATORS:\n" "* " + toString(MetricAggregatorChoice::Average) + "\n" + "* " + toString(MetricAggregatorChoice::Sum) + "\n" + "* " + toString(MetricAggregatorChoice::Maximum) + "\n" + "* " + toString(MetricAggregatorChoice::Minimum) ).c_str() ) ( "relative-metric-scale", po::value()->value_name("")->default_value(3), "Scaling factor for values produced by relative fitness metrics. \n" "Since all metrics must produce integer values, the fractional part of the result is discarded. " "To keep the numbers meaningful, a relative metric multiples its values by a scaling factor " "and this option specifies the exponent of this factor. " "For example with value of 3 the factor is 10^3 = 1000 and the metric will return " "500 to represent 0.5, 1000 for 1.0, 2000 for 2.0 and so on. " "Using a bigger factor allows discerning smaller relative differences between chromosomes " "but makes the numbers less readable and may also lose precision if the numbers are very large." ) ( "chromosome-repetitions", po::value()->value_name("")->default_value(1), "Number of times to repeat the sequence optimisation steps represented by a chromosome." ) ; keywordDescription.add(metricsDescription); po::options_description metricWeightDescription("METRIC WEIGHTS", lineLength, minDescriptionLength); metricWeightDescription.add_options() // TODO: We need to figure out the best set of weights for the phaser. // This one is just a stopgap to make sure no statement or expression has zero cost. ("expression-statement-cost", po::value()->value_name("")->default_value(1)) ("assignment-cost", po::value()->value_name("")->default_value(1)) ("variable-declaration-cost", po::value()->value_name("")->default_value(1)) ("function-definition-cost", po::value()->value_name("")->default_value(1)) ("if-cost", po::value()->value_name("")->default_value(2)) ("switch-cost", po::value()->value_name("")->default_value(1)) ("case-cost", po::value()->value_name("")->default_value(2)) ("for-loop-cost", po::value()->value_name("")->default_value(3)) ("break-cost", po::value()->value_name("")->default_value(2)) ("continue-cost", po::value()->value_name("")->default_value(2)) ("leave-cost", po::value()->value_name("")->default_value(2)) ("block-cost", po::value()->value_name("")->default_value(1)) ("function-call-cost", po::value()->value_name("")->default_value(1)) ("identifier-cost", po::value()->value_name("")->default_value(1)) ("literal-cost", po::value()->value_name("")->default_value(1)) ; keywordDescription.add(metricWeightDescription); po::options_description cacheDescription("CACHE", lineLength, minDescriptionLength); cacheDescription.add_options() ( "program-cache", po::bool_switch(), "Enables caching of intermediate programs corresponding to chromosome prefixes.\n" "This speeds up fitness evaluation by a lot but eats tons of memory if the chromosomes are long. " "Disabled by default since there's currently no way to set an upper limit on memory usage but " "highly recommended if your computer has enough RAM." ) ; keywordDescription.add(cacheDescription); po::options_description outputDescription("OUTPUT", lineLength, minDescriptionLength); outputDescription.add_options() ( "show-initial-population", po::bool_switch(), "Print the state of the population before the algorithm starts." ) ( "show-only-top-chromosome", po::bool_switch(), "Print only the best chromosome found in each round rather than the whole population." ) ( "hide-round", po::bool_switch(), "Hide information about the current round (round number and elapsed time)." ) ( "show-cache-stats", po::bool_switch(), "Print information about cache size and effectiveness after each round." ) ( "show-seed", po::bool_switch(), "Print the selected random seed." ) ; keywordDescription.add(outputDescription); po::positional_options_description positionalDescription; positionalDescription.add("input-files", -1); return {keywordDescription, positionalDescription}; } optional Phaser::parseCommandLine(int _argc, char** _argv) { auto [keywordDescription, positionalDescription] = buildCommandLineDescription(); po::variables_map arguments; po::notify(arguments); po::command_line_parser parser(_argc, _argv); parser.options(keywordDescription).positional(positionalDescription); po::store(parser.run(), arguments); if (arguments.count("help") > 0) { cout << keywordDescription << endl; return nullopt; } if (arguments.count("input-files") == 0) assertThrow(false, NoInputFiles, "Missing argument: input-files."); return arguments; } void Phaser::initialiseRNG(po::variables_map const& _arguments) { uint32_t seed; if (_arguments.count("seed") > 0) seed = _arguments["seed"].as(); else seed = SimulationRNG::generateSeed(); SimulationRNG::reset(seed); if (_arguments["show-seed"].as()) cout << "Random seed: " << seed << endl; } AlgorithmRunner::Options Phaser::buildAlgorithmRunnerOptions(po::variables_map const& _arguments) { return { _arguments.count("rounds") > 0 ? static_cast>(_arguments["rounds"].as()) : nullopt, _arguments.count("population-autosave") > 0 ? static_cast>(_arguments["population-autosave"].as()) : nullopt, !_arguments["no-randomise-duplicates"].as(), _arguments["min-chromosome-length"].as(), _arguments["max-chromosome-length"].as(), _arguments["show-initial-population"].as(), _arguments["show-only-top-chromosome"].as(), !_arguments["hide-round"].as(), _arguments["show-cache-stats"].as(), }; } void Phaser::runPhaser(po::variables_map const& _arguments) { auto programOptions = ProgramFactory::Options::fromCommandLine(_arguments); auto cacheOptions = ProgramCacheFactory::Options::fromCommandLine(_arguments); auto metricOptions = FitnessMetricFactory::Options::fromCommandLine(_arguments); auto populationOptions = PopulationFactory::Options::fromCommandLine(_arguments); vector programs = ProgramFactory::build(programOptions); vector> programCaches = ProgramCacheFactory::build(cacheOptions, programs); CodeWeights codeWeights = CodeWeightFactory::buildFromCommandLine(_arguments); unique_ptr fitnessMetric = FitnessMetricFactory::build( metricOptions, programs, programCaches, codeWeights ); Population population = PopulationFactory::build(populationOptions, move(fitnessMetric)); if (_arguments["mode"].as() == PhaserMode::RunAlgorithm) runAlgorithm(_arguments, move(population), move(programCaches)); else printOptimisedProgramsOrASTs(_arguments, population, move(programs), _arguments["mode"].as()); } void Phaser::runAlgorithm( po::variables_map const& _arguments, Population _population, vector> _programCaches ) { auto algorithmOptions = GeneticAlgorithmFactory::Options::fromCommandLine(_arguments); unique_ptr geneticAlgorithm = GeneticAlgorithmFactory::build( algorithmOptions, _population.individuals().size() ); AlgorithmRunner algorithmRunner(move(_population), move(_programCaches), buildAlgorithmRunnerOptions(_arguments), cout); algorithmRunner.run(*geneticAlgorithm); } void Phaser::printOptimisedProgramsOrASTs( po::variables_map const& _arguments, Population const& _population, vector _programs, PhaserMode phaserMode ) { assert(phaserMode == PhaserMode::PrintOptimisedPrograms || phaserMode == PhaserMode::PrintOptimisedASTs); assert(_programs.size() == _arguments["input-files"].as>().size()); if (_population.individuals().size() == 0) { cout << "" << endl; return; } vector const& paths = _arguments["input-files"].as>(); for (auto& individual: _population.individuals()) { cout << "Chromosome: " << individual.chromosome << endl; for (size_t i = 0; i < _programs.size(); ++i) { for (size_t j = 0; j < _arguments["chromosome-repetitions"].as(); ++j) _programs[i].optimise(individual.chromosome.optimisationSteps()); cout << "Program: " << paths[i] << endl; if (phaserMode == PhaserMode::PrintOptimisedPrograms) cout << _programs[i] << endl; else cout << _programs[i].toJson() << endl; } } }