/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ // SPDX-License-Identifier: GPL-3.0 #include #include #include #include using namespace solidity; using namespace solidity::langutil; using namespace solidity::frontend; using namespace std; ControlFlowBuilder::ControlFlowBuilder(CFG::NodeContainer& _nodeContainer, FunctionFlow const& _functionFlow, ContractDefinition const* _contract): m_nodeContainer(_nodeContainer), m_currentNode(_functionFlow.entry), m_returnNode(_functionFlow.exit), m_revertNode(_functionFlow.revert), m_transactionReturnNode(_functionFlow.transactionReturn), m_contract(_contract) { } unique_ptr ControlFlowBuilder::createFunctionFlow( CFG::NodeContainer& _nodeContainer, FunctionDefinition const& _function, ContractDefinition const* _contract ) { auto functionFlow = make_unique(); functionFlow->entry = _nodeContainer.newNode(); functionFlow->exit = _nodeContainer.newNode(); functionFlow->revert = _nodeContainer.newNode(); functionFlow->transactionReturn = _nodeContainer.newNode(); ControlFlowBuilder builder(_nodeContainer, *functionFlow, _contract); builder.appendControlFlow(_function); return functionFlow; } bool ControlFlowBuilder::visit(BinaryOperation const& _operation) { solAssert(!!m_currentNode, ""); switch (_operation.getOperator()) { case Token::Or: case Token::And: { visitNode(_operation); solAssert(*_operation.annotation().userDefinedFunction == nullptr); appendControlFlow(_operation.leftExpression()); auto nodes = splitFlow<2>(); nodes[0] = createFlow(nodes[0], _operation.rightExpression()); mergeFlow(nodes, nodes[1]); return false; } default: { if (*_operation.annotation().userDefinedFunction != nullptr) { visitNode(_operation); _operation.leftExpression().accept(*this); _operation.rightExpression().accept(*this); m_currentNode->functionDefinition = *_operation.annotation().userDefinedFunction; auto nextNode = newLabel(); connect(m_currentNode, nextNode); m_currentNode = nextNode; return false; } } } return ASTConstVisitor::visit(_operation); } bool ControlFlowBuilder::visit(UnaryOperation const& _operation) { solAssert(!!m_currentNode); if (*_operation.annotation().userDefinedFunction != nullptr) { visitNode(_operation); _operation.subExpression().accept(*this); m_currentNode->functionDefinition = *_operation.annotation().userDefinedFunction; auto nextNode = newLabel(); connect(m_currentNode, nextNode); m_currentNode = nextNode; return false; } return ASTConstVisitor::visit(_operation); } bool ControlFlowBuilder::visit(Conditional const& _conditional) { solAssert(!!m_currentNode, ""); visitNode(_conditional); _conditional.condition().accept(*this); auto nodes = splitFlow<2>(); nodes[0] = createFlow(nodes[0], _conditional.trueExpression()); nodes[1] = createFlow(nodes[1], _conditional.falseExpression()); mergeFlow(nodes); return false; } bool ControlFlowBuilder::visit(TryStatement const& _tryStatement) { appendControlFlow(_tryStatement.externalCall()); auto nodes = splitFlow(_tryStatement.clauses().size()); for (size_t i = 0; i < _tryStatement.clauses().size(); ++i) nodes[i] = createFlow(nodes[i], _tryStatement.clauses()[i]->block()); mergeFlow(nodes); return false; } bool ControlFlowBuilder::visit(IfStatement const& _ifStatement) { solAssert(!!m_currentNode, ""); visitNode(_ifStatement); _ifStatement.condition().accept(*this); auto nodes = splitFlow<2>(); nodes[0] = createFlow(nodes[0], _ifStatement.trueStatement()); if (_ifStatement.falseStatement()) { nodes[1] = createFlow(nodes[1], *_ifStatement.falseStatement()); mergeFlow(nodes); } else mergeFlow(nodes, nodes[1]); return false; } bool ControlFlowBuilder::visit(ForStatement const& _forStatement) { solAssert(!!m_currentNode, ""); visitNode(_forStatement); if (_forStatement.initializationExpression()) _forStatement.initializationExpression()->accept(*this); auto condition = createLabelHere(); if (_forStatement.condition()) appendControlFlow(*_forStatement.condition()); auto postPart = newLabel(); auto nodes = splitFlow<2>(); auto afterFor = nodes[1]; m_currentNode = nodes[0]; { BreakContinueScope scope(*this, afterFor, postPart); appendControlFlow(_forStatement.body()); } placeAndConnectLabel(postPart); if (auto expression = _forStatement.loopExpression()) appendControlFlow(*expression); connect(m_currentNode, condition); m_currentNode = afterFor; return false; } bool ControlFlowBuilder::visit(WhileStatement const& _whileStatement) { solAssert(!!m_currentNode, ""); visitNode(_whileStatement); if (_whileStatement.isDoWhile()) { auto afterWhile = newLabel(); auto whileBody = createLabelHere(); auto condition = newLabel(); { BreakContinueScope scope(*this, afterWhile, condition); appendControlFlow(_whileStatement.body()); } placeAndConnectLabel(condition); appendControlFlow(_whileStatement.condition()); connect(m_currentNode, whileBody); placeAndConnectLabel(afterWhile); } else { auto whileCondition = createLabelHere(); appendControlFlow(_whileStatement.condition()); auto nodes = splitFlow<2>(); auto whileBody = nodes[0]; auto afterWhile = nodes[1]; m_currentNode = whileBody; { BreakContinueScope scope(*this, afterWhile, whileCondition); appendControlFlow(_whileStatement.body()); } connect(m_currentNode, whileCondition); m_currentNode = afterWhile; } return false; } bool ControlFlowBuilder::visit(Break const& _break) { solAssert(!!m_currentNode, ""); solAssert(!!m_breakJump, ""); visitNode(_break); connect(m_currentNode, m_breakJump); m_currentNode = newLabel(); return false; } bool ControlFlowBuilder::visit(Continue const& _continue) { solAssert(!!m_currentNode, ""); solAssert(!!m_continueJump, ""); visitNode(_continue); connect(m_currentNode, m_continueJump); m_currentNode = newLabel(); return false; } bool ControlFlowBuilder::visit(Throw const& _throw) { solAssert(!!m_currentNode, ""); solAssert(!!m_revertNode, ""); visitNode(_throw); connect(m_currentNode, m_revertNode); m_currentNode = newLabel(); return false; } bool ControlFlowBuilder::visit(RevertStatement const& _revert) { solAssert(!!m_currentNode, ""); solAssert(!!m_revertNode, ""); visitNode(_revert); connect(m_currentNode, m_revertNode); m_currentNode = newLabel(); return false; } bool ControlFlowBuilder::visit(PlaceholderStatement const&) { solAssert(!!m_currentNode, ""); solAssert(!!m_placeholderEntry, ""); solAssert(!!m_placeholderExit, ""); connect(m_currentNode, m_placeholderEntry); m_currentNode = newLabel(); connect(m_placeholderExit, m_currentNode); return false; } bool ControlFlowBuilder::visit(FunctionCall const& _functionCall) { solAssert(!!m_revertNode, ""); solAssert(!!m_currentNode, ""); solAssert(!!_functionCall.expression().annotation().type, ""); if (auto functionType = dynamic_cast(_functionCall.expression().annotation().type)) switch (functionType->kind()) { case FunctionType::Kind::Revert: visitNode(_functionCall); _functionCall.expression().accept(*this); ASTNode::listAccept(_functionCall.arguments(), *this); connect(m_currentNode, m_revertNode); m_currentNode = newLabel(); return false; case FunctionType::Kind::Require: case FunctionType::Kind::Assert: { visitNode(_functionCall); _functionCall.expression().accept(*this); ASTNode::listAccept(_functionCall.arguments(), *this); connect(m_currentNode, m_revertNode); auto nextNode = newLabel(); connect(m_currentNode, nextNode); m_currentNode = nextNode; return false; } case FunctionType::Kind::Internal: { visitNode(_functionCall); _functionCall.expression().accept(*this); ASTNode::listAccept(_functionCall.arguments(), *this); m_currentNode->functionDefinition = ASTNode::resolveFunctionCall(_functionCall, m_contract); auto nextNode = newLabel(); connect(m_currentNode, nextNode); m_currentNode = nextNode; return false; } default: break; } return ASTConstVisitor::visit(_functionCall); } bool ControlFlowBuilder::visit(ModifierInvocation const& _modifierInvocation) { solAssert(m_contract, "Free functions cannot have modifiers"); if (auto arguments = _modifierInvocation.arguments()) for (auto& argument: *arguments) appendControlFlow(*argument); auto modifierDefinition = dynamic_cast( _modifierInvocation.name().annotation().referencedDeclaration ); if (!modifierDefinition) return false; VirtualLookup const& requiredLookup = *_modifierInvocation.name().annotation().requiredLookup; if (requiredLookup == VirtualLookup::Virtual) modifierDefinition = &modifierDefinition->resolveVirtual(*m_contract); else solAssert(requiredLookup == VirtualLookup::Static); if (!modifierDefinition->isImplemented()) return false; solAssert(!!m_returnNode, ""); m_placeholderEntry = newLabel(); m_placeholderExit = newLabel(); appendControlFlow(*modifierDefinition); connect(m_currentNode, m_returnNode); m_currentNode = m_placeholderEntry; m_returnNode = m_placeholderExit; m_placeholderEntry = nullptr; m_placeholderExit = nullptr; return false; } bool ControlFlowBuilder::visit(FunctionDefinition const& _functionDefinition) { for (auto const& parameter: _functionDefinition.parameters()) appendControlFlow(*parameter); for (auto const& returnParameter: _functionDefinition.returnParameters()) { appendControlFlow(*returnParameter); m_returnNode->variableOccurrences.emplace_back( *returnParameter, VariableOccurrence::Kind::Return ); } for (auto const& modifierInvocation: _functionDefinition.modifiers()) appendControlFlow(*modifierInvocation); appendControlFlow(_functionDefinition.body()); connect(m_currentNode, m_returnNode); m_currentNode = nullptr; return false; } bool ControlFlowBuilder::visit(Return const& _return) { solAssert(!!m_currentNode, ""); solAssert(!!m_returnNode, ""); visitNode(_return); if (_return.expression()) { appendControlFlow(*_return.expression()); // Returns with return expression are considered to be assignments to the return parameters. for (auto returnParameter: _return.annotation().functionReturnParameters->parameters()) m_currentNode->variableOccurrences.emplace_back( *returnParameter, VariableOccurrence::Kind::Assignment, _return.location() ); } connect(m_currentNode, m_returnNode); m_currentNode = newLabel(); return false; } bool ControlFlowBuilder::visit(FunctionTypeName const& _functionTypeName) { visitNode(_functionTypeName); // Do not visit the parameters and return values of a function type name. // We do not want to consider them as variable declarations for the control flow graph. return false; } bool ControlFlowBuilder::visit(InlineAssembly const& _inlineAssembly) { solAssert(!!m_currentNode && !m_inlineAssembly, ""); m_inlineAssembly = &_inlineAssembly; (*this)(_inlineAssembly.operations()); m_inlineAssembly = nullptr; return false; } void ControlFlowBuilder::visit(yul::Statement const& _statement) { solAssert(m_currentNode && m_inlineAssembly, ""); solAssert(nativeLocationOf(_statement) == originLocationOf(_statement), ""); m_currentNode->location = langutil::SourceLocation::smallestCovering(m_currentNode->location, nativeLocationOf(_statement)); ASTWalker::visit(_statement); } void ControlFlowBuilder::operator()(yul::If const& _if) { solAssert(m_currentNode && m_inlineAssembly, ""); visit(*_if.condition); auto nodes = splitFlow<2>(); m_currentNode = nodes[0]; (*this)(_if.body); nodes[0] = m_currentNode; mergeFlow(nodes, nodes[1]); } void ControlFlowBuilder::operator()(yul::Switch const& _switch) { solAssert(m_currentNode && m_inlineAssembly, ""); visit(*_switch.expression); auto beforeSwitch = m_currentNode; auto nodes = splitFlow(_switch.cases.size()); for (size_t i = 0u; i < _switch.cases.size(); ++i) { m_currentNode = nodes[i]; (*this)(_switch.cases[i].body); nodes[i] = m_currentNode; } mergeFlow(nodes); if (!hasDefaultCase(_switch)) connect(beforeSwitch, m_currentNode); } void ControlFlowBuilder::operator()(yul::ForLoop const& _forLoop) { solAssert(m_currentNode && m_inlineAssembly, ""); (*this)(_forLoop.pre); auto condition = createLabelHere(); if (_forLoop.condition) visit(*_forLoop.condition); auto loopExpression = newLabel(); auto nodes = splitFlow<2>(); auto afterFor = nodes[1]; m_currentNode = nodes[0]; { BreakContinueScope scope(*this, afterFor, loopExpression); (*this)(_forLoop.body); } placeAndConnectLabel(loopExpression); (*this)(_forLoop.post); connect(m_currentNode, condition); m_currentNode = afterFor; } void ControlFlowBuilder::operator()(yul::Break const&) { solAssert(m_currentNode && m_inlineAssembly, ""); solAssert(m_breakJump, ""); connect(m_currentNode, m_breakJump); m_currentNode = newLabel(); } void ControlFlowBuilder::operator()(yul::Continue const&) { solAssert(m_currentNode && m_inlineAssembly, ""); solAssert(m_continueJump, ""); connect(m_currentNode, m_continueJump); m_currentNode = newLabel(); } void ControlFlowBuilder::operator()(yul::Identifier const& _identifier) { solAssert(m_currentNode && m_inlineAssembly, ""); auto const& externalReferences = m_inlineAssembly->annotation().externalReferences; if (externalReferences.count(&_identifier)) if (auto const* declaration = dynamic_cast(externalReferences.at(&_identifier).declaration)) { solAssert(nativeLocationOf(_identifier) == originLocationOf(_identifier), ""); m_currentNode->variableOccurrences.emplace_back( *declaration, VariableOccurrence::Kind::Access, nativeLocationOf(_identifier) ); } } void ControlFlowBuilder::operator()(yul::Assignment const& _assignment) { solAssert(m_currentNode && m_inlineAssembly, ""); visit(*_assignment.value); auto const& externalReferences = m_inlineAssembly->annotation().externalReferences; for (auto const& variable: _assignment.variableNames) if (externalReferences.count(&variable)) if (auto const* declaration = dynamic_cast(externalReferences.at(&variable).declaration)) { solAssert(nativeLocationOf(variable) == originLocationOf(variable), ""); m_currentNode->variableOccurrences.emplace_back( *declaration, VariableOccurrence::Kind::Assignment, nativeLocationOf(variable) ); } } void ControlFlowBuilder::operator()(yul::FunctionCall const& _functionCall) { using namespace yul; solAssert(m_currentNode && m_inlineAssembly, ""); yul::ASTWalker::operator()(_functionCall); if (auto const *builtinFunction = m_inlineAssembly->dialect().builtin(_functionCall.functionName.name)) { if (builtinFunction->controlFlowSideEffects.canTerminate) connect(m_currentNode, m_transactionReturnNode); if (builtinFunction->controlFlowSideEffects.canRevert) connect(m_currentNode, m_revertNode); if (!builtinFunction->controlFlowSideEffects.canContinue) m_currentNode = newLabel(); } } void ControlFlowBuilder::operator()(yul::FunctionDefinition const&) { solAssert(m_currentNode && m_inlineAssembly, ""); // External references cannot be accessed from within functions, so we can ignore their control flow. // TODO: we might still want to track if they always revert or return, though. } void ControlFlowBuilder::operator()(yul::Leave const&) { // This has to be implemented, if we ever decide to visit functions. solUnimplemented(""); } bool ControlFlowBuilder::visit(VariableDeclaration const& _variableDeclaration) { solAssert(!!m_currentNode, ""); visitNode(_variableDeclaration); m_currentNode->variableOccurrences.emplace_back( _variableDeclaration, VariableOccurrence::Kind::Declaration ); // Handle declaration with immediate assignment. if (_variableDeclaration.value()) m_currentNode->variableOccurrences.emplace_back( _variableDeclaration, VariableOccurrence::Kind::Assignment, _variableDeclaration.value()->location() ); // Function arguments are considered to be immediately assigned as well (they are "externally assigned"). else if (_variableDeclaration.isCallableOrCatchParameter() && !_variableDeclaration.isReturnParameter()) m_currentNode->variableOccurrences.emplace_back( _variableDeclaration, VariableOccurrence::Kind::Assignment ); return true; } bool ControlFlowBuilder::visit(VariableDeclarationStatement const& _variableDeclarationStatement) { solAssert(!!m_currentNode, ""); visitNode(_variableDeclarationStatement); for (auto const& var: _variableDeclarationStatement.declarations()) if (var) var->accept(*this); if (_variableDeclarationStatement.initialValue()) { _variableDeclarationStatement.initialValue()->accept(*this); for (size_t i = 0; i < _variableDeclarationStatement.declarations().size(); i++) if (auto const& var = _variableDeclarationStatement.declarations()[i]) { auto expression = _variableDeclarationStatement.initialValue(); if (auto tupleExpression = dynamic_cast(expression)) if (tupleExpression->components().size() > 1) { solAssert(tupleExpression->components().size() > i, ""); expression = tupleExpression->components()[i].get(); } expression = resolveOuterUnaryTuples(expression); m_currentNode->variableOccurrences.emplace_back( *var, VariableOccurrence::Kind::Assignment, expression ? std::make_optional(expression->location()) : std::optional{} ); } } return false; } bool ControlFlowBuilder::visit(Identifier const& _identifier) { solAssert(!!m_currentNode, ""); visitNode(_identifier); if (auto const* variableDeclaration = dynamic_cast(_identifier.annotation().referencedDeclaration)) m_currentNode->variableOccurrences.emplace_back( *variableDeclaration, static_cast(_identifier).annotation().willBeWrittenTo ? VariableOccurrence::Kind::Assignment : VariableOccurrence::Kind::Access, _identifier.location() ); return true; } bool ControlFlowBuilder::visitNode(ASTNode const& _node) { solAssert(!!m_currentNode, ""); m_currentNode->location = langutil::SourceLocation::smallestCovering(m_currentNode->location, _node.location()); return true; } void ControlFlowBuilder::appendControlFlow(ASTNode const& _node) { _node.accept(*this); } CFGNode* ControlFlowBuilder::createFlow(CFGNode* _entry, ASTNode const& _node) { auto oldCurrentNode = m_currentNode; m_currentNode = _entry; appendControlFlow(_node); auto endNode = m_currentNode; m_currentNode = oldCurrentNode; return endNode; } void ControlFlowBuilder::connect(CFGNode* _from, CFGNode* _to) { solAssert(_from, ""); solAssert(_to, ""); _from->exits.push_back(_to); _to->entries.push_back(_from); } CFGNode* ControlFlowBuilder::newLabel() { return m_nodeContainer.newNode(); } CFGNode* ControlFlowBuilder::createLabelHere() { auto label = m_nodeContainer.newNode(); connect(m_currentNode, label); m_currentNode = label; return label; } void ControlFlowBuilder::placeAndConnectLabel(CFGNode* _node) { connect(m_currentNode, _node); m_currentNode = _node; } ControlFlowBuilder::BreakContinueScope::BreakContinueScope( ControlFlowBuilder& _parser, CFGNode* _breakJump, CFGNode* _continueJump ): m_parser(_parser), m_origBreakJump(_parser.m_breakJump), m_origContinueJump(_parser.m_continueJump) { m_parser.m_breakJump = _breakJump; m_parser.m_continueJump = _continueJump; } ControlFlowBuilder::BreakContinueScope::~BreakContinueScope() { m_parser.m_breakJump = m_origBreakJump; m_parser.m_continueJump = m_origContinueJump; }