/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** @file ConstantOptimiser.cpp * @author Christian * @date 2015 */ #include #include #include using namespace std; using namespace dev; using namespace dev::eth; unsigned ConstantOptimisationMethod::optimiseConstants( bool _isCreation, size_t _runs, langutil::EVMVersion _evmVersion, Assembly& _assembly ) { // TODO: design the optimiser in a way this is not needed AssemblyItems& _items = _assembly.items(); unsigned optimisations = 0; map pushes; for (AssemblyItem const& item: _items) if (item.type() == Push) pushes[item]++; map pendingReplacements; for (auto it: pushes) { AssemblyItem const& item = it.first; if (item.data() < 0x100) continue; Params params; params.multiplicity = it.second; params.isCreation = _isCreation; params.runs = _runs; params.evmVersion = _evmVersion; LiteralMethod lit(params, item.data()); bigint literalGas = lit.gasNeeded(); CodeCopyMethod copy(params, item.data()); bigint copyGas = copy.gasNeeded(); ComputeMethod compute(params, item.data()); bigint computeGas = compute.gasNeeded(); AssemblyItems replacement; if (copyGas < literalGas && copyGas < computeGas) { replacement = copy.execute(_assembly); optimisations++; } else if (computeGas < literalGas && computeGas <= copyGas) { replacement = compute.execute(_assembly); optimisations++; } if (!replacement.empty()) pendingReplacements[item.data()] = replacement; } if (!pendingReplacements.empty()) replaceConstants(_items, pendingReplacements); return optimisations; } bigint ConstantOptimisationMethod::simpleRunGas(AssemblyItems const& _items) { bigint gas = 0; for (AssemblyItem const& item: _items) if (item.type() == Push) gas += GasMeter::runGas(Instruction::PUSH1); else if (item.type() == Operation) { if (item.instruction() == Instruction::EXP) gas += GasCosts::expGas; else gas += GasMeter::runGas(item.instruction()); } return gas; } bigint ConstantOptimisationMethod::dataGas(bytes const& _data) const { assertThrow(_data.size() > 0, OptimizerException, "Empty bytecode generated."); return bigint(GasMeter::dataGas(_data, m_params.isCreation)); } size_t ConstantOptimisationMethod::bytesRequired(AssemblyItems const& _items) { return eth::bytesRequired(_items, 3); // assume 3 byte addresses } void ConstantOptimisationMethod::replaceConstants( AssemblyItems& _items, map const& _replacements ) { AssemblyItems replaced; for (AssemblyItem const& item: _items) { if (item.type() == Push) { auto it = _replacements.find(item.data()); if (it != _replacements.end()) { replaced += it->second; continue; } } replaced.push_back(item); } _items = std::move(replaced); } bigint LiteralMethod::gasNeeded() const { return combineGas( simpleRunGas({Instruction::PUSH1}), // PUSHX plus data (m_params.isCreation ? GasCosts::txDataNonZeroGas : GasCosts::createDataGas) + dataGas(toCompactBigEndian(m_value, 1)), 0 ); } bigint CodeCopyMethod::gasNeeded() const { return combineGas( // Run gas: we ignore memory increase costs simpleRunGas(copyRoutine()) + GasCosts::copyGas, // Data gas for copy routines: Some bytes are zero, but we ignore them. bytesRequired(copyRoutine()) * (m_params.isCreation ? GasCosts::txDataNonZeroGas : GasCosts::createDataGas), // Data gas for data itself dataGas(toBigEndian(m_value)) ); } AssemblyItems CodeCopyMethod::execute(Assembly& _assembly) const { bytes data = toBigEndian(m_value); AssemblyItems actualCopyRoutine = copyRoutine(); actualCopyRoutine[4] = _assembly.newData(data); return actualCopyRoutine; } AssemblyItems const& CodeCopyMethod::copyRoutine() { AssemblyItems static copyRoutine{ u256(0), Instruction::DUP1, Instruction::MLOAD, // back up memory u256(32), AssemblyItem(PushData, u256(1) << 16), // has to be replaced Instruction::DUP4, Instruction::CODECOPY, Instruction::DUP2, Instruction::MLOAD, Instruction::SWAP2, Instruction::MSTORE }; return copyRoutine; } AssemblyItems ComputeMethod::findRepresentation(u256 const& _value) { if (_value < 0x10000) // Very small value, not worth computing return AssemblyItems{_value}; else if (dev::bytesRequired(~_value) < dev::bytesRequired(_value)) // Negated is shorter to represent return findRepresentation(~_value) + AssemblyItems{Instruction::NOT}; else { // Decompose value into a * 2**k + b where abs(b) << 2**k // Is not always better, try literal and decomposition method. AssemblyItems routine{u256(_value)}; bigint bestGas = gasNeeded(routine); for (unsigned bits = 255; bits > 8 && m_maxSteps > 0; --bits) { unsigned gapDetector = unsigned((_value >> (bits - 8)) & 0x1ff); if (gapDetector != 0xff && gapDetector != 0x100) continue; u256 powerOfTwo = u256(1) << bits; u256 upperPart = _value >> bits; bigint lowerPart = _value & (powerOfTwo - 1); if ((powerOfTwo - lowerPart) < lowerPart) { lowerPart = lowerPart - powerOfTwo; // make it negative upperPart++; } if (upperPart == 0) continue; if (abs(lowerPart) >= (powerOfTwo >> 8)) continue; AssemblyItems newRoutine; if (lowerPart != 0) newRoutine += findRepresentation(u256(abs(lowerPart))); if (m_params.evmVersion.hasBitwiseShifting()) newRoutine += AssemblyItems{u256(1), u256(bits), Instruction::SHL}; else newRoutine += AssemblyItems{u256(bits), u256(2), Instruction::EXP}; if (upperPart != 1) newRoutine += findRepresentation(upperPart) + AssemblyItems{Instruction::MUL}; if (lowerPart > 0) newRoutine += AssemblyItems{Instruction::ADD}; else if (lowerPart < 0) newRoutine.push_back(Instruction::SUB); if (m_maxSteps > 0) m_maxSteps--; bigint newGas = gasNeeded(newRoutine); if (newGas < bestGas) { bestGas = move(newGas); routine = move(newRoutine); } } return routine; } } bool ComputeMethod::checkRepresentation(u256 const& _value, AssemblyItems const& _routine) const { // This is a tiny EVM that can only evaluate some instructions. vector stack; for (AssemblyItem const& item: _routine) { switch (item.type()) { case Operation: { if (stack.size() < size_t(item.arguments())) return false; u256* sp = &stack.back(); switch (item.instruction()) { case Instruction::MUL: sp[-1] = sp[0] * sp[-1]; break; case Instruction::EXP: if (sp[-1] > 0xff) return false; sp[-1] = boost::multiprecision::pow(sp[0], unsigned(sp[-1])); break; case Instruction::ADD: sp[-1] = sp[0] + sp[-1]; break; case Instruction::SUB: sp[-1] = sp[0] - sp[-1]; break; case Instruction::NOT: sp[0] = ~sp[0]; break; case Instruction::SHL: assertThrow( m_params.evmVersion.hasBitwiseShifting(), OptimizerException, "Shift generated for invalid EVM version." ); assertThrow(sp[0] <= u256(255), OptimizerException, "Invalid shift generated."); sp[-1] = u256(bigint(sp[-1]) << unsigned(sp[0])); break; case Instruction::SHR: assertThrow( m_params.evmVersion.hasBitwiseShifting(), OptimizerException, "Shift generated for invalid EVM version." ); assertThrow(sp[0] <= u256(255), OptimizerException, "Invalid shift generated."); sp[-1] = sp[-1] >> unsigned(sp[0]); break; default: return false; } stack.resize(stack.size() + item.deposit()); break; } case Push: stack.push_back(item.data()); break; default: return false; } } return stack.size() == 1 && stack.front() == _value; } bigint ComputeMethod::gasNeeded(AssemblyItems const& _routine) const { size_t numExps = count(_routine.begin(), _routine.end(), Instruction::EXP); return combineGas( simpleRunGas(_routine) + numExps * (GasCosts::expGas + GasCosts::expByteGas(m_params.evmVersion)), // Data gas for routine: Some bytes are zero, but we ignore them. bytesRequired(_routine) * (m_params.isCreation ? GasCosts::txDataNonZeroGas : GasCosts::createDataGas), 0 ); }