/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * @author Christian * @date 2014 * Solidity compiler. */ #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace dev; using namespace langutil; using namespace dev::solidity; namespace { /** * Simple helper class to ensure that the stack height is the same at certain places in the code. */ class StackHeightChecker { public: explicit StackHeightChecker(CompilerContext const& _context): m_context(_context), stackHeight(m_context.stackHeight()) {} void check() { solAssert(m_context.stackHeight() == stackHeight, std::string("I sense a disturbance in the stack: ") + to_string(m_context.stackHeight()) + " vs " + to_string(stackHeight)); } private: CompilerContext const& m_context; unsigned stackHeight; }; } void ContractCompiler::compileContract( ContractDefinition const& _contract, map> const& _otherCompilers ) { CompilerContext::LocationSetter locationSetter(m_context, _contract); if (_contract.isLibrary()) // Check whether this is a call (true) or a delegatecall (false). // This has to be the first code in the contract. appendDelegatecallCheck(); initializeContext(_contract, _otherCompilers); // This generates the dispatch function for externally visible functions // and adds the function to the compilation queue. Additionally internal functions, // which are referenced directly or indirectly will be added. appendFunctionSelector(_contract); // This processes the above populated queue until it is empty. appendMissingFunctions(); } size_t ContractCompiler::compileConstructor( ContractDefinition const& _contract, std::map> const& _otherCompilers ) { CompilerContext::LocationSetter locationSetter(m_context, _contract); if (_contract.isLibrary()) return deployLibrary(_contract); else { initializeContext(_contract, _otherCompilers); return packIntoContractCreator(_contract); } } void ContractCompiler::initializeContext( ContractDefinition const& _contract, map> const& _otherCompilers ) { m_context.setExperimentalFeatures(_contract.sourceUnit().annotation().experimentalFeatures); m_context.setOtherCompilers(_otherCompilers); m_context.setInheritanceHierarchy(_contract.annotation().linearizedBaseContracts); CompilerUtils(m_context).initialiseFreeMemoryPointer(); registerStateVariables(_contract); m_context.resetVisitedNodes(&_contract); } void ContractCompiler::appendCallValueCheck() { // Throw if function is not payable but call contained ether. m_context << Instruction::CALLVALUE; // TODO: error message? m_context.appendConditionalRevert(); } void ContractCompiler::appendInitAndConstructorCode(ContractDefinition const& _contract) { solAssert(!_contract.isLibrary(), "Tried to initialize library."); CompilerContext::LocationSetter locationSetter(m_context, _contract); m_baseArguments = &_contract.annotation().baseConstructorArguments; // Initialization of state variables in base-to-derived order. for (ContractDefinition const* contract: boost::adaptors::reverse( _contract.annotation().linearizedBaseContracts )) initializeStateVariables(*contract); if (FunctionDefinition const* constructor = _contract.constructor()) appendConstructor(*constructor); else if (auto c = m_context.nextConstructor(_contract)) appendBaseConstructor(*c); else appendCallValueCheck(); } size_t ContractCompiler::packIntoContractCreator(ContractDefinition const& _contract) { solAssert(!!m_runtimeCompiler, ""); solAssert(!_contract.isLibrary(), "Tried to use contract creator or library."); appendInitAndConstructorCode(_contract); // We jump to the deploy routine because we first have to append all missing functions, // which can cause further functions to be added to the runtime context. eth::AssemblyItem deployRoutine = m_context.appendJumpToNew(); // We have to include copies of functions in the construction time and runtime context // because of absolute jumps. appendMissingFunctions(); m_runtimeCompiler->appendMissingFunctions(); CompilerContext::LocationSetter locationSetter(m_context, _contract); m_context << deployRoutine; solAssert(m_context.runtimeSub() != size_t(-1), "Runtime sub not registered"); m_context.pushSubroutineSize(m_context.runtimeSub()); m_context << Instruction::DUP1; m_context.pushSubroutineOffset(m_context.runtimeSub()); m_context << u256(0) << Instruction::CODECOPY; m_context << u256(0) << Instruction::RETURN; return m_context.runtimeSub(); } size_t ContractCompiler::deployLibrary(ContractDefinition const& _contract) { solAssert(!!m_runtimeCompiler, ""); solAssert(_contract.isLibrary(), "Tried to deploy contract as library."); CompilerContext::LocationSetter locationSetter(m_context, _contract); solAssert(m_context.runtimeSub() != size_t(-1), "Runtime sub not registered"); m_context.pushSubroutineSize(m_context.runtimeSub()); m_context.pushSubroutineOffset(m_context.runtimeSub()); // This code replaces the address added by appendDeployTimeAddress(). m_context.appendInlineAssembly(R"( { // If code starts at 11, an mstore(0) writes to the full PUSH20 plus data // without the need for a shift. let codepos := 11 codecopy(codepos, subOffset, subSize) // Check that the first opcode is a PUSH20 if iszero(eq(0x73, byte(0, mload(codepos)))) { invalid() } mstore(0, address()) mstore8(codepos, 0x73) return(codepos, subSize) } )", {"subSize", "subOffset"}); return m_context.runtimeSub(); } void ContractCompiler::appendBaseConstructor(FunctionDefinition const& _constructor) { CompilerContext::LocationSetter locationSetter(m_context, _constructor); FunctionType constructorType(_constructor); if (!constructorType.parameterTypes().empty()) { solAssert(m_baseArguments, ""); solAssert(m_baseArguments->count(&_constructor), ""); std::vector> const* arguments = nullptr; ASTNode const* baseArgumentNode = m_baseArguments->at(&_constructor); if (auto inheritanceSpecifier = dynamic_cast(baseArgumentNode)) arguments = inheritanceSpecifier->arguments(); else if (auto modifierInvocation = dynamic_cast(baseArgumentNode)) arguments = modifierInvocation->arguments(); solAssert(arguments, ""); solAssert(arguments->size() == constructorType.parameterTypes().size(), ""); for (unsigned i = 0; i < arguments->size(); ++i) compileExpression(*(arguments->at(i)), constructorType.parameterTypes()[i]); } _constructor.accept(*this); } void ContractCompiler::appendConstructor(FunctionDefinition const& _constructor) { CompilerContext::LocationSetter locationSetter(m_context, _constructor); if (!_constructor.isPayable()) appendCallValueCheck(); // copy constructor arguments from code to memory and then to stack, they are supplied after the actual program if (!_constructor.parameters().empty()) { unsigned argumentSize = 0; for (ASTPointer const& var: _constructor.parameters()) if (var->annotation().type->isDynamicallySized()) { argumentSize = 0; break; } else argumentSize += var->annotation().type->calldataEncodedSize(); CompilerUtils(m_context).fetchFreeMemoryPointer(); if (argumentSize == 0) { // argument size is dynamic, use CODESIZE to determine it m_context.appendProgramSize(); // program itself // CODESIZE is program plus manually added arguments m_context << Instruction::CODESIZE << Instruction::SUB; } else m_context << u256(argumentSize); // stack: m_context << Instruction::DUP1; m_context.appendProgramSize(); m_context << Instruction::DUP4 << Instruction::CODECOPY; m_context << Instruction::DUP2 << Instruction::ADD; m_context << Instruction::DUP1; CompilerUtils(m_context).storeFreeMemoryPointer(); // stack: CompilerUtils(m_context).abiDecode(FunctionType(_constructor).parameterTypes(), true); } _constructor.accept(*this); } void ContractCompiler::appendDelegatecallCheck() { // Special constant that will be replaced by the address at deploy time. // At compilation time, this is just "PUSH20 00...000". m_context.appendDeployTimeAddress(); m_context << Instruction::ADDRESS << Instruction::EQ; // The result on the stack is // "We have not been called via DELEGATECALL". } void ContractCompiler::appendInternalSelector( map, eth::AssemblyItem const> const& _entryPoints, vector> const& _ids, eth::AssemblyItem const& _notFoundTag, size_t _runs ) { // Code for selecting from n functions without split: // n times: dup1, push4 , eq, push2/3 , jumpi // push2/3 jump // (called SELECT[n]) // Code for selecting from n functions with split: // dup1, push4 , gt, push2/3, jumpi // SELECT[n/2] // tag_less: // SELECT[n/2] // // This means each split adds 16-18 bytes of additional code (note the additional jump out!) // The average execution cost if we do not split at all are: // (3 + 3 + 3 + 3 + 10) * n/2 = 24 * n/2 = 12 * n // If we split once: // (3 + 3 + 3 + 3 + 10) + 24 * n/4 = 24 * (n/4 + 1) = 6 * n + 24; // // We should split if // _runs * 12 * n > _runs * (6 * n + 24) + 17 * createDataGas // <=> _runs * 6 * (n - 4) > 17 * createDataGas // // Which also means that the execution itself is not profitable // unless we have at least 5 functions. // Start with some comparisons to avoid overflow, then do the actual comparison. bool split = false; if (_ids.size() <= 4) split = false; else if (_runs > (17 * eth::GasCosts::createDataGas) / 6) split = true; else split = (_runs * 6 * (_ids.size() - 4) > 17 * eth::GasCosts::createDataGas); if (split) { size_t pivotIndex = _ids.size() / 2; FixedHash<4> pivot{_ids.at(pivotIndex)}; m_context << dupInstruction(1) << u256(FixedHash<4>::Arith(pivot)) << Instruction::GT; eth::AssemblyItem lessTag{m_context.appendConditionalJump()}; // Here, we have funid >= pivot vector> larger{_ids.begin() + pivotIndex, _ids.end()}; appendInternalSelector(_entryPoints, larger, _notFoundTag, _runs); m_context << lessTag; // Here, we have funid < pivot vector> smaller{_ids.begin(), _ids.begin() + pivotIndex}; appendInternalSelector(_entryPoints, smaller, _notFoundTag, _runs); } else { for (auto const& id: _ids) { m_context << dupInstruction(1) << u256(FixedHash<4>::Arith(id)) << Instruction::EQ; m_context.appendConditionalJumpTo(_entryPoints.at(id)); } m_context.appendJumpTo(_notFoundTag); } } namespace { // Helper function to check if any function is payable bool hasPayableFunctions(ContractDefinition const& _contract) { FunctionDefinition const* fallback = _contract.fallbackFunction(); if (fallback && fallback->isPayable()) return true; for (auto const& it: _contract.interfaceFunctions()) if (it.second->isPayable()) return true; return false; } } void ContractCompiler::appendFunctionSelector(ContractDefinition const& _contract) { map, FunctionTypePointer> interfaceFunctions = _contract.interfaceFunctions(); map, eth::AssemblyItem const> callDataUnpackerEntryPoints; if (_contract.isLibrary()) { solAssert(m_context.stackHeight() == 1, "CALL / DELEGATECALL flag expected."); } FunctionDefinition const* fallback = _contract.fallbackFunction(); solAssert(!_contract.isLibrary() || !fallback, "Libraries can't have fallback functions"); bool needToAddCallvalueCheck = true; if (!hasPayableFunctions(_contract) && !interfaceFunctions.empty() && !_contract.isLibrary()) { appendCallValueCheck(); needToAddCallvalueCheck = false; } eth::AssemblyItem notFound = m_context.newTag(); // directly jump to fallback if the data is too short to contain a function selector // also guards against short data m_context << u256(4) << Instruction::CALLDATASIZE << Instruction::LT; m_context.appendConditionalJumpTo(notFound); // retrieve the function signature hash from the calldata if (!interfaceFunctions.empty()) { CompilerUtils(m_context).loadFromMemory(0, IntegerType(CompilerUtils::dataStartOffset * 8), true); // stack now is: ? vector> sortedIDs; for (auto const& it: interfaceFunctions) { callDataUnpackerEntryPoints.emplace(it.first, m_context.newTag()); sortedIDs.emplace_back(it.first); } std::sort(sortedIDs.begin(), sortedIDs.end()); appendInternalSelector(callDataUnpackerEntryPoints, sortedIDs, notFound, m_optimiserSettings.expectedExecutionsPerDeployment); } m_context << notFound; if (fallback) { solAssert(!_contract.isLibrary(), ""); if (!fallback->isPayable() && needToAddCallvalueCheck) appendCallValueCheck(); solAssert(fallback->isFallback(), ""); solAssert(FunctionType(*fallback).parameterTypes().empty(), ""); solAssert(FunctionType(*fallback).returnParameterTypes().empty(), ""); fallback->accept(*this); m_context << Instruction::STOP; } else // TODO: error message here? m_context.appendRevert(); for (auto const& it: interfaceFunctions) { FunctionTypePointer const& functionType = it.second; solAssert(functionType->hasDeclaration(), ""); CompilerContext::LocationSetter locationSetter(m_context, functionType->declaration()); m_context << callDataUnpackerEntryPoints.at(it.first); if (_contract.isLibrary() && functionType->stateMutability() > StateMutability::View) { // If the function is not a view function and is called without DELEGATECALL, // we revert. m_context << dupInstruction(2); m_context.appendConditionalRevert(); } m_context.setStackOffset(0); // We have to allow this for libraries, because value of the previous // call is still visible in the delegatecall. if (!functionType->isPayable() && !_contract.isLibrary() && needToAddCallvalueCheck) appendCallValueCheck(); // Return tag is used to jump out of the function. eth::AssemblyItem returnTag = m_context.pushNewTag(); if (!functionType->parameterTypes().empty()) { // Parameter for calldataUnpacker m_context << CompilerUtils::dataStartOffset; m_context << Instruction::DUP1 << Instruction::CALLDATASIZE << Instruction::SUB; CompilerUtils(m_context).abiDecode(functionType->parameterTypes()); } m_context.appendJumpTo( m_context.functionEntryLabel(functionType->declaration()), eth::AssemblyItem::JumpType::IntoFunction ); m_context << returnTag; // Return tag and input parameters get consumed. m_context.adjustStackOffset( CompilerUtils(m_context).sizeOnStack(functionType->returnParameterTypes()) - CompilerUtils(m_context).sizeOnStack(functionType->parameterTypes()) - 1 ); // Consumes the return parameters. appendReturnValuePacker(functionType->returnParameterTypes(), _contract.isLibrary()); } } void ContractCompiler::appendReturnValuePacker(TypePointers const& _typeParameters, bool _isLibrary) { CompilerUtils utils(m_context); if (_typeParameters.empty()) m_context << Instruction::STOP; else { utils.fetchFreeMemoryPointer(); //@todo optimization: if we return a single memory array, there should be enough space before // its data to add the needed parts and we avoid a memory copy. utils.abiEncode(_typeParameters, _typeParameters, _isLibrary); utils.toSizeAfterFreeMemoryPointer(); m_context << Instruction::RETURN; } } void ContractCompiler::registerStateVariables(ContractDefinition const& _contract) { for (auto const& var: ContractType(_contract).stateVariables()) m_context.addStateVariable(*get<0>(var), get<1>(var), get<2>(var)); } void ContractCompiler::initializeStateVariables(ContractDefinition const& _contract) { solAssert(!_contract.isLibrary(), "Tried to initialize state variables of library."); for (VariableDeclaration const* variable: _contract.stateVariables()) if (variable->value() && !variable->isConstant()) ExpressionCompiler(m_context, m_optimiserSettings.runOrderLiterals).appendStateVariableInitialization(*variable); } bool ContractCompiler::visit(VariableDeclaration const& _variableDeclaration) { solAssert(_variableDeclaration.isStateVariable(), "Compiler visit to non-state variable declaration."); CompilerContext::LocationSetter locationSetter(m_context, _variableDeclaration); m_context.startFunction(_variableDeclaration); m_breakTags.clear(); m_continueTags.clear(); if (_variableDeclaration.isConstant()) ExpressionCompiler(m_context, m_optimiserSettings.runOrderLiterals).appendConstStateVariableAccessor(_variableDeclaration); else ExpressionCompiler(m_context, m_optimiserSettings.runOrderLiterals).appendStateVariableAccessor(_variableDeclaration); return false; } bool ContractCompiler::visit(FunctionDefinition const& _function) { CompilerContext::LocationSetter locationSetter(m_context, _function); m_context.startFunction(_function); // stack upon entry: [return address] [arg0] [arg1] ... [argn] // reserve additional slots: [retarg0] ... [retargm] unsigned parametersSize = CompilerUtils::sizeOnStack(_function.parameters()); if (!_function.isConstructor()) // adding 1 for return address. m_context.adjustStackOffset(parametersSize + 1); for (ASTPointer const& variable: _function.parameters()) { m_context.addVariable(*variable, parametersSize); parametersSize -= variable->annotation().type->sizeOnStack(); } for (ASTPointer const& variable: _function.returnParameters()) appendStackVariableInitialisation(*variable); if (_function.isConstructor()) if (auto c = m_context.nextConstructor(dynamic_cast(*_function.scope()))) appendBaseConstructor(*c); solAssert(m_returnTags.empty(), ""); m_breakTags.clear(); m_continueTags.clear(); m_currentFunction = &_function; m_modifierDepth = -1; m_scopeStackHeight.clear(); appendModifierOrFunctionCode(); solAssert(m_returnTags.empty(), ""); // Now we need to re-shuffle the stack. For this we keep a record of the stack layout // that shows the target positions of the elements, where "-1" denotes that this element needs // to be removed from the stack. // Note that the fact that the return arguments are of increasing index is vital for this // algorithm to work. unsigned const c_argumentsSize = CompilerUtils::sizeOnStack(_function.parameters()); unsigned const c_returnValuesSize = CompilerUtils::sizeOnStack(_function.returnParameters()); vector stackLayout; stackLayout.push_back(c_returnValuesSize); // target of return address stackLayout += vector(c_argumentsSize, -1); // discard all arguments for (unsigned i = 0; i < c_returnValuesSize; ++i) stackLayout.push_back(i); if (stackLayout.size() > 17) BOOST_THROW_EXCEPTION( CompilerError() << errinfo_sourceLocation(_function.location()) << errinfo_comment("Stack too deep, try removing local variables.") ); while (stackLayout.back() != int(stackLayout.size() - 1)) if (stackLayout.back() < 0) { m_context << Instruction::POP; stackLayout.pop_back(); } else { m_context << swapInstruction(stackLayout.size() - stackLayout.back() - 1); swap(stackLayout[stackLayout.back()], stackLayout.back()); } for (int i = 0; i < int(stackLayout.size()); ++i) if (stackLayout[i] != i) solAssert(false, "Invalid stack layout on cleanup."); for (ASTPointer const& variable: _function.parameters() + _function.returnParameters()) m_context.removeVariable(*variable); m_context.adjustStackOffset(-(int)c_returnValuesSize); /// The constructor and the fallback function doesn't to jump out. if (!_function.isConstructor()) { solAssert(m_context.numberOfLocalVariables() == 0, ""); if (!_function.isFallback()) m_context.appendJump(eth::AssemblyItem::JumpType::OutOfFunction); } return false; } bool ContractCompiler::visit(InlineAssembly const& _inlineAssembly) { unsigned startStackHeight = m_context.stackHeight(); yul::ExternalIdentifierAccess identifierAccess; identifierAccess.resolve = [&](yul::Identifier const& _identifier, yul::IdentifierContext, bool) { auto ref = _inlineAssembly.annotation().externalReferences.find(&_identifier); if (ref == _inlineAssembly.annotation().externalReferences.end()) return size_t(-1); return ref->second.valueSize; }; identifierAccess.generateCode = [&](yul::Identifier const& _identifier, yul::IdentifierContext _context, yul::AbstractAssembly& _assembly) { auto ref = _inlineAssembly.annotation().externalReferences.find(&_identifier); solAssert(ref != _inlineAssembly.annotation().externalReferences.end(), ""); Declaration const* decl = ref->second.declaration; solAssert(!!decl, ""); if (_context == yul::IdentifierContext::RValue) { int const depositBefore = _assembly.stackHeight(); solAssert(!!decl->type(), "Type of declaration required but not yet determined."); if (FunctionDefinition const* functionDef = dynamic_cast(decl)) { solAssert(!ref->second.isOffset && !ref->second.isSlot, ""); functionDef = &m_context.resolveVirtualFunction(*functionDef); auto functionEntryLabel = m_context.functionEntryLabel(*functionDef).pushTag(); solAssert(functionEntryLabel.data() <= std::numeric_limits::max(), ""); _assembly.appendLabelReference(size_t(functionEntryLabel.data())); // If there is a runtime context, we have to merge both labels into the same // stack slot in case we store it in storage. if (CompilerContext* rtc = m_context.runtimeContext()) { _assembly.appendConstant(u256(1) << 32); _assembly.appendInstruction(Instruction::MUL); auto runtimeEntryLabel = rtc->functionEntryLabel(*functionDef).toSubAssemblyTag(m_context.runtimeSub()); solAssert(runtimeEntryLabel.data() <= std::numeric_limits::max(), ""); _assembly.appendLabelReference(size_t(runtimeEntryLabel.data())); _assembly.appendInstruction(Instruction::OR); } } else if (auto variable = dynamic_cast(decl)) { solAssert(!variable->isConstant(), ""); if (m_context.isStateVariable(decl)) { auto const& location = m_context.storageLocationOfVariable(*decl); if (ref->second.isSlot) m_context << location.first; else if (ref->second.isOffset) m_context << u256(location.second); else solAssert(false, ""); } else if (m_context.isLocalVariable(decl)) { int stackDiff = _assembly.stackHeight() - m_context.baseStackOffsetOfVariable(*variable); if (ref->second.isSlot || ref->second.isOffset) { solAssert(variable->type()->dataStoredIn(DataLocation::Storage), ""); unsigned size = variable->type()->sizeOnStack(); if (size == 2) { // slot plus offset if (ref->second.isOffset) stackDiff--; } else { solAssert(size == 1, ""); // only slot, offset is zero if (ref->second.isOffset) { _assembly.appendConstant(u256(0)); return; } } } else solAssert(variable->type()->sizeOnStack() == 1, ""); if (stackDiff < 1 || stackDiff > 16) BOOST_THROW_EXCEPTION( CompilerError() << errinfo_sourceLocation(_inlineAssembly.location()) << errinfo_comment("Stack too deep, try removing local variables.") ); solAssert(variable->type()->sizeOnStack() == 1, ""); _assembly.appendInstruction(dupInstruction(stackDiff)); } else solAssert(false, ""); } else if (auto contract = dynamic_cast(decl)) { solAssert(!ref->second.isOffset && !ref->second.isSlot, ""); solAssert(contract->isLibrary(), ""); _assembly.appendLinkerSymbol(contract->fullyQualifiedName()); } else solAssert(false, "Invalid declaration type."); solAssert(_assembly.stackHeight() - depositBefore == int(ref->second.valueSize), ""); } else { // lvalue context solAssert(!ref->second.isOffset && !ref->second.isSlot, ""); auto variable = dynamic_cast(decl); solAssert( !!variable && m_context.isLocalVariable(variable), "Can only assign to stack variables in inline assembly." ); solAssert(variable->type()->sizeOnStack() == 1, ""); int stackDiff = _assembly.stackHeight() - m_context.baseStackOffsetOfVariable(*variable) - 1; if (stackDiff > 16 || stackDiff < 1) BOOST_THROW_EXCEPTION( CompilerError() << errinfo_sourceLocation(_inlineAssembly.location()) << errinfo_comment("Stack too deep(" + to_string(stackDiff) + "), try removing local variables.") ); _assembly.appendInstruction(swapInstruction(stackDiff)); _assembly.appendInstruction(Instruction::POP); } }; solAssert(_inlineAssembly.annotation().analysisInfo, ""); yul::CodeGenerator::assemble( _inlineAssembly.operations(), *_inlineAssembly.annotation().analysisInfo, *m_context.assemblyPtr(), m_context.evmVersion(), identifierAccess, false, m_optimiserSettings.optimizeStackAllocation ); m_context.setStackOffset(startStackHeight); return false; } bool ContractCompiler::visit(IfStatement const& _ifStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _ifStatement); compileExpression(_ifStatement.condition()); m_context << Instruction::ISZERO; eth::AssemblyItem falseTag = m_context.appendConditionalJump(); eth::AssemblyItem endTag = falseTag; _ifStatement.trueStatement().accept(*this); if (_ifStatement.falseStatement()) { endTag = m_context.appendJumpToNew(); m_context << falseTag; _ifStatement.falseStatement()->accept(*this); } m_context << endTag; checker.check(); return false; } bool ContractCompiler::visit(WhileStatement const& _whileStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _whileStatement); eth::AssemblyItem loopStart = m_context.newTag(); eth::AssemblyItem loopEnd = m_context.newTag(); m_breakTags.emplace_back(loopEnd, m_context.stackHeight()); m_context << loopStart; if (_whileStatement.isDoWhile()) { eth::AssemblyItem condition = m_context.newTag(); m_continueTags.emplace_back(condition, m_context.stackHeight()); _whileStatement.body().accept(*this); m_context << condition; compileExpression(_whileStatement.condition()); m_context << Instruction::ISZERO << Instruction::ISZERO; m_context.appendConditionalJumpTo(loopStart); } else { m_continueTags.emplace_back(loopStart, m_context.stackHeight()); compileExpression(_whileStatement.condition()); m_context << Instruction::ISZERO; m_context.appendConditionalJumpTo(loopEnd); _whileStatement.body().accept(*this); m_context.appendJumpTo(loopStart); } m_context << loopEnd; m_continueTags.pop_back(); m_breakTags.pop_back(); checker.check(); return false; } bool ContractCompiler::visit(ForStatement const& _forStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _forStatement); eth::AssemblyItem loopStart = m_context.newTag(); eth::AssemblyItem loopEnd = m_context.newTag(); eth::AssemblyItem loopNext = m_context.newTag(); storeStackHeight(&_forStatement); if (_forStatement.initializationExpression()) _forStatement.initializationExpression()->accept(*this); m_breakTags.emplace_back(loopEnd, m_context.stackHeight()); m_continueTags.emplace_back(loopNext, m_context.stackHeight()); m_context << loopStart; // if there is no terminating condition in for, default is to always be true if (_forStatement.condition()) { compileExpression(*_forStatement.condition()); m_context << Instruction::ISZERO; m_context.appendConditionalJumpTo(loopEnd); } _forStatement.body().accept(*this); m_context << loopNext; // for's loop expression if existing if (_forStatement.loopExpression()) _forStatement.loopExpression()->accept(*this); m_context.appendJumpTo(loopStart); m_context << loopEnd; m_continueTags.pop_back(); m_breakTags.pop_back(); // For the case where no break/return is executed: // loop initialization variables have to be freed popScopedVariables(&_forStatement); checker.check(); return false; } bool ContractCompiler::visit(Continue const& _continueStatement) { CompilerContext::LocationSetter locationSetter(m_context, _continueStatement); solAssert(!m_continueTags.empty(), ""); CompilerUtils(m_context).popAndJump(m_continueTags.back().second, m_continueTags.back().first); return false; } bool ContractCompiler::visit(Break const& _breakStatement) { CompilerContext::LocationSetter locationSetter(m_context, _breakStatement); solAssert(!m_breakTags.empty(), ""); CompilerUtils(m_context).popAndJump(m_breakTags.back().second, m_breakTags.back().first); return false; } bool ContractCompiler::visit(Return const& _return) { CompilerContext::LocationSetter locationSetter(m_context, _return); if (Expression const* expression = _return.expression()) { solAssert(_return.annotation().functionReturnParameters, "Invalid return parameters pointer."); vector> const& returnParameters = _return.annotation().functionReturnParameters->parameters(); TypePointers types; for (auto const& retVariable: returnParameters) types.push_back(retVariable->annotation().type); TypePointer expectedType; if (expression->annotation().type->category() == Type::Category::Tuple || types.size() != 1) expectedType = make_shared(types); else expectedType = types.front(); compileExpression(*expression, expectedType); for (auto const& retVariable: boost::adaptors::reverse(returnParameters)) CompilerUtils(m_context).moveToStackVariable(*retVariable); } CompilerUtils(m_context).popAndJump(m_returnTags.back().second, m_returnTags.back().first); return false; } bool ContractCompiler::visit(Throw const&) { solAssert(false, "Throw statement is disallowed."); return false; } bool ContractCompiler::visit(EmitStatement const& _emit) { CompilerContext::LocationSetter locationSetter(m_context, _emit); StackHeightChecker checker(m_context); compileExpression(_emit.eventCall()); checker.check(); return false; } bool ContractCompiler::visit(VariableDeclarationStatement const& _variableDeclarationStatement) { CompilerContext::LocationSetter locationSetter(m_context, _variableDeclarationStatement); // Local variable slots are reserved when their declaration is visited, // and freed in the end of their scope. for (auto _decl: _variableDeclarationStatement.declarations()) if (_decl) appendStackVariableInitialisation(*_decl); StackHeightChecker checker(m_context); if (Expression const* expression = _variableDeclarationStatement.initialValue()) { CompilerUtils utils(m_context); compileExpression(*expression); TypePointers valueTypes; if (auto tupleType = dynamic_cast(expression->annotation().type.get())) valueTypes = tupleType->components(); else valueTypes = TypePointers{expression->annotation().type}; auto const& declarations = _variableDeclarationStatement.declarations(); solAssert(declarations.size() == valueTypes.size(), ""); for (size_t i = 0; i < declarations.size(); ++i) { size_t j = declarations.size() - i - 1; solAssert(!!valueTypes[j], ""); if (VariableDeclaration const* varDecl = declarations[j].get()) { utils.convertType(*valueTypes[j], *varDecl->annotation().type); utils.moveToStackVariable(*varDecl); } else utils.popStackElement(*valueTypes[j]); } } checker.check(); return false; } bool ContractCompiler::visit(ExpressionStatement const& _expressionStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _expressionStatement); Expression const& expression = _expressionStatement.expression(); compileExpression(expression); CompilerUtils(m_context).popStackElement(*expression.annotation().type); checker.check(); return false; } bool ContractCompiler::visit(PlaceholderStatement const& _placeholderStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _placeholderStatement); appendModifierOrFunctionCode(); checker.check(); return true; } bool ContractCompiler::visit(Block const& _block) { storeStackHeight(&_block); return true; } void ContractCompiler::endVisit(Block const& _block) { // Frees local variables declared in the scope of this block. popScopedVariables(&_block); } void ContractCompiler::appendMissingFunctions() { while (Declaration const* function = m_context.nextFunctionToCompile()) { m_context.setStackOffset(0); function->accept(*this); solAssert(m_context.nextFunctionToCompile() != function, "Compiled the wrong function?"); } m_context.appendMissingLowLevelFunctions(); auto abiFunctions = m_context.abiFunctions().requestedFunctions(); if (!abiFunctions.first.empty()) m_context.appendInlineAssembly( "{" + move(abiFunctions.first) + "}", {}, abiFunctions.second, true, m_optimiserSettings ); } void ContractCompiler::appendModifierOrFunctionCode() { solAssert(m_currentFunction, ""); unsigned stackSurplus = 0; Block const* codeBlock = nullptr; vector addedVariables; m_modifierDepth++; if (m_modifierDepth >= m_currentFunction->modifiers().size()) { solAssert(m_currentFunction->isImplemented(), ""); codeBlock = &m_currentFunction->body(); } else { ASTPointer const& modifierInvocation = m_currentFunction->modifiers()[m_modifierDepth]; // constructor call should be excluded if (dynamic_cast(modifierInvocation->name()->annotation().referencedDeclaration)) appendModifierOrFunctionCode(); else { ModifierDefinition const& nonVirtualModifier = dynamic_cast( *modifierInvocation->name()->annotation().referencedDeclaration ); ModifierDefinition const& modifier = m_context.resolveVirtualFunctionModifier(nonVirtualModifier); CompilerContext::LocationSetter locationSetter(m_context, modifier); std::vector> const& modifierArguments = modifierInvocation->arguments() ? *modifierInvocation->arguments() : std::vector>(); solAssert(modifier.parameters().size() == modifierArguments.size(), ""); for (unsigned i = 0; i < modifier.parameters().size(); ++i) { m_context.addVariable(*modifier.parameters()[i]); addedVariables.push_back(modifier.parameters()[i].get()); compileExpression( *modifierArguments[i], modifier.parameters()[i]->annotation().type ); } stackSurplus = CompilerUtils::sizeOnStack(modifier.parameters()); codeBlock = &modifier.body(); } } if (codeBlock) { m_returnTags.emplace_back(m_context.newTag(), m_context.stackHeight()); codeBlock->accept(*this); solAssert(!m_returnTags.empty(), ""); m_context << m_returnTags.back().first; m_returnTags.pop_back(); CompilerUtils(m_context).popStackSlots(stackSurplus); for (auto var: addedVariables) m_context.removeVariable(*var); } m_modifierDepth--; } void ContractCompiler::appendStackVariableInitialisation(VariableDeclaration const& _variable) { CompilerContext::LocationSetter location(m_context, _variable); m_context.addVariable(_variable); CompilerUtils(m_context).pushZeroValue(*_variable.annotation().type); } void ContractCompiler::compileExpression(Expression const& _expression, TypePointer const& _targetType) { ExpressionCompiler expressionCompiler(m_context, m_optimiserSettings.runOrderLiterals); expressionCompiler.compile(_expression); if (_targetType) CompilerUtils(m_context).convertType(*_expression.annotation().type, *_targetType); } void ContractCompiler::popScopedVariables(ASTNode const* _node) { unsigned blockHeight = m_scopeStackHeight.at(m_modifierDepth).at(_node); m_context.removeVariablesAboveStackHeight(blockHeight); solAssert(m_context.stackHeight() >= blockHeight, ""); unsigned stackDiff = m_context.stackHeight() - blockHeight; CompilerUtils(m_context).popStackSlots(stackDiff); m_scopeStackHeight[m_modifierDepth].erase(_node); if (m_scopeStackHeight[m_modifierDepth].empty()) m_scopeStackHeight.erase(m_modifierDepth); } void ContractCompiler::storeStackHeight(ASTNode const* _node) { m_scopeStackHeight[m_modifierDepth][_node] = m_context.stackHeight(); }