/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ // SPDX-License-Identifier: GPL-3.0 /** * @author Christian * @date 2014 * Solidity data types */ #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace solidity::frontend { class TypeProvider; class Type; // forward class FunctionType; // forward using FunctionTypePointer = FunctionType const*; using TypePointers = std::vector; using rational = boost::rational; using TypeResult = util::Result; using BoolResult = util::Result; } namespace solidity::frontend { inline rational makeRational(bigint const& _numerator, bigint const& _denominator) { solAssert(_denominator != 0, "division by zero"); // due to a bug in certain versions of boost the denominator has to be positive if (_denominator < 0) return rational(-_numerator, -_denominator); else return rational(_numerator, _denominator); } enum class DataLocation { Storage, CallData, Memory }; /** * Helper class to compute storage offsets of members of structs and contracts. */ class StorageOffsets { public: /// Resets the StorageOffsets objects and determines the position in storage for each /// of the elements of @a _types. void computeOffsets(TypePointers const& _types); /// @returns the offset of the given member, might be null if the member is not part of storage. std::pair const* offset(size_t _index) const; /// @returns the total number of slots occupied by all members. u256 const& storageSize() const { return m_storageSize; } private: u256 m_storageSize; std::map> m_offsets; }; /** * List of members of a type. */ class MemberList { public: struct Member { /// Manual constructor for members that are not taken from a declaration. Member(char const* _name, Type const* _type): name(_name), type(_type), declaration(nullptr) { } /// Constructs a Member with the name extracted from @p _declaration's name. Member(Declaration const* _declaration, Type const* _type); Member(Declaration const* _declaration, Type const* _type, std::string _name); std::string name; Type const* type = nullptr; Declaration const* declaration = nullptr; }; using MemberMap = std::vector; explicit MemberList(MemberMap _members): m_memberTypes(std::move(_members)) {} void combine(MemberList const& _other); Type const* memberType(std::string const& _name) const { Type const* type = nullptr; for (auto const& it: m_memberTypes) if (it.name == _name) { solAssert(!type, "Requested member type by non-unique name."); type = it.type; } return type; } MemberMap membersByName(std::string const& _name) const { MemberMap members; for (auto const& it: m_memberTypes) if (it.name == _name) members.push_back(it); return members; } /// @returns the offset of the given member in storage slots and bytes inside a slot or /// a nullptr if the member is not part of storage. std::pair const* memberStorageOffset(std::string const& _name) const; /// @returns the number of storage slots occupied by the members. u256 const& storageSize() const; MemberMap::const_iterator begin() const { return m_memberTypes.begin(); } MemberMap::const_iterator end() const { return m_memberTypes.end(); } private: StorageOffsets const& storageOffsets() const; MemberMap m_memberTypes; util::LazyInit m_storageOffsets; }; static_assert(std::is_nothrow_move_constructible::value, "MemberList should be noexcept move constructible"); /** * Abstract base class that forms the root of the type hierarchy. */ class Type { public: Type() = default; Type(Type const&) = delete; Type(Type&&) = delete; Type& operator=(Type const&) = delete; Type& operator=(Type&&) = delete; virtual ~Type() = default; enum class Category { Address, Integer, RationalNumber, StringLiteral, Bool, FixedPoint, Array, ArraySlice, FixedBytes, Contract, Struct, Function, Enum, UserDefinedValueType, Tuple, Mapping, TypeType, Modifier, Magic, Module, InaccessibleDynamic }; /// @returns a pointer to _a or _b if the other is implicitly convertible to it or nullptr otherwise static Type const* commonType(Type const* _a, Type const* _b); virtual Category category() const = 0; /// @returns a valid solidity identifier such that two types should compare equal if and /// only if they have the same identifier. /// The identifier should start with "t_". /// Can contain characters which are invalid in identifiers. virtual std::string richIdentifier() const = 0; /// @returns a valid solidity identifier such that two types should compare equal if and /// only if they have the same identifier. /// The identifier should start with "t_". /// Will not contain any character which would be invalid as an identifier. std::string identifier() const; /// More complex identifier strings use "parentheses", where $_ is interpreted as /// "opening parenthesis", _$ as "closing parenthesis", _$_ as "comma" and any $ that /// appears as part of a user-supplied identifier is escaped as _$$$_. /// @returns an escaped identifier (will not contain any parenthesis or commas) static std::string escapeIdentifier(std::string const& _identifier); virtual BoolResult isImplicitlyConvertibleTo(Type const& _other) const { return *this == _other; } virtual BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const { return isImplicitlyConvertibleTo(_convertTo); } /// @returns the resulting type of applying the given unary operator or an empty pointer if /// this is not possible. /// The default implementation does not allow any unary operator. virtual TypeResult unaryOperatorResult(Token) const { return nullptr; } /// @returns the resulting type of applying the given binary operator or an empty pointer if /// this is not possible. /// The default implementation allows comparison operators if a common type exists virtual TypeResult binaryOperatorResult(Token _operator, Type const* _other) const { return TokenTraits::isCompareOp(_operator) ? commonType(this, _other) : nullptr; } virtual bool operator==(Type const& _other) const { return category() == _other.category(); } virtual bool operator!=(Type const& _other) const { return !this->operator ==(_other); } /// @returns number of bytes used by this type when encoded for CALL. Cannot be used for /// dynamically encoded types. /// Always returns a value greater than zero and throws if the type cannot be encoded in calldata /// (or is dynamically encoded). /// If @a _padded then it is assumed that each element is padded to a multiple of 32 bytes. virtual unsigned calldataEncodedSize([[maybe_unused]] bool _padded) const { solAssert(false, ""); } /// Convenience version of @see calldataEncodedSize(bool) unsigned calldataEncodedSize() const { return calldataEncodedSize(true); } /// @returns the distance between two elements of this type in a calldata array, tuple or struct. /// For statically encoded types this is the same as calldataEncodedSize(true). /// For dynamically encoded types this is the distance between two tail pointers, i.e. 32. /// Always returns a value greater than zero and throws if the type cannot be encoded in calldata. unsigned calldataHeadSize() const { return isDynamicallyEncoded() ? 32 : calldataEncodedSize(true); } /// @returns the (minimal) size of the calldata tail for this type. Can only be used for /// dynamically encoded types. For dynamically-sized arrays this is 32 (the size of the length), /// for statically-sized, but dynamically encoded arrays this is 32*length(), for structs /// this is the sum of the calldataHeadSize's of its members. /// Always returns a value greater than zero and throws if the type cannot be encoded in calldata /// (or is not dynamically encoded). virtual unsigned calldataEncodedTailSize() const { solAssert(false, ""); } /// @returns the size of this data type in bytes when stored in memory. For memory-reference /// types, this is the size of the memory pointer. virtual unsigned memoryHeadSize() const { return calldataEncodedSize(); } /// @returns the size of this data type in bytes when stored in memory. For memory-reference /// types, this is the size of the actual data area, if it is statically-sized. virtual u256 memoryDataSize() const { return calldataEncodedSize(); } /// @returns true if the type is a dynamic array virtual bool isDynamicallySized() const { return false; } /// @returns true if the type is dynamically encoded in the ABI virtual bool isDynamicallyEncoded() const { return false; } /// @returns the number of storage slots required to hold this value in storage. /// For dynamically "allocated" types, it returns the size of the statically allocated head, virtual u256 storageSize() const { return 1; } /// @returns an upper bound on the total storage size required by this type, descending /// into structs and statically-sized arrays. This is mainly to ensure that the storage /// slot allocation algorithm does not overflow, it is not a protection against collisions. virtual bigint storageSizeUpperBound() const { return 1; } /// Multiple small types can be packed into a single storage slot. If such a packing is possible /// this function @returns the size in bytes smaller than 32. Data is moved to the next slot if /// it does not fit. /// In order to avoid computation at runtime of whether such moving is necessary, structs and /// array data (not each element) always start a new slot. virtual unsigned storageBytes() const { return 32; } /// Returns true if the type is a value type that is left-aligned on the stack with a size of /// storageBytes() bytes. Returns false if the type is a value type that is right-aligned on /// the stack with a size of storageBytes() bytes. Asserts if it is not a value type or the /// encoding is more complicated. /// Signed integers are not considered "more complicated" even though they need to be /// sign-extended. virtual bool leftAligned() const { solAssert(false, "Alignment property of non-value type requested."); } /// Returns true if the type can be stored in storage. virtual bool canBeStored() const { return true; } /// Returns false if the type cannot live outside the storage, i.e. if it includes some mapping. virtual bool containsNestedMapping() const { solAssert(nameable(), "Called for a non nameable type."); return false; } /// Returns true if the type can be stored as a value (as opposed to a reference) on the stack, /// i.e. it behaves differently in lvalue context and in value context. virtual bool isValueType() const { return false; } /// @returns true if this type can be used for variables. It returns false for /// types like magic types, literals and function types with a kind that is not /// internal or external. virtual bool nameable() const { return false; } /// @returns a list of named and typed stack items that determine the layout of this type on the stack. /// A stack item either has an empty name and type ``nullptr`` referring to a single stack slot, or /// has a non-empty name and a valid type referring to the stack layout of that type. /// The complete layout of a type on the stack can be obtained from its stack items recursively as follows: /// - Each unnamed stack item is untyped (its type is ``nullptr``) and contributes exactly one stack slot. /// - Each named stack item is typed and contributes the stack slots given by the stack items of its type. std::vector> const& stackItems() const { if (!m_stackItems) m_stackItems = makeStackItems(); return *m_stackItems; } /// Total number of stack slots occupied by this type. This is the sum of ``sizeOnStack`` of all ``stackItems()``. // TODO: consider changing the return type to be size_t unsigned sizeOnStack() const { if (!m_stackSize) { size_t sizeOnStack = 0; for (auto const& slot: stackItems()) if (std::get<1>(slot)) sizeOnStack += std::get<1>(slot)->sizeOnStack(); else ++sizeOnStack; m_stackSize = sizeOnStack; } return static_cast(*m_stackSize); } /// If it is possible to initialize such a value in memory by just writing zeros /// of the size memoryHeadSize(). virtual bool hasSimpleZeroValueInMemory() const { return true; } /// @returns the mobile (in contrast to static) type corresponding to the given type. /// This returns the corresponding IntegerType or FixedPointType for RationalNumberType /// and the pointer type for storage reference types. /// Might return a null pointer if there is no fitting type. virtual Type const* mobileType() const { return this; } /// @returns true if this is a non-value type and the data of this type is stored at the /// given location. virtual bool dataStoredIn(DataLocation) const { return false; } /// Returns the list of all members of this type. Default implementation: no members apart from attached functions. /// @param _currentScope scope in which the members are accessed. MemberList const& members(ASTNode const* _currentScope) const; /// Convenience method, returns the type of the given named member or an empty pointer if no such member exists. Type const* memberType(std::string const& _name, ASTNode const* _currentScope = nullptr) const { return members(_currentScope).memberType(_name); } virtual std::string toString(bool _withoutDataLocation) const = 0; std::string toString() const { return toString(false); } /// @returns the canonical name of this type for use in library function signatures. virtual std::string canonicalName() const { return toString(true); } virtual std::string humanReadableName() const { return toString(); } /// @returns the signature of this type in external functions, i.e. `uint256` for integers /// or `(uint256,bytes8)[2]` for an array of structs. If @a _structsByName, /// structs are given by canonical name like `ContractName.StructName[2]`. virtual std::string signatureInExternalFunction(bool /*_structsByName*/) const { return canonicalName(); } virtual u256 literalValue(Literal const*) const { solAssert(false, "Literal value requested for type without literals: " + toString(false)); } /// @returns a (simpler) type that is encoded in the same way for external function calls. /// This for example returns address for contract types. /// If there is no such type, returns an empty shared pointer. virtual Type const* encodingType() const { return nullptr; } /// @returns the encoding type used under the given circumstances for the type of an expression /// when used for e.g. abi.encode(...) or the empty pointer if the object /// cannot be encoded. /// This is different from encodingType since it takes implicit conversions into account. Type const* fullEncodingType(bool _inLibraryCall, bool _encoderV2, bool _packed) const; /// @returns a (simpler) type that is used when decoding this type in calldata. virtual Type const* decodingType() const { return encodingType(); } /// @returns a type that will be used outside of Solidity for e.g. function signatures. /// This for example returns address for contract types. /// If there is no such type, returns an empty shared pointer. /// @param _inLibrary if set, returns types as used in a library, e.g. struct and contract types /// are returned without modification. virtual TypeResult interfaceType(bool /*_inLibrary*/) const { return nullptr; } /// @returns the declaration of a user defined type (enum, struct, user defined value type). /// Returns nullptr otherwise. virtual Declaration const* typeDefinition() const { return nullptr; } /// Clears all internally cached values (if any). virtual void clearCache() const; /// Scans all "using for" directives in the @a _scope for functions implementing /// the operator represented by @a _token. Returns the set of all definitions where the type /// of the first argument matches this type object. /// /// @note: If the AST has passed analysis without errors, /// the function will find at most one definition for an operator. /// /// @param _unary If true, only definitions that accept exactly one argument are included. /// Otherwise only definitions that accept exactly two arguments. std::set> operatorDefinitions( Token _token, ASTNode const& _scope, bool _unary ) const; private: /// @returns a member list containing all members added to this type by `using for` directives. static MemberList::MemberMap attachedFunctions(Type const& _type, ASTNode const& _scope); protected: /// @returns the members native to this type depending on the given context. This function /// is used (in conjunction with attachedFunctions to fill m_members below. virtual MemberList::MemberMap nativeMembers(ASTNode const* /*_currentScope*/) const { return MemberList::MemberMap(); } /// Generates the stack items to be returned by ``stackItems()``. Defaults /// to exactly one unnamed and untyped stack item referring to a single stack slot. virtual std::vector> makeStackItems() const { return {std::make_tuple(std::string(), nullptr)}; } /// List of member types (parameterised by scape), will be lazy-initialized. mutable std::map> m_members; mutable std::optional>> m_stackItems; mutable std::optional m_stackSize; }; /** * Type for addresses. */ class AddressType: public Type { public: explicit AddressType(StateMutability _stateMutability); Category category() const override { return Category::Address; } std::string richIdentifier() const override; BoolResult isImplicitlyConvertibleTo(Type const& _other) const override; BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override; TypeResult unaryOperatorResult(Token _operator) const override; TypeResult binaryOperatorResult(Token _operator, Type const* _other) const override; bool operator==(Type const& _other) const override; unsigned calldataEncodedSize(bool _padded = true) const override { return _padded ? 32 : 160 / 8; } unsigned storageBytes() const override { return 160 / 8; } bool leftAligned() const override { return false; } bool isValueType() const override { return true; } bool nameable() const override { return true; } MemberList::MemberMap nativeMembers(ASTNode const*) const override; std::string toString(bool _withoutDataLocation) const override; std::string canonicalName() const override; u256 literalValue(Literal const* _literal) const override; Type const* encodingType() const override { return this; } TypeResult interfaceType(bool) const override { return this; } StateMutability stateMutability(void) const { return m_stateMutability; } private: StateMutability m_stateMutability; }; /** * Any kind of integer type (signed, unsigned). */ class IntegerType: public Type { public: enum class Modifier { Unsigned, Signed }; explicit IntegerType(unsigned _bits, Modifier _modifier = Modifier::Unsigned); Category category() const override { return Category::Integer; } std::string richIdentifier() const override; BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override; BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override; TypeResult unaryOperatorResult(Token _operator) const override; TypeResult binaryOperatorResult(Token _operator, Type const* _other) const override; bool operator==(Type const& _other) const override; unsigned calldataEncodedSize(bool _padded = true) const override { return _padded ? 32 : m_bits / 8; } unsigned storageBytes() const override { return m_bits / 8; } bool leftAligned() const override { return false; } bool isValueType() const override { return true; } bool nameable() const override { return true; } std::string toString(bool _withoutDataLocation) const override; Type const* encodingType() const override { return this; } TypeResult interfaceType(bool) const override { return this; } unsigned numBits() const { return m_bits; } bool isSigned() const { return m_modifier == Modifier::Signed; } u256 min() const; u256 max() const; bigint minValue() const; bigint maxValue() const; private: unsigned const m_bits; Modifier const m_modifier; }; /** * A fixed point type number (signed, unsigned). */ class FixedPointType: public Type { public: enum class Modifier { Unsigned, Signed }; explicit FixedPointType(unsigned _totalBits, unsigned _fractionalDigits, Modifier _modifier = Modifier::Unsigned); Category category() const override { return Category::FixedPoint; } std::string richIdentifier() const override; BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override; BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override; TypeResult unaryOperatorResult(Token _operator) const override; TypeResult binaryOperatorResult(Token _operator, Type const* _other) const override; bool operator==(Type const& _other) const override; unsigned calldataEncodedSize(bool _padded = true) const override { return _padded ? 32 : m_totalBits / 8; } unsigned storageBytes() const override { return m_totalBits / 8; } bool leftAligned() const override { return false; } bool isValueType() const override { return true; } bool nameable() const override { return true; } std::string toString(bool _withoutDataLocation) const override; Type const* encodingType() const override { return this; } TypeResult interfaceType(bool) const override { return this; } /// Number of bits used for this type in total. unsigned numBits() const { return m_totalBits; } /// Number of decimal digits after the radix point. unsigned fractionalDigits() const { return m_fractionalDigits; } bool isSigned() const { return m_modifier == Modifier::Signed; } /// @returns the largest integer value this type con hold. Note that this is not the /// largest value in general. bigint maxIntegerValue() const; /// @returns the smallest integer value this type can hold. Note hat this is not the /// smallest value in general. bigint minIntegerValue() const; /// @returns the smallest integer type that can hold this type with fractional parts shifted to integers. IntegerType const* asIntegerType() const; private: unsigned m_totalBits; unsigned m_fractionalDigits; Modifier m_modifier; }; /** * Integer and fixed point constants either literals or computed. * Example expressions: 2, 3.14, 2+10.2, ~10. * There is one distinct type per value. */ class RationalNumberType: public Type { public: explicit RationalNumberType(rational _value, Type const* _compatibleBytesType = nullptr): m_value(std::move(_value)), m_compatibleBytesType(_compatibleBytesType) {} Category category() const override { return Category::RationalNumber; } BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override; BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override; TypeResult unaryOperatorResult(Token _operator) const override; TypeResult binaryOperatorResult(Token _operator, Type const* _other) const override; std::string richIdentifier() const override; bool operator==(Type const& _other) const override; bool canBeStored() const override { return false; } std::string toString(bool _withoutDataLocation) const override; u256 literalValue(Literal const* _literal) const override; Type const* mobileType() const override; /// @returns the underlying raw literal value. /// /// @see literalValue(Literal const*)) rational const& value() const noexcept { return m_value; } /// @returns the smallest integer type that can hold the value or an empty pointer if not possible. IntegerType const* integerType() const; /// @returns the smallest fixed type that can hold the value or incurs the least precision loss, /// unless the value was truncated, then a suitable type will be chosen to indicate such event. /// If the integer part does not fit, returns an empty pointer. FixedPointType const* fixedPointType() const; /// @returns true if the value is not an integer. bool isFractional() const { return m_value.denominator() != 1; } /// @returns true if the value is negative. bool isNegative() const { return m_value < 0; } /// @returns true if the value is zero. bool isZero() const { return m_value == 0; } /// @returns true if the literal is a valid integer. static std::tuple isValidLiteral(Literal const& _literal); private: rational m_value; /// Bytes type to which the rational can be implicitly converted. /// Empty for all rationals that are not directly parsed from hex literals. Type const* m_compatibleBytesType; /// @returns true if the literal is a valid rational number. static std::tuple parseRational(std::string const& _value); /// @returns a truncated readable representation of the bigint keeping only /// up to 4 leading and 4 trailing digits. static std::string bigintToReadableString(bigint const& num); }; /** * Literal string, can be converted to bytes, bytesX or string. */ class StringLiteralType: public Type { public: explicit StringLiteralType(Literal const& _literal); explicit StringLiteralType(std::string _value); Category category() const override { return Category::StringLiteral; } BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override; TypeResult binaryOperatorResult(Token, Type const*) const override { return nullptr; } std::string richIdentifier() const override; bool operator==(Type const& _other) const override; bool canBeStored() const override { return false; } std::string toString(bool) const override; Type const* mobileType() const override; std::string const& value() const { return m_value; } protected: std::vector> makeStackItems() const override { return {}; } private: std::string m_value; }; /** * Bytes type with fixed length of up to 32 bytes. */ class FixedBytesType: public Type { public: explicit FixedBytesType(unsigned _bytes); Category category() const override { return Category::FixedBytes; } BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override; BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override; std::string richIdentifier() const override; bool operator==(Type const& _other) const override; TypeResult unaryOperatorResult(Token _operator) const override; TypeResult binaryOperatorResult(Token _operator, Type const* _other) const override; unsigned calldataEncodedSize(bool _padded) const override { return _padded && m_bytes > 0 ? 32 : m_bytes; } unsigned storageBytes() const override { return m_bytes; } bool leftAligned() const override { return true; } bool isValueType() const override { return true; } bool nameable() const override { return true; } std::string toString(bool) const override { return "bytes" + util::toString(m_bytes); } MemberList::MemberMap nativeMembers(ASTNode const*) const override; Type const* encodingType() const override { return this; } TypeResult interfaceType(bool) const override { return this; } unsigned numBytes() const { return m_bytes; } private: unsigned m_bytes; }; /** * The boolean type. */ class BoolType: public Type { public: Category category() const override { return Category::Bool; } std::string richIdentifier() const override { return "t_bool"; } TypeResult unaryOperatorResult(Token _operator) const override; TypeResult binaryOperatorResult(Token _operator, Type const* _other) const override; unsigned calldataEncodedSize(bool _padded) const override{ return _padded ? 32 : 1; } unsigned storageBytes() const override { return 1; } bool leftAligned() const override { return false; } bool isValueType() const override { return true; } bool nameable() const override { return true; } std::string toString(bool) const override { return "bool"; } u256 literalValue(Literal const* _literal) const override; Type const* encodingType() const override { return this; } TypeResult interfaceType(bool) const override { return this; } }; /** * Base class for types which can be thought of as several elements of other types put together. * For example a struct is composed of its members, an array is composed of multiple copies of its * base element and a mapping is composed of its value type elements (note that keys are not * stored anywhere). */ class CompositeType: public Type { protected: CompositeType() = default; public: /// @returns a list containing the type itself, elements of its decomposition, /// elements of decomposition of these elements and so on, up to non-composite types. /// Each type is included only once. std::vector fullDecomposition() const; protected: /// @returns a list of types that together make up the data part of this type. /// Contains all types that will have to be implicitly stored, whenever an object of this type is stored. /// In particular, it returns the base type for arrays and array slices, the member types for structs, /// the component types for tuples and the value type for mappings /// (note that the key type of a mapping is *not* part of the list). virtual std::vector decomposition() const = 0; }; /** * Base class used by types which are not value types and can be stored either in storage, memory * or calldata. This is currently used by arrays and structs. */ class ReferenceType: public CompositeType { protected: explicit ReferenceType(DataLocation _location): m_location(_location) {} public: DataLocation location() const { return m_location; } TypeResult unaryOperatorResult(Token _operator) const override; TypeResult binaryOperatorResult(Token, Type const*) const override { return nullptr; } unsigned memoryHeadSize() const override { return 32; } u256 memoryDataSize() const override = 0; unsigned calldataEncodedSize(bool) const override = 0; unsigned calldataEncodedTailSize() const override = 0; /// @returns a copy of this type with location (recursively) changed to @a _location, /// whereas isPointer is only shallowly changed - the deep copy is always a bound reference. virtual std::unique_ptr copyForLocation(DataLocation _location, bool _isPointer) const = 0; Type const* mobileType() const override { return withLocation(m_location, true); } bool dataStoredIn(DataLocation _location) const override { return m_location == _location; } bool hasSimpleZeroValueInMemory() const override { return false; } /// Storage references can be pointers or bound references. In general, local variables are of /// pointer type, state variables are bound references. Assignments to pointers or deleting /// them will not modify storage (that will only change the pointer). Assignment from /// non-storage objects to a variable of storage pointer type is not possible. /// For anything other than storage, this always returns true because assignments /// never change the contents of the original value. bool isPointer() const; /// @returns true if this is valid to be stored in data location _loc /// The function mostly checks sizes. For calldata, this should only be called /// if the type has an interfaceType. virtual BoolResult validForLocation(DataLocation _loc) const = 0; bool equals(ReferenceType const& _other) const { return location() == _other.location() && isPointer() == _other.isPointer(); } Type const* withLocation(DataLocation _location, bool _isPointer) const; protected: Type const* copyForLocationIfReference(Type const* _type) const; /// @returns a human-readable description of the reference part of the type. std::string stringForReferencePart() const; /// @returns the suffix computed from the reference part to be used by identifier(); std::string identifierLocationSuffix() const; DataLocation m_location = DataLocation::Storage; bool m_isPointer = true; }; /** * The type of an array. The flavours are byte array (bytes), statically- ([]) * and dynamically-sized array ([]). * In storage, all arrays are packed tightly (as long as more than one elementary type fits in * one slot). Dynamically sized arrays (including byte arrays) start with their size as a uint and * thus start on their own slot. */ class ArrayType: public ReferenceType { public: /// Constructor for a byte array ("bytes") and string. explicit ArrayType(DataLocation _location, bool _isString = false); /// Constructor for a dynamically sized array type ("[]") ArrayType(DataLocation _location, Type const* _baseType): ReferenceType(_location), m_baseType(copyForLocationIfReference(_baseType)) { } /// Constructor for a fixed-size array type ("[]") ArrayType(DataLocation _location, Type const* _baseType, u256 _length): ReferenceType(_location), m_baseType(copyForLocationIfReference(_baseType)), m_hasDynamicLength(false), m_length(std::move(_length)) {} Category category() const override { return Category::Array; } BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override; BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override; std::string richIdentifier() const override; bool operator==(Type const& _other) const override; unsigned calldataEncodedSize(bool) const override; unsigned calldataEncodedTailSize() const override; bool isDynamicallySized() const override { return m_hasDynamicLength; } bool isDynamicallyEncoded() const override; bigint storageSizeUpperBound() const override; u256 storageSize() const override; bool containsNestedMapping() const override { return m_baseType->containsNestedMapping(); } bool nameable() const override { return true; } std::string toString(bool _withoutDataLocation) const override; std::string humanReadableName() const override; std::string canonicalName() const override; std::string signatureInExternalFunction(bool _structsByName) const override; MemberList::MemberMap nativeMembers(ASTNode const* _currentScope) const override; Type const* encodingType() const override; Type const* decodingType() const override; TypeResult interfaceType(bool _inLibrary) const override; BoolResult validForLocation(DataLocation _loc) const override; /// @returns true if this is a byte array. bool isByteArray() const { return m_arrayKind == ArrayKind::Bytes; } /// @returns true if this is a byte array or a string bool isByteArrayOrString() const { return m_arrayKind != ArrayKind::Ordinary; } /// @returns true if this is a string bool isString() const { return m_arrayKind == ArrayKind::String; } Type const* baseType() const { solAssert(!!m_baseType, ""); return m_baseType; } Type const* finalBaseType(bool breakIfDynamicArrayType) const; u256 const& length() const { return m_length; } u256 memoryDataSize() const override; std::unique_ptr copyForLocation(DataLocation _location, bool _isPointer) const override; /// The offset to advance in calldata to move from one array element to the next. unsigned calldataStride() const { return isByteArrayOrString() ? 1 : m_baseType->calldataHeadSize(); } /// The offset to advance in memory to move from one array element to the next. unsigned memoryStride() const { return isByteArrayOrString() ? 1 : m_baseType->memoryHeadSize(); } /// The offset to advance in storage to move from one array element to the next. unsigned storageStride() const { return isByteArrayOrString() ? 1 : m_baseType->storageBytes(); } void clearCache() const override; protected: std::vector> makeStackItems() const override; std::vector decomposition() const override { return {m_baseType}; } private: enum class ArrayKind { Ordinary, Bytes, String }; bigint unlimitedStaticCalldataSize(bool _padded) const; ///< Byte arrays ("bytes") and strings have different semantics from ordinary arrays. ArrayKind m_arrayKind = ArrayKind::Ordinary; Type const* m_baseType; bool m_hasDynamicLength = true; u256 m_length; mutable std::optional m_interfaceType; mutable std::optional m_interfaceType_library; }; class ArraySliceType: public ReferenceType { public: explicit ArraySliceType(ArrayType const& _arrayType): ReferenceType(_arrayType.location()), m_arrayType(_arrayType) {} Category category() const override { return Category::ArraySlice; } BoolResult isImplicitlyConvertibleTo(Type const& _other) const override; BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override; std::string richIdentifier() const override; bool operator==(Type const& _other) const override; unsigned calldataEncodedSize(bool) const override { solAssert(false, ""); } unsigned calldataEncodedTailSize() const override { return 32; } bool isDynamicallySized() const override { return true; } bool isDynamicallyEncoded() const override { return true; } std::string toString(bool _withoutDataLocation) const override; std::string humanReadableName() const override; Type const* mobileType() const override; BoolResult validForLocation(DataLocation _loc) const override { return m_arrayType.validForLocation(_loc); } ArrayType const& arrayType() const { return m_arrayType; } u256 memoryDataSize() const override { solAssert(false, ""); } std::unique_ptr copyForLocation(DataLocation, bool) const override { solAssert(false, ""); } protected: std::vector> makeStackItems() const override; std::vector decomposition() const override { return {m_arrayType.baseType()}; } private: ArrayType const& m_arrayType; }; /** * The type of a contract instance or library, there is one distinct type for each contract definition. */ class ContractType: public Type { public: explicit ContractType(ContractDefinition const& _contract, bool _super = false): m_contract(_contract), m_super(_super) {} Category category() const override { return Category::Contract; } /// Contracts can be implicitly converted only to base contracts. BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override; /// Contracts can only be explicitly converted to address types and base contracts. BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override; TypeResult unaryOperatorResult(Token _operator) const override; std::string richIdentifier() const override; bool operator==(Type const& _other) const override; unsigned calldataEncodedSize(bool _padded ) const override { solAssert(!isSuper(), ""); return encodingType()->calldataEncodedSize(_padded); } unsigned storageBytes() const override { solAssert(!isSuper(), ""); return 20; } bool leftAligned() const override { solAssert(!isSuper(), ""); return false; } bool isValueType() const override { return !isSuper(); } bool nameable() const override { return !isSuper(); } std::string toString(bool _withoutDataLocation) const override; std::string canonicalName() const override; MemberList::MemberMap nativeMembers(ASTNode const* _currentScope) const override; Type const* encodingType() const override; TypeResult interfaceType(bool _inLibrary) const override { if (isSuper()) return nullptr; return _inLibrary ? this : encodingType(); } /// See documentation of m_super bool isSuper() const { return m_super; } // @returns true if and only if the contract has a receive ether function or a payable fallback function, i.e. // if it has code that will be executed on plain ether transfers bool isPayable() const; ContractDefinition const& contractDefinition() const { return m_contract; } /// Returns the function type of the constructor modified to return an object of the contract's type. FunctionType const* newExpressionType() const; /// @returns a list of all state variables (including inherited) of the contract and their /// offsets in storage. std::vector> stateVariables() const; /// @returns a list of all immutable variables (including inherited) of the contract. std::vector immutableVariables() const; protected: std::vector> makeStackItems() const override; private: ContractDefinition const& m_contract; /// If true, this is a special "super" type of m_contract containing only members that m_contract inherited bool m_super = false; /// Type of the constructor, @see constructorType. Lazily initialized. mutable FunctionType const* m_constructorType = nullptr; }; /** * The type of a struct instance, there is one distinct type per struct definition. */ class StructType: public ReferenceType { public: explicit StructType(StructDefinition const& _struct, DataLocation _location = DataLocation::Storage): ReferenceType(_location), m_struct(_struct) {} Category category() const override { return Category::Struct; } BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override; std::string richIdentifier() const override; bool operator==(Type const& _other) const override; unsigned calldataEncodedSize(bool) const override; unsigned calldataEncodedTailSize() const override; bool isDynamicallyEncoded() const override; u256 memoryDataSize() const override; bigint storageSizeUpperBound() const override; u256 storageSize() const override; bool containsNestedMapping() const override; bool nameable() const override { return true; } std::string toString(bool _withoutDataLocation) const override; MemberList::MemberMap nativeMembers(ASTNode const* _currentScope) const override; Type const* encodingType() const override; TypeResult interfaceType(bool _inLibrary) const override; Declaration const* typeDefinition() const override; BoolResult validForLocation(DataLocation _loc) const override; bool recursive() const; std::unique_ptr copyForLocation(DataLocation _location, bool _isPointer) const override; std::string canonicalName() const override; std::string signatureInExternalFunction(bool _structsByName) const override; /// @returns a function that performs the type conversion between a list of struct members /// and a memory struct of this type. FunctionType const* constructorType() const; std::pair const& storageOffsetsOfMember(std::string const& _name) const; u256 memoryOffsetOfMember(std::string const& _name) const; unsigned calldataOffsetOfMember(std::string const& _name) const; StructDefinition const& structDefinition() const { return m_struct; } /// @returns the vector of types of members available in memory. TypePointers memoryMemberTypes() const; void clearCache() const override; protected: std::vector> makeStackItems() const override; std::vector decomposition() const override; private: StructDefinition const& m_struct; // Caches for interfaceType(bool) mutable std::optional m_interfaceType; mutable std::optional m_interfaceType_library; }; /** * The type of an enum instance, there is one distinct type per enum definition. */ class EnumType: public Type { public: explicit EnumType(EnumDefinition const& _enum): m_enum(_enum) {} Category category() const override { return Category::Enum; } TypeResult unaryOperatorResult(Token _operator) const override; std::string richIdentifier() const override; bool operator==(Type const& _other) const override; unsigned calldataEncodedSize(bool _padded) const override { return encodingType()->calldataEncodedSize(_padded); } unsigned storageBytes() const override; bool leftAligned() const override { return false; } std::string toString(bool _withoutDataLocation) const override; std::string canonicalName() const override; bool isValueType() const override { return true; } bool nameable() const override { return true; } BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override; Type const* encodingType() const override; TypeResult interfaceType(bool _inLibrary) const override { return _inLibrary ? this : encodingType(); } Declaration const* typeDefinition() const override; EnumDefinition const& enumDefinition() const { return m_enum; } /// @returns the value that the string has in the Enum unsigned int memberValue(ASTString const& _member) const; size_t numberOfMembers() const; unsigned int minValue() const { return 0; } unsigned int maxValue() const { solAssert(numberOfMembers() <= 256, ""); return static_cast(numberOfMembers()) - 1; } private: EnumDefinition const& m_enum; }; /** * The type of a UserDefinedValueType. */ class UserDefinedValueType: public Type { public: explicit UserDefinedValueType(UserDefinedValueTypeDefinition const& _definition): m_definition(_definition) {} Category category() const override { return Category::UserDefinedValueType; } Type const& underlyingType() const; UserDefinedValueTypeDefinition const& definition() const { return m_definition; } TypeResult binaryOperatorResult(Token, Type const*) const override { return nullptr; } Type const* encodingType() const override { return &underlyingType(); } TypeResult interfaceType(bool /* _inLibrary */) const override {return &underlyingType(); } Declaration const* typeDefinition() const override; std::string richIdentifier() const override; bool operator==(Type const& _other) const override; unsigned calldataEncodedSize(bool _padded) const override { return underlyingType().calldataEncodedSize(_padded); } bool leftAligned() const override { return underlyingType().leftAligned(); } bool canBeStored() const override { return underlyingType().canBeStored(); } u256 storageSize() const override { return underlyingType().storageSize(); } unsigned storageBytes() const override { return underlyingType().storageBytes(); } bool isValueType() const override { return true; } bool nameable() const override { solAssert(underlyingType().nameable(), ""); return true; } bool containsNestedMapping() const override { solAssert(nameable(), "Called for a non nameable type."); // DeclarationTypeChecker::endVisit(VariableDeclaration const&) // assumes that this will never be true. solAssert(!underlyingType().containsNestedMapping(), ""); return false; } bool hasSimpleZeroValueInMemory() const override { solAssert(underlyingType().hasSimpleZeroValueInMemory(), ""); return true; } bool dataStoredIn(DataLocation _loc) const override { solAssert(!underlyingType().dataStoredIn(_loc), ""); return false; } std::string toString(bool _withoutDataLocation) const override; std::string canonicalName() const override; std::string signatureInExternalFunction(bool) const override { solAssert(false, ""); } protected: std::vector> makeStackItems() const override; private: UserDefinedValueTypeDefinition const& m_definition; }; /** * Type that can hold a finite sequence of values of different types. * In some cases, the components are empty pointers (when used as placeholders). */ class TupleType: public CompositeType { public: explicit TupleType(std::vector _types = {}): m_components(std::move(_types)) {} Category category() const override { return Category::Tuple; } BoolResult isImplicitlyConvertibleTo(Type const& _other) const override; std::string richIdentifier() const override; bool operator==(Type const& _other) const override; TypeResult binaryOperatorResult(Token, Type const*) const override { return nullptr; } std::string toString(bool _withoutDataLocation) const override; std::string humanReadableName() const override; bool canBeStored() const override { return false; } u256 storageSize() const override; bool hasSimpleZeroValueInMemory() const override { return false; } Type const* mobileType() const override; std::vector const& components() const { return m_components; } protected: std::vector> makeStackItems() const override; std::vector decomposition() const override { // Currently calling TupleType::decomposition() is not expected, because we cannot declare a variable of a tuple type. // If that changes, before removing the solAssert, make sure the function does the right thing and is used properly. // Note that different tuple members can have different data locations, so using decomposition() to check // the tuple validity for a data location might require special care. solUnimplemented("Tuple decomposition is not expected."); return m_components; } private: std::vector const m_components; }; /** * The type of a function, identified by its (return) parameter types. * @todo the return parameters should also have names, i.e. return parameters should be a struct * type. */ class FunctionType: public Type { public: /// How this function is invoked on the EVM. enum class Kind { Internal, ///< stack-call using plain JUMP External, ///< external call using CALL DelegateCall, ///< external call using DELEGATECALL, i.e. not exchanging the storage BareCall, ///< CALL without function hash BareCallCode, ///< CALLCODE without function hash BareDelegateCall, ///< DELEGATECALL without function hash BareStaticCall, ///< STATICCALL without function hash Creation, ///< external call using CREATE Send, ///< CALL, but without data and gas Transfer, ///< CALL, but without data and throws on error KECCAK256, ///< KECCAK256 Selfdestruct, ///< SELFDESTRUCT Revert, ///< REVERT ECRecover, ///< CALL to special contract for ecrecover SHA256, ///< CALL to special contract for sha256 RIPEMD160, ///< CALL to special contract for ripemd160 Event, ///< syntactic sugar for LOG* Error, ///< creating an error instance in revert or require Wrap, ///< customType.wrap(...) for user defined value types Unwrap, ///< customType.unwrap(...) for user defined value types SetGas, ///< modify the default gas value for the function call SetValue, ///< modify the default value transfer for the function call BlockHash, ///< BLOCKHASH AddMod, ///< ADDMOD MulMod, ///< MULMOD ArrayPush, ///< .push() to a dynamically sized array in storage ArrayPop, ///< .pop() from a dynamically sized array in storage BytesConcat, ///< .concat() on bytes (type type) StringConcat, ///< .concat() on string (type type) ObjectCreation, ///< array creation using new Assert, ///< assert() Require, ///< require() ABIEncode, ABIEncodePacked, ABIEncodeWithSelector, ABIEncodeCall, ABIEncodeWithSignature, ABIDecode, GasLeft, ///< gasleft() MetaType, ///< type(...) /// Refers to a function declaration without calling context /// (i.e. when accessed directly via the name of the containing contract). /// Cannot be called. Declaration, }; struct Options { /// true iff the function takes an arbitrary number of arguments of arbitrary types bool arbitraryParameters = false; /// true iff the gas value to be used is on the stack bool gasSet = false; /// true iff the value to be sent is on the stack bool valueSet = false; /// iff the salt value (for create2) to be used is on the stack bool saltSet = false; /// true iff the function is called as arg1.fun(arg2, ..., argn). /// This is achieved through the "using for" directive. bool hasBoundFirstArgument = false; static Options withArbitraryParameters() { Options result; result.arbitraryParameters = true; return result; } static Options fromFunctionType(FunctionType const& _type) { Options result; result.arbitraryParameters = _type.takesArbitraryParameters(); result.gasSet = _type.gasSet(); result.valueSet = _type.valueSet(); result.saltSet = _type.saltSet(); result.hasBoundFirstArgument = _type.hasBoundFirstArgument(); return result; } }; /// Creates the type of a function. /// @arg _kind must be Kind::Internal, Kind::External or Kind::Declaration. explicit FunctionType(FunctionDefinition const& _function, Kind _kind = Kind::Declaration); /// Creates the accessor function type of a state variable. explicit FunctionType(VariableDeclaration const& _varDecl); /// Creates the function type of an event. explicit FunctionType(EventDefinition const& _event); explicit FunctionType(ErrorDefinition const& _error); /// Creates the type of a function type name. explicit FunctionType(FunctionTypeName const& _typeName); /// Function type constructor to be used for a plain type (not derived from a declaration). FunctionType( strings const& _parameterTypes, strings const& _returnParameterTypes, Kind _kind, StateMutability _stateMutability = StateMutability::NonPayable, Options _options = Options{false, false, false, false, false} ): FunctionType( parseElementaryTypeVector(_parameterTypes), parseElementaryTypeVector(_returnParameterTypes), strings(_parameterTypes.size(), ""), strings(_returnParameterTypes.size(), ""), _kind, _stateMutability, nullptr, std::move(_options) ) { // In this constructor, only the "arbitrary Parameters" option should be used. solAssert(!hasBoundFirstArgument() && !gasSet() && !valueSet() && !saltSet()); } /// Detailed constructor, use with care. FunctionType( TypePointers _parameterTypes, TypePointers _returnParameterTypes, strings _parameterNames = strings(), strings _returnParameterNames = strings(), Kind _kind = Kind::Internal, StateMutability _stateMutability = StateMutability::NonPayable, Declaration const* _declaration = nullptr, Options _options = Options{false, false, false, false, false} ): m_parameterTypes(std::move(_parameterTypes)), m_returnParameterTypes(std::move(_returnParameterTypes)), m_parameterNames(std::move(_parameterNames)), m_returnParameterNames(std::move(_returnParameterNames)), m_kind(_kind), m_stateMutability(_stateMutability), m_declaration(_declaration), m_options(std::move(_options)) { solAssert( m_parameterNames.size() == m_parameterTypes.size(), "Parameter names list must match parameter types list!" ); solAssert( m_returnParameterNames.size() == m_returnParameterTypes.size(), "Return parameter names list must match return parameter types list!" ); solAssert( !hasBoundFirstArgument() || !m_parameterTypes.empty(), "Attempted construction of attached function without self type" ); } Category category() const override { return Category::Function; } /// @returns the type of the "new Contract" function, i.e. basically the constructor. static FunctionTypePointer newExpressionType(ContractDefinition const& _contract); TypePointers parameterTypes() const; TypePointers const& parameterTypesIncludingSelf() const; std::vector parameterNames() const; TypePointers const& returnParameterTypes() const { return m_returnParameterTypes; } /// @returns the list of return parameter types. All dynamically-sized types (this excludes /// storage pointers) are replaced by InaccessibleDynamicType instances. TypePointers returnParameterTypesWithoutDynamicTypes() const; std::vector const& returnParameterNames() const { return m_returnParameterNames; } /// @returns the "self" parameter type for an attached function Type const* selfType() const; std::string richIdentifier() const override; bool operator==(Type const& _other) const override; BoolResult isImplicitlyConvertibleTo(Type const& _convertTo) const override; BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override; TypeResult unaryOperatorResult(Token _operator) const override; TypeResult binaryOperatorResult(Token, Type const*) const override; std::string canonicalName() const override; std::string humanReadableName() const override; std::string toString(bool _withoutDataLocation) const override; unsigned calldataEncodedSize(bool _padded) const override; bool canBeStored() const override { return m_kind == Kind::Internal || m_kind == Kind::External; } u256 storageSize() const override; bool leftAligned() const override; unsigned storageBytes() const override; bool isValueType() const override { return true; } bool nameable() const override; bool hasSimpleZeroValueInMemory() const override { return false; } MemberList::MemberMap nativeMembers(ASTNode const* _currentScope) const override; Type const* encodingType() const override; TypeResult interfaceType(bool _inLibrary) const override; Type const* mobileType() const override; /// @returns Type const* of a new FunctionType object. All input/return parameters are an /// appropriate external types (i.e. the interfaceType()s) of input/return parameters of /// current function. /// @returns an empty shared pointer if one of the input/return parameters does not have an /// external type. FunctionTypePointer interfaceFunctionType() const; /// @returns true if this function can take the given arguments (possibly /// after implicit conversion). /// @param _selfType if the function is attached as a member function, this has to be supplied /// and is the type of the expression the function is called on. bool canTakeArguments( FuncCallArguments const& _arguments, Type const* _selfType = nullptr ) const; /// @returns true if the types of parameters are equal (does not check return parameter types) bool hasEqualParameterTypes(FunctionType const& _other) const; /// @returns true iff the return types are equal (does not check parameter types) bool hasEqualReturnTypes(FunctionType const& _other) const; /// @returns true iff the function type is equal to the given type, ignoring state mutability differences. bool equalExcludingStateMutability(FunctionType const& _other) const; /// @returns true if the ABI is NOT used for this call (only meaningful for external calls) bool isBareCall() const; Kind const& kind() const { return m_kind; } StateMutability stateMutability() const { return m_stateMutability; } /// @returns the external signature of this function type given the function name std::string externalSignature() const; /// @returns the external identifier of this function (the hash of the signature). u256 externalIdentifier() const; /// @returns the external identifier of this function (the hash of the signature) as a hex string. std::string externalIdentifierHex() const; Declaration const& declaration() const { solAssert(m_declaration, "Requested declaration from a FunctionType that has none"); return *m_declaration; } bool hasDeclaration() const { return !!m_declaration; } /// @returns true if the result of this function only depends on its arguments, /// does not modify the state and is a compile-time constant. /// Currently, this will only return true for internal functions like keccak and ecrecover. bool isPure() const; bool isPayable() const { return m_stateMutability == StateMutability::Payable; } /// @return A shared pointer of StructuredDocumentation. /// Can contain a nullptr in which case indicates absence of documentation. ASTPointer documentation() const; /// true iff arguments are to be padded to multiples of 32 bytes for external calls /// The only functions that do not pad are hash functions, the low-level call functions /// and abi.encodePacked. bool padArguments() const; bool takesArbitraryParameters() const { return m_options.arbitraryParameters; } /// true iff the function takes a single bytes parameter and it is passed on without padding. bool takesSinglePackedBytesParameter() const { switch (m_kind) { case FunctionType::Kind::KECCAK256: case FunctionType::Kind::SHA256: case FunctionType::Kind::RIPEMD160: case FunctionType::Kind::BareCall: case FunctionType::Kind::BareCallCode: case FunctionType::Kind::BareDelegateCall: case FunctionType::Kind::BareStaticCall: return true; default: return false; } } bool gasSet() const { return m_options.gasSet; } bool valueSet() const { return m_options.valueSet; } bool saltSet() const { return m_options.saltSet; } bool hasBoundFirstArgument() const { return m_options.hasBoundFirstArgument; } /// @returns a copy of this type, where gas or value are set manually. This will never set one /// of the parameters to false. Type const* copyAndSetCallOptions(bool _setGas, bool _setValue, bool _setSalt) const; /// @returns a copy of this function type with the `hasBoundFirstArgument` flag set to true. /// Should only be called on library functions. FunctionTypePointer withBoundFirstArgument() const; /// @returns a copy of this function type where the location of reference types is changed /// from CallData to Memory. This is the type that would be used when the function is /// called externally, as opposed to the parameter types that are available inside the function body. /// Also supports variants to be used for library or attached function calls. /// @param _inLibrary if true, uses DelegateCall as location. FunctionTypePointer asExternallyCallableFunction(bool _inLibrary) const; protected: std::vector> makeStackItems() const override; private: static TypePointers parseElementaryTypeVector(strings const& _types); TypePointers m_parameterTypes; TypePointers m_returnParameterTypes; std::vector m_parameterNames; std::vector m_returnParameterNames; Kind const m_kind; StateMutability m_stateMutability = StateMutability::NonPayable; Declaration const* m_declaration = nullptr; Options const m_options; }; /** * The type of a mapping, there is one distinct type per key/value type pair. * Mappings always occupy their own storage slot, but do not actually use it. */ class MappingType: public CompositeType { public: MappingType(Type const* _keyType, ASTString _keyName, Type const* _valueType, ASTString _valueName): m_keyType(_keyType), m_keyName(_keyName), m_valueType(_valueType), m_valueName(_valueName) {} Category category() const override { return Category::Mapping; } std::string richIdentifier() const override; bool operator==(Type const& _other) const override; std::string toString(bool _withoutDataLocation) const override; std::string canonicalName() const override; bool containsNestedMapping() const override { return true; } TypeResult binaryOperatorResult(Token, Type const*) const override { return nullptr; } Type const* encodingType() const override; TypeResult interfaceType(bool _inLibrary) const override; bool dataStoredIn(DataLocation _location) const override { return _location == DataLocation::Storage; } /// Cannot be stored in memory, but just in case. bool hasSimpleZeroValueInMemory() const override { solAssert(false, ""); } bool nameable() const override { return true; } std::vector> makeStackItems() const override; Type const* keyType() const { return m_keyType; } ASTString keyName() const { return m_keyName; } Type const* valueType() const { return m_valueType; } ASTString valueName() const { return m_valueName; } protected: std::vector decomposition() const override { return {m_valueType}; } private: Type const* m_keyType; ASTString m_keyName; Type const* m_valueType; ASTString m_valueName; }; /** * The type of a type reference. The type of "uint32" when used in "a = uint32(2)" is an example * of a TypeType. * For super contracts or libraries, this has members directly. */ class TypeType: public Type { public: explicit TypeType(Type const* _actualType): m_actualType(_actualType) {} Category category() const override { return Category::TypeType; } Type const* actualType() const { return m_actualType; } TypeResult binaryOperatorResult(Token, Type const*) const override { return nullptr; } std::string richIdentifier() const override; bool operator==(Type const& _other) const override; bool canBeStored() const override { return false; } u256 storageSize() const override; bool hasSimpleZeroValueInMemory() const override { solAssert(false, ""); } std::string toString(bool _withoutDataLocation) const override { return "type(" + m_actualType->toString(_withoutDataLocation) + ")"; } MemberList::MemberMap nativeMembers(ASTNode const* _currentScope) const override; BoolResult isExplicitlyConvertibleTo(Type const& _convertTo) const override; protected: std::vector> makeStackItems() const override; private: Type const* m_actualType; }; /** * The type of a function modifier. Not used for anything for now. */ class ModifierType: public Type { public: explicit ModifierType(ModifierDefinition const& _modifier); Category category() const override { return Category::Modifier; } TypeResult binaryOperatorResult(Token, Type const*) const override { return nullptr; } bool canBeStored() const override { return false; } u256 storageSize() const override; bool hasSimpleZeroValueInMemory() const override { solAssert(false, ""); } std::string richIdentifier() const override; bool operator==(Type const& _other) const override; std::string toString(bool _withoutDataLocation) const override; protected: std::vector> makeStackItems() const override { return {}; } private: TypePointers m_parameterTypes; }; /** * Special type for imported modules. These mainly give access to their scope via members. */ class ModuleType: public Type { public: explicit ModuleType(SourceUnit const& _source): m_sourceUnit(_source) {} Category category() const override { return Category::Module; } TypeResult binaryOperatorResult(Token, Type const*) const override { return nullptr; } std::string richIdentifier() const override; bool operator==(Type const& _other) const override; bool canBeStored() const override { return false; } bool hasSimpleZeroValueInMemory() const override { solAssert(false, ""); } MemberList::MemberMap nativeMembers(ASTNode const*) const override; std::string toString(bool _withoutDataLocation) const override; protected: std::vector> makeStackItems() const override { return {}; } private: SourceUnit const& m_sourceUnit; }; /** * Special type for magic variables (block, msg, tx, type(...)), similar to a struct but without any reference. */ class MagicType: public Type { public: enum class Kind { Block, ///< "block" Message, ///< "msg" Transaction, ///< "tx" ABI, ///< "abi" MetaType ///< "type(...)" }; public: explicit MagicType(Kind _kind): m_kind(_kind) {} explicit MagicType(Type const* _metaTypeArg): m_kind{Kind::MetaType}, m_typeArgument{_metaTypeArg} {} Category category() const override { return Category::Magic; } TypeResult binaryOperatorResult(Token, Type const*) const override { return nullptr; } std::string richIdentifier() const override; bool operator==(Type const& _other) const override; bool canBeStored() const override { return false; } bool hasSimpleZeroValueInMemory() const override { solAssert(false, ""); } MemberList::MemberMap nativeMembers(ASTNode const*) const override; std::string toString(bool _withoutDataLocation) const override; Kind kind() const { return m_kind; } Type const* typeArgument() const; protected: std::vector> makeStackItems() const override { return {}; } private: Kind m_kind; /// Contract type used for contract metadata magic. Type const* m_typeArgument; }; /** * Special type that is used for dynamic types in returns from external function calls * (The EVM currently cannot access dynamically-sized return values). */ class InaccessibleDynamicType: public Type { public: Category category() const override { return Category::InaccessibleDynamic; } std::string richIdentifier() const override { return "t_inaccessible"; } BoolResult isImplicitlyConvertibleTo(Type const&) const override { return false; } BoolResult isExplicitlyConvertibleTo(Type const&) const override { return false; } TypeResult binaryOperatorResult(Token, Type const*) const override { return nullptr; } unsigned calldataEncodedSize(bool) const override { return 32; } bool canBeStored() const override { return false; } bool isValueType() const override { return true; } bool hasSimpleZeroValueInMemory() const override { solAssert(false, ""); } std::string toString(bool) const override { return "inaccessible dynamic type"; } Type const* decodingType() const override; }; }