/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * @author Christian * @date 2014 * Solidity data types */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace solidity; using namespace solidity::langutil; using namespace solidity::frontend; namespace { /// Check whether (_base ** _exp) fits into 4096 bits. bool fitsPrecisionExp(bigint const& _base, bigint const& _exp) { if (_base == 0) return true; solAssert(_base > 0, ""); size_t const bitsMax = 4096; unsigned mostSignificantBaseBit = boost::multiprecision::msb(_base); if (mostSignificantBaseBit == 0) // _base == 1 return true; if (mostSignificantBaseBit > bitsMax) // _base >= 2 ^ 4096 return false; bigint bitsNeeded = _exp * (mostSignificantBaseBit + 1); return bitsNeeded <= bitsMax; } /// Checks whether _mantissa * (X ** _exp) fits into 4096 bits, /// where X is given indirectly via _log2OfBase = log2(X). bool fitsPrecisionBaseX( bigint const& _mantissa, double _log2OfBase, uint32_t _exp ) { if (_mantissa == 0) return true; solAssert(_mantissa > 0, ""); size_t const bitsMax = 4096; unsigned mostSignificantMantissaBit = boost::multiprecision::msb(_mantissa); if (mostSignificantMantissaBit > bitsMax) // _mantissa >= 2 ^ 4096 return false; bigint bitsNeeded = mostSignificantMantissaBit + bigint(floor(double(_exp) * _log2OfBase)) + 1; return bitsNeeded <= bitsMax; } /// Checks whether _mantissa * (10 ** _expBase10) fits into 4096 bits. bool fitsPrecisionBase10(bigint const& _mantissa, uint32_t _expBase10) { double const log2Of10AwayFromZero = 3.3219280948873624; return fitsPrecisionBaseX(_mantissa, log2Of10AwayFromZero, _expBase10); } /// Checks whether _mantissa * (2 ** _expBase10) fits into 4096 bits. bool fitsPrecisionBase2(bigint const& _mantissa, uint32_t _expBase2) { return fitsPrecisionBaseX(_mantissa, 1.0, _expBase2); } /// Checks whether _value fits into IntegerType _type. BoolResult fitsIntegerType(bigint const& _value, IntegerType const& _type) { if (_value < 0 && !_type.isSigned()) return BoolResult::err("Cannot implicitly convert signed literal to unsigned type."); if (_type.minValue() > _value || _value > _type.maxValue()) return BoolResult::err("Literal is too large to fit in " + _type.toString(false) + "."); return true; } /// Checks whether _value fits into _bits bits when having 1 bit as the sign bit /// if _signed is true. bool fitsIntoBits(bigint const& _value, unsigned _bits, bool _signed) { return fitsIntegerType(_value, *TypeProvider::integer( _bits, _signed ? IntegerType::Modifier::Signed : IntegerType::Modifier::Unsigned )); } util::Result transformParametersToExternal(TypePointers const& _parameters, bool _inLibrary) { TypePointers transformed; for (auto const& type: _parameters) { if (TypePointer ext = type->interfaceType(_inLibrary).get()) transformed.push_back(ext); else return util::Result::err("Parameter should have external type."); } return transformed; } } void Type::clearCache() const { m_members.clear(); m_stackItems.reset(); m_stackSize.reset(); } void StorageOffsets::computeOffsets(TypePointers const& _types) { bigint slotOffset = 0; unsigned byteOffset = 0; map> offsets; for (size_t i = 0; i < _types.size(); ++i) { Type const* type = _types[i]; if (!type->canBeStored()) continue; if (byteOffset + type->storageBytes() > 32) { // would overflow, go to next slot ++slotOffset; byteOffset = 0; } if (slotOffset >= bigint(1) << 256) BOOST_THROW_EXCEPTION(Error(Error::Type::TypeError) << util::errinfo_comment("Object too large for storage.")); offsets[i] = make_pair(u256(slotOffset), byteOffset); solAssert(type->storageSize() >= 1, "Invalid storage size."); if (type->storageSize() == 1 && byteOffset + type->storageBytes() <= 32) byteOffset += type->storageBytes(); else { slotOffset += type->storageSize(); byteOffset = 0; } } if (byteOffset > 0) ++slotOffset; if (slotOffset >= bigint(1) << 256) BOOST_THROW_EXCEPTION(Error(Error::Type::TypeError) << util::errinfo_comment("Object too large for storage.")); m_storageSize = u256(slotOffset); swap(m_offsets, offsets); } pair const* StorageOffsets::offset(size_t _index) const { if (m_offsets.count(_index)) return &m_offsets.at(_index); else return nullptr; } void MemberList::combine(MemberList const & _other) { m_memberTypes += _other.m_memberTypes; } pair const* MemberList::memberStorageOffset(string const& _name) const { StorageOffsets const& offsets = storageOffsets(); for (size_t index = 0; index < m_memberTypes.size(); ++index) if (m_memberTypes[index].name == _name) return offsets.offset(index); return nullptr; } u256 const& MemberList::storageSize() const { return storageOffsets().storageSize(); } StorageOffsets const& MemberList::storageOffsets() const { return m_storageOffsets.init([&]{ TypePointers memberTypes; memberTypes.reserve(m_memberTypes.size()); for (auto const& member: m_memberTypes) memberTypes.push_back(member.type); StorageOffsets storageOffsets; storageOffsets.computeOffsets(memberTypes); return storageOffsets; }); } /// Helper functions for type identifier namespace { string parenthesizeIdentifier(string const& _internal) { return "(" + _internal + ")"; } template string identifierList(Range const&& _list) { return parenthesizeIdentifier(boost::algorithm::join(_list, ",")); } string richIdentifier(Type const* _type) { return _type ? _type->richIdentifier() : ""; } string identifierList(vector const& _list) { return identifierList(_list | boost::adaptors::transformed(richIdentifier)); } string identifierList(Type const* _type) { return parenthesizeIdentifier(richIdentifier(_type)); } string identifierList(Type const* _type1, Type const* _type2) { TypePointers list; list.push_back(_type1); list.push_back(_type2); return identifierList(list); } string parenthesizeUserIdentifier(string const& _internal) { return parenthesizeIdentifier(_internal); } } string Type::escapeIdentifier(string const& _identifier) { string ret = _identifier; // FIXME: should be _$$$_ boost::algorithm::replace_all(ret, "$", "$$$"); boost::algorithm::replace_all(ret, ",", "_$_"); boost::algorithm::replace_all(ret, "(", "$_"); boost::algorithm::replace_all(ret, ")", "_$"); return ret; } string Type::identifier() const { string ret = escapeIdentifier(richIdentifier()); solAssert(ret.find_first_of("0123456789") != 0, "Identifier cannot start with a number."); solAssert( ret.find_first_not_of("0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMONPQRSTUVWXYZ_$") == string::npos, "Identifier contains invalid characters." ); return ret; } TypePointer Type::commonType(Type const* _a, Type const* _b) { if (!_a || !_b) return nullptr; else if (_a->mobileType() && _b->isImplicitlyConvertibleTo(*_a->mobileType())) return _a->mobileType(); else if (_b->mobileType() && _a->isImplicitlyConvertibleTo(*_b->mobileType())) return _b->mobileType(); else return nullptr; } MemberList const& Type::members(ContractDefinition const* _currentScope) const { if (!m_members[_currentScope]) { MemberList::MemberMap members = nativeMembers(_currentScope); if (_currentScope) members += boundFunctions(*this, *_currentScope); m_members[_currentScope] = make_unique(move(members)); } return *m_members[_currentScope]; } TypePointer Type::fullEncodingType(bool _inLibraryCall, bool _encoderV2, bool) const { TypePointer encodingType = mobileType(); if (encodingType) encodingType = encodingType->interfaceType(_inLibraryCall); if (encodingType) encodingType = encodingType->encodingType(); // Structs are fine in the following circumstances: // - ABIv2 or, // - storage struct for a library if (_inLibraryCall && encodingType && encodingType->dataStoredIn(DataLocation::Storage)) return encodingType; TypePointer baseType = encodingType; while (auto const* arrayType = dynamic_cast(baseType)) baseType = arrayType->baseType(); if (dynamic_cast(baseType)) if (!_encoderV2) return nullptr; return encodingType; } MemberList::MemberMap Type::boundFunctions(Type const& _type, ContractDefinition const& _scope) { // Normalise data location of type. TypePointer type = TypeProvider::withLocationIfReference(DataLocation::Storage, &_type); set seenFunctions; MemberList::MemberMap members; for (ContractDefinition const* contract: _scope.annotation().linearizedBaseContracts) for (UsingForDirective const* ufd: contract->usingForDirectives()) { if (ufd->typeName() && *type != *TypeProvider::withLocationIfReference( DataLocation::Storage, ufd->typeName()->annotation().type )) continue; auto const& library = dynamic_cast( *ufd->libraryName().annotation().referencedDeclaration ); for (FunctionDefinition const* function: library.definedFunctions()) { if (!function->isVisibleAsLibraryMember() || seenFunctions.count(function)) continue; seenFunctions.insert(function); if (function->parameters().empty()) continue; FunctionTypePointer fun = FunctionType(*function, FunctionType::Kind::External).asCallableFunction(true, true); if (_type.isImplicitlyConvertibleTo(*fun->selfType())) members.emplace_back(function->name(), fun, function); } } return members; } AddressType::AddressType(StateMutability _stateMutability): m_stateMutability(_stateMutability) { solAssert(m_stateMutability == StateMutability::Payable || m_stateMutability == StateMutability::NonPayable, ""); } string AddressType::richIdentifier() const { if (m_stateMutability == StateMutability::Payable) return "t_address_payable"; else return "t_address"; } BoolResult AddressType::isImplicitlyConvertibleTo(Type const& _other) const { if (_other.category() != category()) return false; AddressType const& other = dynamic_cast(_other); return other.m_stateMutability <= m_stateMutability; } BoolResult AddressType::isExplicitlyConvertibleTo(Type const& _convertTo) const { if (_convertTo.category() == category()) return true; else if (auto const* contractType = dynamic_cast(&_convertTo)) return (m_stateMutability >= StateMutability::Payable) || !contractType->isPayable(); return isImplicitlyConvertibleTo(_convertTo) || _convertTo.category() == Category::Integer || (_convertTo.category() == Category::FixedBytes && 160 == dynamic_cast(_convertTo).numBytes() * 8); } string AddressType::toString(bool) const { if (m_stateMutability == StateMutability::Payable) return "address payable"; else return "address"; } string AddressType::canonicalName() const { return "address"; } u256 AddressType::literalValue(Literal const* _literal) const { solAssert(_literal, ""); solAssert(_literal->value().substr(0, 2) == "0x", ""); return u256(_literal->valueWithoutUnderscores()); } TypeResult AddressType::unaryOperatorResult(Token _operator) const { return _operator == Token::Delete ? TypeProvider::emptyTuple() : nullptr; } TypeResult AddressType::binaryOperatorResult(Token _operator, Type const* _other) const { if (!TokenTraits::isCompareOp(_operator)) return TypeResult::err("Arithmetic operations on addresses are not supported. Convert to integer first before using them."); return Type::commonType(this, _other); } bool AddressType::operator==(Type const& _other) const { if (_other.category() != category()) return false; AddressType const& other = dynamic_cast(_other); return other.m_stateMutability == m_stateMutability; } MemberList::MemberMap AddressType::nativeMembers(ContractDefinition const*) const { MemberList::MemberMap members = { {"balance", TypeProvider::uint256()}, {"call", TypeProvider::function(strings{"bytes memory"}, strings{"bool", "bytes memory"}, FunctionType::Kind::BareCall, false, StateMutability::Payable)}, {"callcode", TypeProvider::function(strings{"bytes memory"}, strings{"bool", "bytes memory"}, FunctionType::Kind::BareCallCode, false, StateMutability::Payable)}, {"delegatecall", TypeProvider::function(strings{"bytes memory"}, strings{"bool", "bytes memory"}, FunctionType::Kind::BareDelegateCall, false, StateMutability::NonPayable)}, {"staticcall", TypeProvider::function(strings{"bytes memory"}, strings{"bool", "bytes memory"}, FunctionType::Kind::BareStaticCall, false, StateMutability::View)} }; if (m_stateMutability == StateMutability::Payable) { members.emplace_back(MemberList::Member{"send", TypeProvider::function(strings{"uint"}, strings{"bool"}, FunctionType::Kind::Send, false, StateMutability::NonPayable)}); members.emplace_back(MemberList::Member{"transfer", TypeProvider::function(strings{"uint"}, strings(), FunctionType::Kind::Transfer, false, StateMutability::NonPayable)}); } return members; } namespace { bool isValidShiftAndAmountType(Token _operator, Type const& _shiftAmountType) { // Disable >>> here. if (_operator == Token::SHR) return false; else if (IntegerType const* otherInt = dynamic_cast(&_shiftAmountType)) return true; else if (RationalNumberType const* otherRat = dynamic_cast(&_shiftAmountType)) return !otherRat->isFractional() && otherRat->integerType() && !otherRat->integerType()->isSigned(); else return false; } } IntegerType::IntegerType(unsigned _bits, IntegerType::Modifier _modifier): m_bits(_bits), m_modifier(_modifier) { solAssert( m_bits > 0 && m_bits <= 256 && m_bits % 8 == 0, "Invalid bit number for integer type: " + util::toString(m_bits) ); } string IntegerType::richIdentifier() const { return "t_" + string(isSigned() ? "" : "u") + "int" + to_string(numBits()); } BoolResult IntegerType::isImplicitlyConvertibleTo(Type const& _convertTo) const { if (_convertTo.category() == category()) { IntegerType const& convertTo = dynamic_cast(_convertTo); if (convertTo.m_bits < m_bits) return false; else if (isSigned()) return convertTo.isSigned(); else return !convertTo.isSigned() || convertTo.m_bits > m_bits; } else if (_convertTo.category() == Category::FixedPoint) { FixedPointType const& convertTo = dynamic_cast(_convertTo); return maxValue() <= convertTo.maxIntegerValue() && minValue() >= convertTo.minIntegerValue(); } else return false; } BoolResult IntegerType::isExplicitlyConvertibleTo(Type const& _convertTo) const { return _convertTo.category() == category() || _convertTo.category() == Category::Address || _convertTo.category() == Category::Contract || _convertTo.category() == Category::Enum || (_convertTo.category() == Category::FixedBytes && numBits() == dynamic_cast(_convertTo).numBytes() * 8) || _convertTo.category() == Category::FixedPoint; } TypeResult IntegerType::unaryOperatorResult(Token _operator) const { // "delete" is ok for all integer types if (_operator == Token::Delete) return TypeResult{TypeProvider::emptyTuple()}; // we allow -, ++ and -- else if (_operator == Token::Sub || _operator == Token::Inc || _operator == Token::Dec || _operator == Token::BitNot) return TypeResult{this}; else return TypeResult::err(""); } bool IntegerType::operator==(Type const& _other) const { if (_other.category() != category()) return false; IntegerType const& other = dynamic_cast(_other); return other.m_bits == m_bits && other.m_modifier == m_modifier; } string IntegerType::toString(bool) const { string prefix = isSigned() ? "int" : "uint"; return prefix + util::toString(m_bits); } u256 IntegerType::min() const { if (isSigned()) return s2u(s256(minValue())); else return u256(minValue()); } u256 IntegerType::max() const { if (isSigned()) return s2u(s256(maxValue())); else return u256(maxValue()); } bigint IntegerType::minValue() const { if (isSigned()) return -(bigint(1) << (m_bits - 1)); else return bigint(0); } bigint IntegerType::maxValue() const { if (isSigned()) return (bigint(1) << (m_bits - 1)) - 1; else return (bigint(1) << m_bits) - 1; } TypeResult IntegerType::binaryOperatorResult(Token _operator, Type const* _other) const { if ( _other->category() != Category::RationalNumber && _other->category() != Category::FixedPoint && _other->category() != category() ) return nullptr; if (TokenTraits::isShiftOp(_operator)) { // Shifts are not symmetric with respect to the type if (isValidShiftAndAmountType(_operator, *_other)) return this; else return nullptr; } else if (Token::Exp == _operator) { if (auto otherIntType = dynamic_cast(_other)) { if (otherIntType->isSigned()) return TypeResult::err("Exponentiation power is not allowed to be a signed integer type."); } else if (dynamic_cast(_other)) return nullptr; else if (auto rationalNumberType = dynamic_cast(_other)) { if (rationalNumberType->isFractional()) return TypeResult::err("Exponent is fractional."); if (!rationalNumberType->integerType()) return TypeResult::err("Exponent too large."); } return this; } auto commonType = Type::commonType(this, _other); //might be an integer or fixed point if (!commonType) return nullptr; // All integer types can be compared if (TokenTraits::isCompareOp(_operator)) return commonType; if (TokenTraits::isBooleanOp(_operator)) return nullptr; return commonType; } FixedPointType::FixedPointType(unsigned _totalBits, unsigned _fractionalDigits, FixedPointType::Modifier _modifier): m_totalBits(_totalBits), m_fractionalDigits(_fractionalDigits), m_modifier(_modifier) { solAssert( 8 <= m_totalBits && m_totalBits <= 256 && m_totalBits % 8 == 0 && m_fractionalDigits <= 80, "Invalid bit number(s) for fixed type: " + util::toString(_totalBits) + "x" + util::toString(_fractionalDigits) ); } string FixedPointType::richIdentifier() const { return "t_" + string(isSigned() ? "" : "u") + "fixed" + to_string(m_totalBits) + "x" + to_string(m_fractionalDigits); } BoolResult FixedPointType::isImplicitlyConvertibleTo(Type const& _convertTo) const { if (_convertTo.category() == category()) { FixedPointType const& convertTo = dynamic_cast(_convertTo); if (convertTo.fractionalDigits() < m_fractionalDigits) return BoolResult::err("Too many fractional digits."); if (convertTo.numBits() < m_totalBits) return false; else return convertTo.maxIntegerValue() >= maxIntegerValue() && convertTo.minIntegerValue() <= minIntegerValue(); } return false; } BoolResult FixedPointType::isExplicitlyConvertibleTo(Type const& _convertTo) const { return _convertTo.category() == category() || _convertTo.category() == Category::Integer; } TypeResult FixedPointType::unaryOperatorResult(Token _operator) const { switch (_operator) { case Token::Delete: // "delete" is ok for all fixed types return TypeResult{TypeProvider::emptyTuple()}; case Token::Add: case Token::Sub: case Token::Inc: case Token::Dec: // for fixed, we allow +, -, ++ and -- return this; default: return nullptr; } } bool FixedPointType::operator==(Type const& _other) const { if (_other.category() != category()) return false; FixedPointType const& other = dynamic_cast(_other); return other.m_totalBits == m_totalBits && other.m_fractionalDigits == m_fractionalDigits && other.m_modifier == m_modifier; } string FixedPointType::toString(bool) const { string prefix = isSigned() ? "fixed" : "ufixed"; return prefix + util::toString(m_totalBits) + "x" + util::toString(m_fractionalDigits); } bigint FixedPointType::maxIntegerValue() const { bigint maxValue = (bigint(1) << (m_totalBits - (isSigned() ? 1 : 0))) - 1; return maxValue / boost::multiprecision::pow(bigint(10), m_fractionalDigits); } bigint FixedPointType::minIntegerValue() const { if (isSigned()) { bigint minValue = -(bigint(1) << (m_totalBits - (isSigned() ? 1 : 0))); return minValue / boost::multiprecision::pow(bigint(10), m_fractionalDigits); } else return bigint(0); } TypeResult FixedPointType::binaryOperatorResult(Token _operator, Type const* _other) const { auto commonType = Type::commonType(this, _other); if (!commonType) return nullptr; // All fixed types can be compared if (TokenTraits::isCompareOp(_operator)) return commonType; if (TokenTraits::isBitOp(_operator) || TokenTraits::isBooleanOp(_operator) || _operator == Token::Exp) return nullptr; return commonType; } IntegerType const* FixedPointType::asIntegerType() const { return TypeProvider::integer(numBits(), isSigned() ? IntegerType::Modifier::Signed : IntegerType::Modifier::Unsigned); } tuple RationalNumberType::parseRational(string const& _value) { rational value; try { auto radixPoint = find(_value.begin(), _value.end(), '.'); if (radixPoint != _value.end()) { if ( !all_of(radixPoint + 1, _value.end(), ::isdigit) || !all_of(_value.begin(), radixPoint, ::isdigit) ) return make_tuple(false, rational(0)); // Only decimal notation allowed here, leading zeros would switch to octal. auto fractionalBegin = find_if_not( radixPoint + 1, _value.end(), [](char const& a) { return a == '0'; } ); rational numerator; rational denominator(1); denominator = bigint(string(fractionalBegin, _value.end())); denominator /= boost::multiprecision::pow( bigint(10), distance(radixPoint + 1, _value.end()) ); numerator = bigint(string(_value.begin(), radixPoint)); value = numerator + denominator; } else value = bigint(_value); return make_tuple(true, value); } catch (...) { return make_tuple(false, rational(0)); } } tuple RationalNumberType::isValidLiteral(Literal const& _literal) { rational value; try { ASTString valueString = _literal.valueWithoutUnderscores(); auto expPoint = find(valueString.begin(), valueString.end(), 'e'); if (expPoint == valueString.end()) expPoint = find(valueString.begin(), valueString.end(), 'E'); if (boost::starts_with(valueString, "0x")) { // process as hex value = bigint(valueString); } else if (expPoint != valueString.end()) { // Parse mantissa and exponent. Checks numeric limit. tuple mantissa = parseRational(string(valueString.begin(), expPoint)); if (!get<0>(mantissa)) return make_tuple(false, rational(0)); value = get<1>(mantissa); // 0E... is always zero. if (value == 0) return make_tuple(true, rational(0)); bigint exp = bigint(string(expPoint + 1, valueString.end())); if (exp > numeric_limits::max() || exp < numeric_limits::min()) return make_tuple(false, rational(0)); uint32_t expAbs = bigint(abs(exp)).convert_to(); if (exp < 0) { if (!fitsPrecisionBase10(abs(value.denominator()), expAbs)) return make_tuple(false, rational(0)); value /= boost::multiprecision::pow( bigint(10), expAbs ); } else if (exp > 0) { if (!fitsPrecisionBase10(abs(value.numerator()), expAbs)) return make_tuple(false, rational(0)); value *= boost::multiprecision::pow( bigint(10), expAbs ); } } else { // parse as rational number tuple tmp = parseRational(valueString); if (!get<0>(tmp)) return tmp; value = get<1>(tmp); } } catch (...) { return make_tuple(false, rational(0)); } switch (_literal.subDenomination()) { case Literal::SubDenomination::None: case Literal::SubDenomination::Wei: case Literal::SubDenomination::Second: break; case Literal::SubDenomination::Szabo: value *= bigint("1000000000000"); break; case Literal::SubDenomination::Finney: value *= bigint("1000000000000000"); break; case Literal::SubDenomination::Ether: value *= bigint("1000000000000000000"); break; case Literal::SubDenomination::Minute: value *= bigint("60"); break; case Literal::SubDenomination::Hour: value *= bigint("3600"); break; case Literal::SubDenomination::Day: value *= bigint("86400"); break; case Literal::SubDenomination::Week: value *= bigint("604800"); break; case Literal::SubDenomination::Year: value *= bigint("31536000"); break; } return make_tuple(true, value); } BoolResult RationalNumberType::isImplicitlyConvertibleTo(Type const& _convertTo) const { switch (_convertTo.category()) { case Category::Integer: { if (isFractional()) return false; IntegerType const& targetType = dynamic_cast(_convertTo); return fitsIntegerType(m_value.numerator(), targetType); } case Category::FixedPoint: { FixedPointType const& targetType = dynamic_cast(_convertTo); // Store a negative number into an unsigned. if (isNegative() && !targetType.isSigned()) return false; if (!isFractional()) return (targetType.minIntegerValue() <= m_value) && (m_value <= targetType.maxIntegerValue()); rational value = m_value * pow(bigint(10), targetType.fractionalDigits()); // Need explicit conversion since truncation will occur. if (value.denominator() != 1) return false; return fitsIntoBits(value.numerator(), targetType.numBits(), targetType.isSigned()); } case Category::FixedBytes: return (m_value == rational(0)) || (m_compatibleBytesType && *m_compatibleBytesType == _convertTo); default: return false; } } BoolResult RationalNumberType::isExplicitlyConvertibleTo(Type const& _convertTo) const { if (isImplicitlyConvertibleTo(_convertTo)) return true; else if (_convertTo.category() != Category::FixedBytes) { TypePointer mobType = mobileType(); return (mobType && mobType->isExplicitlyConvertibleTo(_convertTo)); } else return false; } TypeResult RationalNumberType::unaryOperatorResult(Token _operator) const { rational value; switch (_operator) { case Token::BitNot: if (isFractional()) return nullptr; value = ~m_value.numerator(); break; case Token::Add: value = +(m_value); break; case Token::Sub: value = -(m_value); break; case Token::After: return this; default: return nullptr; } return TypeResult{TypeProvider::rationalNumber(value)}; } TypeResult RationalNumberType::binaryOperatorResult(Token _operator, Type const* _other) const { if (_other->category() == Category::Integer || _other->category() == Category::FixedPoint) { auto commonType = Type::commonType(this, _other); if (!commonType) return nullptr; return commonType->binaryOperatorResult(_operator, _other); } else if (_other->category() != category()) return nullptr; RationalNumberType const& other = dynamic_cast(*_other); if (TokenTraits::isCompareOp(_operator)) { // Since we do not have a "BoolConstantType", we have to do the actual comparison // at runtime and convert to mobile typse first. Such a comparison is not a very common // use-case and will be optimized away. TypePointer thisMobile = mobileType(); TypePointer otherMobile = other.mobileType(); if (!thisMobile || !otherMobile) return nullptr; return thisMobile->binaryOperatorResult(_operator, otherMobile); } else { rational value; bool fractional = isFractional() || other.isFractional(); switch (_operator) { //bit operations will only be enabled for integers and fixed types that resemble integers case Token::BitOr: if (fractional) return nullptr; value = m_value.numerator() | other.m_value.numerator(); break; case Token::BitXor: if (fractional) return nullptr; value = m_value.numerator() ^ other.m_value.numerator(); break; case Token::BitAnd: if (fractional) return nullptr; value = m_value.numerator() & other.m_value.numerator(); break; case Token::Add: value = m_value + other.m_value; break; case Token::Sub: value = m_value - other.m_value; break; case Token::Mul: value = m_value * other.m_value; break; case Token::Div: if (other.m_value == rational(0)) return nullptr; else value = m_value / other.m_value; break; case Token::Mod: if (other.m_value == rational(0)) return nullptr; else if (fractional) { rational tempValue = m_value / other.m_value; value = m_value - (tempValue.numerator() / tempValue.denominator()) * other.m_value; } else value = m_value.numerator() % other.m_value.numerator(); break; case Token::Exp: { if (other.isFractional()) return nullptr; solAssert(other.m_value.denominator() == 1, ""); bigint const& exp = other.m_value.numerator(); // x ** 0 = 1 // for 0, 1 and -1 the size of the exponent doesn't have to be restricted if (exp == 0) value = 1; else if (m_value.numerator() == 0 || m_value == 1) value = m_value; else if (m_value == -1) { bigint isOdd = abs(exp) & bigint(1); value = 1 - 2 * isOdd.convert_to(); } else { if (abs(exp) > numeric_limits::max()) return nullptr; // This will need too much memory to represent. uint32_t absExp = bigint(abs(exp)).convert_to(); if (!fitsPrecisionExp(abs(m_value.numerator()), absExp) || !fitsPrecisionExp(abs(m_value.denominator()), absExp)) return TypeResult::err("Precision of rational constants is limited to 4096 bits."); static auto const optimizedPow = [](bigint const& _base, uint32_t _exponent) -> bigint { if (_base == 1) return 1; else if (_base == -1) return 1 - 2 * int(_exponent & 1); else return boost::multiprecision::pow(_base, _exponent); }; bigint numerator = optimizedPow(m_value.numerator(), absExp); bigint denominator = optimizedPow(m_value.denominator(), absExp); if (exp >= 0) value = makeRational(numerator, denominator); else // invert value = makeRational(denominator, numerator); } break; } case Token::SHL: { if (fractional) return nullptr; else if (other.m_value < 0) return nullptr; else if (other.m_value > numeric_limits::max()) return nullptr; if (m_value.numerator() == 0) value = 0; else { uint32_t exponent = other.m_value.numerator().convert_to(); if (!fitsPrecisionBase2(abs(m_value.numerator()), exponent)) return nullptr; value = m_value.numerator() * boost::multiprecision::pow(bigint(2), exponent); } break; } // NOTE: we're using >> (SAR) to denote right shifting. The type of the LValue // determines the resulting type and the type of shift (SAR or SHR). case Token::SAR: { if (fractional) return nullptr; else if (other.m_value < 0) return nullptr; else if (other.m_value > numeric_limits::max()) return nullptr; if (m_value.numerator() == 0) value = 0; else { uint32_t exponent = other.m_value.numerator().convert_to(); if (exponent > boost::multiprecision::msb(boost::multiprecision::abs(m_value.numerator()))) value = m_value.numerator() < 0 ? -1 : 0; else { if (m_value.numerator() < 0) // Add 1 to the negative value before dividing to get a result that is strictly too large, // then subtract 1 afterwards to round towards negative infinity. // This is the same algorithm as used in ExpressionCompiler::appendShiftOperatorCode(...). // To see this note that for negative x, xor(x,all_ones) = (-x-1) and // therefore xor(div(xor(x,all_ones), exp(2, shift_amount)), all_ones) is // -(-x - 1) / 2^shift_amount - 1, which is the same as // (x + 1) / 2^shift_amount - 1. value = rational((m_value.numerator() + 1) / boost::multiprecision::pow(bigint(2), exponent) - bigint(1), 1); else value = rational(m_value.numerator() / boost::multiprecision::pow(bigint(2), exponent), 1); } } break; } default: return nullptr; } // verify that numerator and denominator fit into 4096 bit after every operation if (value.numerator() != 0 && max(boost::multiprecision::msb(abs(value.numerator())), boost::multiprecision::msb(abs(value.denominator()))) > 4096) return TypeResult::err("Precision of rational constants is limited to 4096 bits."); return TypeResult{TypeProvider::rationalNumber(value)}; } } string RationalNumberType::richIdentifier() const { // rational seemingly will put the sign always on the numerator, // but let just make it deterministic here. bigint numerator = abs(m_value.numerator()); bigint denominator = abs(m_value.denominator()); if (m_value < 0) return "t_rational_minus_" + numerator.str() + "_by_" + denominator.str(); else return "t_rational_" + numerator.str() + "_by_" + denominator.str(); } bool RationalNumberType::operator==(Type const& _other) const { if (_other.category() != category()) return false; RationalNumberType const& other = dynamic_cast(_other); return m_value == other.m_value; } string RationalNumberType::bigintToReadableString(bigint const& _num) { string str = _num.str(); if (str.size() > 32) { int omitted = str.size() - 8; str = str.substr(0, 4) + "...(" + to_string(omitted) + " digits omitted)..." + str.substr(str.size() - 4, 4); } return str; } string RationalNumberType::toString(bool) const { if (!isFractional()) return "int_const " + bigintToReadableString(m_value.numerator()); string numerator = bigintToReadableString(m_value.numerator()); string denominator = bigintToReadableString(m_value.denominator()); return "rational_const " + numerator + " / " + denominator; } u256 RationalNumberType::literalValue(Literal const*) const { // We ignore the literal and hope that the type was correctly determined to represent // its value. u256 value; bigint shiftedValue; if (!isFractional()) shiftedValue = m_value.numerator(); else { auto fixed = fixedPointType(); solAssert(fixed, "Rational number cannot be represented as fixed point type."); int fractionalDigits = fixed->fractionalDigits(); shiftedValue = m_value.numerator() * boost::multiprecision::pow(bigint(10), fractionalDigits) / m_value.denominator(); } // we ignore the literal and hope that the type was correctly determined solAssert(shiftedValue <= u256(-1), "Number constant too large."); solAssert(shiftedValue >= -(bigint(1) << 255), "Number constant too small."); if (m_value >= rational(0)) value = u256(shiftedValue); else value = s2u(s256(shiftedValue)); return value; } TypePointer RationalNumberType::mobileType() const { if (!isFractional()) return integerType(); else return fixedPointType(); } IntegerType const* RationalNumberType::integerType() const { solAssert(!isFractional(), "integerType() called for fractional number."); bigint value = m_value.numerator(); bool negative = (value < 0); if (negative) // convert to positive number of same bit requirements value = ((0 - value) - 1) << 1; if (value > u256(-1)) return nullptr; else return TypeProvider::integer( max(util::bytesRequired(value), 1u) * 8, negative ? IntegerType::Modifier::Signed : IntegerType::Modifier::Unsigned ); } FixedPointType const* RationalNumberType::fixedPointType() const { bool negative = (m_value < 0); unsigned fractionalDigits = 0; rational value = abs(m_value); // We care about the sign later. rational maxValue = negative ? rational(bigint(1) << 255, 1): rational((bigint(1) << 256) - 1, 1); while (value * 10 <= maxValue && value.denominator() != 1 && fractionalDigits < 80) { value *= 10; fractionalDigits++; } if (value > maxValue) return nullptr; // This means we round towards zero for positive and negative values. bigint v = value.numerator() / value.denominator(); if (negative && v != 0) // modify value to satisfy bit requirements for negative numbers: // add one bit for sign and decrement because negative numbers can be larger v = (v - 1) << 1; if (v > u256(-1)) return nullptr; unsigned totalBits = max(util::bytesRequired(v), 1u) * 8; solAssert(totalBits <= 256, ""); return TypeProvider::fixedPoint( totalBits, fractionalDigits, negative ? FixedPointType::Modifier::Signed : FixedPointType::Modifier::Unsigned ); } StringLiteralType::StringLiteralType(Literal const& _literal): m_value(_literal.value()) { } StringLiteralType::StringLiteralType(string _value): m_value{std::move(_value)} { } BoolResult StringLiteralType::isImplicitlyConvertibleTo(Type const& _convertTo) const { if (auto fixedBytes = dynamic_cast(&_convertTo)) return size_t(fixedBytes->numBytes()) >= m_value.size(); else if (auto arrayType = dynamic_cast(&_convertTo)) return arrayType->isByteArray() && !(arrayType->dataStoredIn(DataLocation::Storage) && arrayType->isPointer()) && !(arrayType->isString() && !isValidUTF8()); else return false; } string StringLiteralType::richIdentifier() const { // Since we have to return a valid identifier and the string itself may contain // anything, we hash it. return "t_stringliteral_" + util::toHex(util::keccak256(m_value).asBytes()); } bool StringLiteralType::operator==(Type const& _other) const { if (_other.category() != category()) return false; return m_value == dynamic_cast(_other).m_value; } std::string StringLiteralType::toString(bool) const { size_t invalidSequence; if (!util::validateUTF8(m_value, invalidSequence)) return "literal_string (contains invalid UTF-8 sequence at position " + util::toString(invalidSequence) + ")"; return "literal_string \"" + m_value + "\""; } TypePointer StringLiteralType::mobileType() const { return TypeProvider::stringMemory(); } bool StringLiteralType::isValidUTF8() const { return util::validateUTF8(m_value); } FixedBytesType::FixedBytesType(unsigned _bytes): m_bytes(_bytes) { solAssert( m_bytes > 0 && m_bytes <= 32, "Invalid byte number for fixed bytes type: " + util::toString(m_bytes) ); } BoolResult FixedBytesType::isImplicitlyConvertibleTo(Type const& _convertTo) const { if (_convertTo.category() != category()) return false; FixedBytesType const& convertTo = dynamic_cast(_convertTo); return convertTo.m_bytes >= m_bytes; } BoolResult FixedBytesType::isExplicitlyConvertibleTo(Type const& _convertTo) const { return (_convertTo.category() == Category::Integer && numBytes() * 8 == dynamic_cast(_convertTo).numBits()) || (_convertTo.category() == Category::Address && numBytes() == 20) || _convertTo.category() == Category::FixedPoint || _convertTo.category() == category(); } TypeResult FixedBytesType::unaryOperatorResult(Token _operator) const { // "delete" and "~" is okay for FixedBytesType if (_operator == Token::Delete) return TypeResult{TypeProvider::emptyTuple()}; else if (_operator == Token::BitNot) return this; return nullptr; } TypeResult FixedBytesType::binaryOperatorResult(Token _operator, Type const* _other) const { if (TokenTraits::isShiftOp(_operator)) { if (isValidShiftAndAmountType(_operator, *_other)) return this; else return nullptr; } auto commonType = dynamic_cast(Type::commonType(this, _other)); if (!commonType) return nullptr; // FixedBytes can be compared and have bitwise operators applied to them if (TokenTraits::isCompareOp(_operator) || TokenTraits::isBitOp(_operator)) return TypeResult(commonType); return nullptr; } MemberList::MemberMap FixedBytesType::nativeMembers(ContractDefinition const*) const { return MemberList::MemberMap{MemberList::Member{"length", TypeProvider::uint(8)}}; } string FixedBytesType::richIdentifier() const { return "t_bytes" + to_string(m_bytes); } bool FixedBytesType::operator==(Type const& _other) const { if (_other.category() != category()) return false; FixedBytesType const& other = dynamic_cast(_other); return other.m_bytes == m_bytes; } u256 BoolType::literalValue(Literal const* _literal) const { solAssert(_literal, ""); if (_literal->token() == Token::TrueLiteral) return u256(1); else if (_literal->token() == Token::FalseLiteral) return u256(0); else solAssert(false, "Bool type constructed from non-boolean literal."); } TypeResult BoolType::unaryOperatorResult(Token _operator) const { if (_operator == Token::Delete) return TypeProvider::emptyTuple(); else if (_operator == Token::Not) return this; else return nullptr; } TypeResult BoolType::binaryOperatorResult(Token _operator, Type const* _other) const { if (category() != _other->category()) return nullptr; if (_operator == Token::Equal || _operator == Token::NotEqual || _operator == Token::And || _operator == Token::Or) return _other; else return nullptr; } Type const* ContractType::encodingType() const { if (isSuper()) return nullptr; if (isPayable()) return TypeProvider::payableAddress(); else return TypeProvider::address(); } BoolResult ContractType::isImplicitlyConvertibleTo(Type const& _convertTo) const { if (m_super) return false; if (*this == _convertTo) return true; if (_convertTo.category() == Category::Contract) { auto const& bases = contractDefinition().annotation().linearizedBaseContracts; if (m_super && bases.size() <= 1) return false; return find( m_super ? ++bases.begin() : bases.begin(), bases.end(), &dynamic_cast(_convertTo).contractDefinition() ) != bases.end(); } return false; } BoolResult ContractType::isExplicitlyConvertibleTo(Type const& _convertTo) const { if (m_super) return false; if (auto const* addressType = dynamic_cast(&_convertTo)) return isPayable() || (addressType->stateMutability() < StateMutability::Payable); return isImplicitlyConvertibleTo(_convertTo); } bool ContractType::isPayable() const { auto receiveFunction = m_contract.receiveFunction(); auto fallbackFunction = m_contract.fallbackFunction(); return receiveFunction || (fallbackFunction && fallbackFunction->isPayable()); } TypeResult ContractType::unaryOperatorResult(Token _operator) const { if (isSuper()) return nullptr; else if (_operator == Token::Delete) return TypeProvider::emptyTuple(); else return nullptr; } Type const* ReferenceType::withLocation(DataLocation _location, bool _isPointer) const { return TypeProvider::withLocation(this, _location, _isPointer); } TypeResult ReferenceType::unaryOperatorResult(Token _operator) const { if (_operator != Token::Delete) return nullptr; // delete can be used on everything except calldata references or storage pointers // (storage references are ok) switch (location()) { case DataLocation::CallData: return nullptr; case DataLocation::Memory: return TypeProvider::emptyTuple(); case DataLocation::Storage: return isPointer() ? nullptr : TypeProvider::emptyTuple(); } return nullptr; } bool ReferenceType::isPointer() const { if (m_location == DataLocation::Storage) return m_isPointer; else return true; } TypePointer ReferenceType::copyForLocationIfReference(Type const* _type) const { return TypeProvider::withLocationIfReference(m_location, _type); } string ReferenceType::stringForReferencePart() const { switch (m_location) { case DataLocation::Storage: return string("storage ") + (isPointer() ? "pointer" : "ref"); case DataLocation::CallData: return "calldata"; case DataLocation::Memory: return "memory"; } solAssert(false, ""); return ""; } string ReferenceType::identifierLocationSuffix() const { string id; switch (location()) { case DataLocation::Storage: id += "_storage"; break; case DataLocation::Memory: id += "_memory"; break; case DataLocation::CallData: id += "_calldata"; break; } if (isPointer()) id += "_ptr"; return id; } ArrayType::ArrayType(DataLocation _location, bool _isString): ReferenceType(_location), m_arrayKind(_isString ? ArrayKind::String : ArrayKind::Bytes), m_baseType{TypeProvider::byte()} { } void ArrayType::clearCache() const { Type::clearCache(); m_interfaceType.reset(); m_interfaceType_library.reset(); } BoolResult ArrayType::isImplicitlyConvertibleTo(Type const& _convertTo) const { if (_convertTo.category() != category()) return false; auto& convertTo = dynamic_cast(_convertTo); if (convertTo.isByteArray() != isByteArray() || convertTo.isString() != isString()) return false; // memory/calldata to storage can be converted, but only to a direct storage reference if (convertTo.location() == DataLocation::Storage && location() != DataLocation::Storage && convertTo.isPointer()) return false; if (convertTo.location() == DataLocation::CallData && location() != convertTo.location()) return false; if (convertTo.location() == DataLocation::Storage && !convertTo.isPointer()) { // Less restrictive conversion, since we need to copy anyway. if (!baseType()->isImplicitlyConvertibleTo(*convertTo.baseType())) return false; if (convertTo.isDynamicallySized()) return true; return !isDynamicallySized() && convertTo.length() >= length(); } else { // Conversion to storage pointer or to memory, we de not copy element-for-element here, so // require that the base type is the same, not only convertible. // This disallows assignment of nested dynamic arrays from storage to memory for now. if ( *TypeProvider::withLocationIfReference(location(), baseType()) != *TypeProvider::withLocationIfReference(location(), convertTo.baseType()) ) return false; if (isDynamicallySized() != convertTo.isDynamicallySized()) return false; // We also require that the size is the same. if (!isDynamicallySized() && length() != convertTo.length()) return false; return true; } } BoolResult ArrayType::isExplicitlyConvertibleTo(Type const& _convertTo) const { if (isImplicitlyConvertibleTo(_convertTo)) return true; // allow conversion bytes <-> string if (_convertTo.category() != category()) return false; auto& convertTo = dynamic_cast(_convertTo); if (convertTo.location() != location()) return false; if (!isByteArray() || !convertTo.isByteArray()) return false; return true; } string ArrayType::richIdentifier() const { string id; if (isString()) id = "t_string"; else if (isByteArray()) id = "t_bytes"; else { id = "t_array"; id += identifierList(baseType()); if (isDynamicallySized()) id += "dyn"; else id += length().str(); } id += identifierLocationSuffix(); return id; } bool ArrayType::operator==(Type const& _other) const { if (_other.category() != category()) return false; ArrayType const& other = dynamic_cast(_other); if ( !ReferenceType::operator==(other) || other.isByteArray() != isByteArray() || other.isString() != isString() || other.isDynamicallySized() != isDynamicallySized() ) return false; if (*other.baseType() != *baseType()) return false; return isDynamicallySized() || length() == other.length(); } BoolResult ArrayType::validForLocation(DataLocation _loc) const { if (auto arrayBaseType = dynamic_cast(baseType())) { BoolResult result = arrayBaseType->validForLocation(_loc); if (!result) return result; } if (isDynamicallySized()) return true; switch (_loc) { case DataLocation::Memory: { bigint size = bigint(length()); auto type = m_baseType; while (auto arrayType = dynamic_cast(type)) { if (arrayType->isDynamicallySized()) break; else { size *= arrayType->length(); type = arrayType->baseType(); } } if (type->isDynamicallySized()) size *= type->memoryHeadSize(); else size *= type->memoryDataSize(); if (size >= numeric_limits::max()) return BoolResult::err("Type too large for memory."); break; } case DataLocation::CallData: { if (unlimitedStaticCalldataSize(true) >= numeric_limits::max()) return BoolResult::err("Type too large for calldata."); break; } case DataLocation::Storage: break; } return true; } bigint ArrayType::unlimitedStaticCalldataSize(bool _padded) const { solAssert(!isDynamicallySized(), ""); bigint size = bigint(length()) * calldataStride(); if (_padded) size = ((size + 31) / 32) * 32; return size; } unsigned ArrayType::calldataEncodedSize(bool _padded) const { solAssert(!isDynamicallyEncoded(), ""); bigint size = unlimitedStaticCalldataSize(_padded); solAssert(size <= numeric_limits::max(), "Array size does not fit unsigned."); return unsigned(size); } unsigned ArrayType::calldataEncodedTailSize() const { solAssert(isDynamicallyEncoded(), ""); if (isDynamicallySized()) // We do not know the dynamic length itself, but at least the uint256 containing the // length must still be present. return 32; bigint size = unlimitedStaticCalldataSize(false); solAssert(size <= numeric_limits::max(), "Array size does not fit unsigned."); return unsigned(size); } bool ArrayType::isDynamicallyEncoded() const { return isDynamicallySized() || baseType()->isDynamicallyEncoded(); } u256 ArrayType::storageSize() const { if (isDynamicallySized()) return 1; bigint size; unsigned baseBytes = baseType()->storageBytes(); if (baseBytes == 0) size = 1; else if (baseBytes < 32) { unsigned itemsPerSlot = 32 / baseBytes; size = (bigint(length()) + (itemsPerSlot - 1)) / itemsPerSlot; } else size = bigint(length()) * baseType()->storageSize(); if (size >= bigint(1) << 256) BOOST_THROW_EXCEPTION(Error(Error::Type::TypeError) << util::errinfo_comment("Array too large for storage.")); return max(1, u256(size)); } vector> ArrayType::makeStackItems() const { switch (m_location) { case DataLocation::CallData: if (isDynamicallySized()) return {std::make_tuple("offset", TypeProvider::uint256()), std::make_tuple("length", TypeProvider::uint256())}; else return {std::make_tuple("offset", TypeProvider::uint256())}; case DataLocation::Memory: return {std::make_tuple("mpos", TypeProvider::uint256())}; case DataLocation::Storage: // byte offset inside storage value is omitted return {std::make_tuple("slot", TypeProvider::uint256())}; } solAssert(false, ""); } string ArrayType::toString(bool _short) const { string ret; if (isString()) ret = "string"; else if (isByteArray()) ret = "bytes"; else { ret = baseType()->toString(_short) + "["; if (!isDynamicallySized()) ret += length().str(); ret += "]"; } if (!_short) ret += " " + stringForReferencePart(); return ret; } string ArrayType::canonicalName() const { string ret; if (isString()) ret = "string"; else if (isByteArray()) ret = "bytes"; else { ret = baseType()->canonicalName() + "["; if (!isDynamicallySized()) ret += length().str(); ret += "]"; } return ret; } string ArrayType::signatureInExternalFunction(bool _structsByName) const { if (isByteArray()) return canonicalName(); else { solAssert(baseType(), ""); return baseType()->signatureInExternalFunction(_structsByName) + "[" + (isDynamicallySized() ? "" : length().str()) + "]"; } } MemberList::MemberMap ArrayType::nativeMembers(ContractDefinition const*) const { MemberList::MemberMap members; if (!isString()) { members.emplace_back("length", TypeProvider::uint256()); if (isDynamicallySized() && location() == DataLocation::Storage) { members.emplace_back("push", TypeProvider::function( TypePointers{}, TypePointers{baseType()}, strings{}, strings{string()}, isByteArray() ? FunctionType::Kind::ByteArrayPush : FunctionType::Kind::ArrayPush )); members.emplace_back("push", TypeProvider::function( TypePointers{baseType()}, TypePointers{}, strings{string()}, strings{}, isByteArray() ? FunctionType::Kind::ByteArrayPush : FunctionType::Kind::ArrayPush )); members.emplace_back("pop", TypeProvider::function( TypePointers{}, TypePointers{}, strings{}, strings{}, FunctionType::Kind::ArrayPop )); } } return members; } TypePointer ArrayType::encodingType() const { if (location() == DataLocation::Storage) return TypeProvider::uint256(); else return TypeProvider::withLocation(this, DataLocation::Memory, true); } TypePointer ArrayType::decodingType() const { if (location() == DataLocation::Storage) return TypeProvider::uint256(); else return this; } TypeResult ArrayType::interfaceType(bool _inLibrary) const { if (_inLibrary && m_interfaceType_library.has_value()) return *m_interfaceType_library; if (!_inLibrary && m_interfaceType.has_value()) return *m_interfaceType; TypeResult result{TypePointer{}}; TypeResult baseInterfaceType = m_baseType->interfaceType(_inLibrary); if (!baseInterfaceType.get()) { solAssert(!baseInterfaceType.message().empty(), "Expected detailed error message!"); result = baseInterfaceType; } else if (_inLibrary && location() == DataLocation::Storage) result = this; else if (m_arrayKind != ArrayKind::Ordinary) result = TypeProvider::withLocation(this, DataLocation::Memory, true); else if (isDynamicallySized()) result = TypeProvider::array(DataLocation::Memory, baseInterfaceType); else result = TypeProvider::array(DataLocation::Memory, baseInterfaceType, m_length); if (_inLibrary) m_interfaceType_library = result; else m_interfaceType = result; return result; } u256 ArrayType::memoryDataSize() const { solAssert(!isDynamicallySized(), ""); solAssert(m_location == DataLocation::Memory, ""); solAssert(!isByteArray(), ""); bigint size = bigint(m_length) * m_baseType->memoryHeadSize(); solAssert(size <= numeric_limits::max(), "Array size does not fit u256."); return u256(size); } std::unique_ptr ArrayType::copyForLocation(DataLocation _location, bool _isPointer) const { auto copy = make_unique(_location); if (_location == DataLocation::Storage) copy->m_isPointer = _isPointer; copy->m_arrayKind = m_arrayKind; copy->m_baseType = copy->copyForLocationIfReference(m_baseType); copy->m_hasDynamicLength = m_hasDynamicLength; copy->m_length = m_length; return copy; } BoolResult ArraySliceType::isImplicitlyConvertibleTo(Type const& _other) const { if (m_arrayType.location() == DataLocation::CallData && m_arrayType.isDynamicallySized() && m_arrayType == _other) return true; return (*this) == _other; } string ArraySliceType::richIdentifier() const { return m_arrayType.richIdentifier() + "_slice"; } bool ArraySliceType::operator==(Type const& _other) const { if (auto const* other = dynamic_cast(&_other)) return m_arrayType == other->m_arrayType; return false; } string ArraySliceType::toString(bool _short) const { return m_arrayType.toString(_short) + " slice"; } TypePointer ArraySliceType::mobileType() const { if ( m_arrayType.dataStoredIn(DataLocation::CallData) && m_arrayType.isDynamicallySized() && !m_arrayType.baseType()->isDynamicallyEncoded() ) return &m_arrayType; else return this; } std::vector> ArraySliceType::makeStackItems() const { return {{"offset", TypeProvider::uint256()}, {"length", TypeProvider::uint256()}}; } string ContractType::richIdentifier() const { return (m_super ? "t_super" : "t_contract") + parenthesizeUserIdentifier(m_contract.name()) + to_string(m_contract.id()); } bool ContractType::operator==(Type const& _other) const { if (_other.category() != category()) return false; ContractType const& other = dynamic_cast(_other); return other.m_contract == m_contract && other.m_super == m_super; } string ContractType::toString(bool) const { return string(m_contract.isLibrary() ? "library " : "contract ") + string(m_super ? "super " : "") + m_contract.name(); } string ContractType::canonicalName() const { return m_contract.annotation().canonicalName; } MemberList::MemberMap ContractType::nativeMembers(ContractDefinition const* _contract) const { MemberList::MemberMap members; solAssert(_contract, ""); if (m_super) { // add the most derived of all functions which are visible in derived contracts auto bases = m_contract.annotation().linearizedBaseContracts; solAssert(bases.size() >= 1, "linearizedBaseContracts should at least contain the most derived contract."); // `sliced(1, ...)` ignores the most derived contract, which should not be searchable from `super`. for (ContractDefinition const* base: bases | boost::adaptors::sliced(1, bases.size())) for (FunctionDefinition const* function: base->definedFunctions()) { if (!function->isVisibleInDerivedContracts() || !function->isImplemented()) continue; auto functionType = TypeProvider::function(*function, FunctionType::Kind::Internal); bool functionWithEqualArgumentsFound = false; for (auto const& member: members) { if (member.name != function->name()) continue; auto memberType = dynamic_cast(member.type); solAssert(!!memberType, "Override changes type."); if (!memberType->hasEqualParameterTypes(*functionType)) continue; functionWithEqualArgumentsFound = true; break; } if (!functionWithEqualArgumentsFound) members.emplace_back(function->name(), functionType, function); } } else if (!m_contract.isLibrary()) { for (auto const& it: m_contract.interfaceFunctions()) members.emplace_back( it.second->declaration().name(), it.second->asCallableFunction(m_contract.isLibrary()), &it.second->declaration() ); } return members; } FunctionType const* ContractType::newExpressionType() const { if (!m_constructorType) m_constructorType = FunctionType::newExpressionType(m_contract); return m_constructorType; } vector> ContractType::stateVariables() const { vector variables; for (ContractDefinition const* contract: boost::adaptors::reverse(m_contract.annotation().linearizedBaseContracts)) for (VariableDeclaration const* variable: contract->stateVariables()) if (!(variable->isConstant() || variable->immutable())) variables.push_back(variable); TypePointers types; for (auto variable: variables) types.push_back(variable->annotation().type); StorageOffsets offsets; offsets.computeOffsets(types); vector> variablesAndOffsets; for (size_t index = 0; index < variables.size(); ++index) if (auto const* offset = offsets.offset(index)) variablesAndOffsets.emplace_back(variables[index], offset->first, offset->second); return variablesAndOffsets; } vector ContractType::immutableVariables() const { vector variables; for (ContractDefinition const* contract: boost::adaptors::reverse(m_contract.annotation().linearizedBaseContracts)) for (VariableDeclaration const* variable: contract->stateVariables()) if (variable->immutable()) variables.push_back(variable); return variables; } vector> ContractType::makeStackItems() const { if (m_super) return {}; else return {make_tuple("address", isPayable() ? TypeProvider::payableAddress() : TypeProvider::address())}; } void StructType::clearCache() const { Type::clearCache(); m_interfaceType.reset(); m_interfaceType_library.reset(); } Type const* StructType::encodingType() const { if (location() != DataLocation::Storage) return this; return TypeProvider::uint256(); } BoolResult StructType::isImplicitlyConvertibleTo(Type const& _convertTo) const { if (_convertTo.category() != category()) return false; auto& convertTo = dynamic_cast(_convertTo); // memory/calldata to storage can be converted, but only to a direct storage reference if (convertTo.location() == DataLocation::Storage && location() != DataLocation::Storage && convertTo.isPointer()) return false; if (convertTo.location() == DataLocation::CallData && location() != convertTo.location()) return false; return this->m_struct == convertTo.m_struct; } string StructType::richIdentifier() const { return "t_struct" + parenthesizeUserIdentifier(m_struct.name()) + to_string(m_struct.id()) + identifierLocationSuffix(); } bool StructType::operator==(Type const& _other) const { if (_other.category() != category()) return false; StructType const& other = dynamic_cast(_other); return ReferenceType::operator==(other) && other.m_struct == m_struct; } unsigned StructType::calldataEncodedSize(bool) const { solAssert(!isDynamicallyEncoded(), ""); unsigned size = 0; for (auto const& member: members(nullptr)) { solAssert(member.type->canLiveOutsideStorage(), ""); // Struct members are always padded. size += member.type->calldataEncodedSize(); } return size; } unsigned StructType::calldataEncodedTailSize() const { solAssert(isDynamicallyEncoded(), ""); unsigned size = 0; for (auto const& member: members(nullptr)) { solAssert(member.type->canLiveOutsideStorage(), ""); // Struct members are always padded. size += member.type->calldataHeadSize(); } return size; } unsigned StructType::calldataOffsetOfMember(std::string const& _member) const { unsigned offset = 0; for (auto const& member: members(nullptr)) { solAssert(member.type->canLiveOutsideStorage(), ""); if (member.name == _member) return offset; // Struct members are always padded. offset += member.type->calldataHeadSize(); } solAssert(false, "Struct member not found."); } bool StructType::isDynamicallyEncoded() const { if (recursive()) return true; solAssert(interfaceType(false).get(), ""); for (auto t: memoryMemberTypes()) { solAssert(t, "Parameter should have external type."); t = t->interfaceType(false); if (t->isDynamicallyEncoded()) return true; } return false; } u256 StructType::memoryDataSize() const { u256 size; for (auto const& t: memoryMemberTypes()) size += t->memoryHeadSize(); return size; } u256 StructType::storageSize() const { return max(1, members(nullptr).storageSize()); } string StructType::toString(bool _short) const { string ret = "struct " + m_struct.annotation().canonicalName; if (!_short) ret += " " + stringForReferencePart(); return ret; } MemberList::MemberMap StructType::nativeMembers(ContractDefinition const*) const { MemberList::MemberMap members; for (ASTPointer const& variable: m_struct.members()) { TypePointer type = variable->annotation().type; solAssert(type, ""); // If we are not in storage, skip all members that cannot live outside of storage, // ex. mappings and array of mappings if (location() != DataLocation::Storage && !type->canLiveOutsideStorage()) continue; members.emplace_back( variable->name(), copyForLocationIfReference(type), variable.get() ); } return members; } TypeResult StructType::interfaceType(bool _inLibrary) const { if (!_inLibrary) { if (!m_interfaceType.has_value()) { if (recursive()) m_interfaceType = TypeResult::err("Recursive type not allowed for public or external contract functions."); else { TypeResult result{TypePointer{}}; for (ASTPointer const& member: m_struct.members()) { if (!member->annotation().type) { result = TypeResult::err("Invalid type!"); break; } auto interfaceType = member->annotation().type->interfaceType(false); if (!interfaceType.get()) { solAssert(!interfaceType.message().empty(), "Expected detailed error message!"); result = interfaceType; break; } } if (result.message().empty()) m_interfaceType = TypeProvider::withLocation(this, DataLocation::Memory, true); else m_interfaceType = result; } } return *m_interfaceType; } else if (m_interfaceType_library.has_value()) return *m_interfaceType_library; TypeResult result{TypePointer{}}; util::BreadthFirstSearch breadthFirstSearch{{&m_struct}}; breadthFirstSearch.run( [&](StructDefinition const* _struct, auto&& _addChild) { // Check that all members have interface types. // Return an error if at least one struct member does not have a type. // This might happen, for example, if the type of the member does not exist. for (ASTPointer const& variable: _struct->members()) { // If the struct member does not have a type return false. // A TypeError is expected in this case. if (!variable->annotation().type) { result = TypeResult::err("Invalid type!"); breadthFirstSearch.abort(); return; } Type const* memberType = variable->annotation().type; while (dynamic_cast(memberType)) memberType = dynamic_cast(memberType)->baseType(); if (StructType const* innerStruct = dynamic_cast(memberType)) { if (innerStruct->recursive() && !(_inLibrary && location() == DataLocation::Storage)) { result = TypeResult::err( "Recursive structs can only be passed as storage pointers to libraries, not as memory objects to contract functions." ); breadthFirstSearch.abort(); return; } else _addChild(&innerStruct->structDefinition()); } else { auto iType = memberType->interfaceType(_inLibrary); if (!iType.get()) { solAssert(!iType.message().empty(), "Expected detailed error message!"); result = iType; breadthFirstSearch.abort(); return; } } } } ); if (!result.message().empty()) return result; if (location() == DataLocation::Storage) m_interfaceType_library = this; else m_interfaceType_library = TypeProvider::withLocation(this, DataLocation::Memory, true); return *m_interfaceType_library; } BoolResult StructType::validForLocation(DataLocation _loc) const { for (auto const& member: m_struct.members()) if (auto referenceType = dynamic_cast(member->annotation().type)) { BoolResult result = referenceType->validForLocation(_loc); if (!result) return result; } return true; } bool StructType::recursive() const { solAssert(m_struct.annotation().recursive.has_value(), "Called StructType::recursive() before DeclarationTypeChecker."); return *m_struct.annotation().recursive; } std::unique_ptr StructType::copyForLocation(DataLocation _location, bool _isPointer) const { auto copy = make_unique(m_struct, _location); if (_location == DataLocation::Storage) copy->m_isPointer = _isPointer; return copy; } string StructType::signatureInExternalFunction(bool _structsByName) const { if (_structsByName) return canonicalName(); else { TypePointers memberTypes = memoryMemberTypes(); auto memberTypeStrings = memberTypes | boost::adaptors::transformed([&](TypePointer _t) -> string { solAssert(_t, "Parameter should have external type."); auto t = _t->interfaceType(_structsByName); solAssert(t.get(), ""); return t.get()->signatureInExternalFunction(_structsByName); }); return "(" + boost::algorithm::join(memberTypeStrings, ",") + ")"; } } string StructType::canonicalName() const { return m_struct.annotation().canonicalName; } FunctionTypePointer StructType::constructorType() const { TypePointers paramTypes; strings paramNames; for (auto const& member: members(nullptr)) { if (!member.type->canLiveOutsideStorage()) continue; paramNames.push_back(member.name); paramTypes.push_back(TypeProvider::withLocationIfReference(DataLocation::Memory, member.type)); } return TypeProvider::function( paramTypes, TypePointers{TypeProvider::withLocation(this, DataLocation::Memory, false)}, paramNames, strings(1, ""), FunctionType::Kind::Internal ); } pair const& StructType::storageOffsetsOfMember(string const& _name) const { auto const* offsets = members(nullptr).memberStorageOffset(_name); solAssert(offsets, "Storage offset of non-existing member requested."); return *offsets; } u256 StructType::memoryOffsetOfMember(string const& _name) const { u256 offset; for (auto const& member: members(nullptr)) if (member.name == _name) return offset; else offset += member.type->memoryHeadSize(); solAssert(false, "Member not found in struct."); return 0; } TypePointers StructType::memoryMemberTypes() const { TypePointers types; for (ASTPointer const& variable: m_struct.members()) if (variable->annotation().type->canLiveOutsideStorage()) types.push_back(TypeProvider::withLocationIfReference(DataLocation::Memory, variable->annotation().type)); return types; } set StructType::membersMissingInMemory() const { set missing; for (ASTPointer const& variable: m_struct.members()) if (!variable->annotation().type->canLiveOutsideStorage()) missing.insert(variable->name()); return missing; } TypePointer EnumType::encodingType() const { return TypeProvider::uint(8 * storageBytes()); } TypeResult EnumType::unaryOperatorResult(Token _operator) const { return _operator == Token::Delete ? TypeProvider::emptyTuple() : nullptr; } string EnumType::richIdentifier() const { return "t_enum" + parenthesizeUserIdentifier(m_enum.name()) + to_string(m_enum.id()); } bool EnumType::operator==(Type const& _other) const { if (_other.category() != category()) return false; EnumType const& other = dynamic_cast(_other); return other.m_enum == m_enum; } unsigned EnumType::storageBytes() const { size_t elements = numberOfMembers(); if (elements <= 1) return 1; else return util::bytesRequired(elements - 1); } string EnumType::toString(bool) const { return string("enum ") + m_enum.annotation().canonicalName; } string EnumType::canonicalName() const { return m_enum.annotation().canonicalName; } size_t EnumType::numberOfMembers() const { return m_enum.members().size(); } BoolResult EnumType::isExplicitlyConvertibleTo(Type const& _convertTo) const { return _convertTo == *this || _convertTo.category() == Category::Integer; } unsigned EnumType::memberValue(ASTString const& _member) const { unsigned index = 0; for (ASTPointer const& decl: m_enum.members()) { if (decl->name() == _member) return index; ++index; } solAssert(false, "Requested unknown enum value " + _member); } BoolResult TupleType::isImplicitlyConvertibleTo(Type const& _other) const { if (auto tupleType = dynamic_cast(&_other)) { TypePointers const& targets = tupleType->components(); if (targets.empty()) return components().empty(); if (components().size() != targets.size()) return false; for (size_t i = 0; i < targets.size(); ++i) if (!components()[i] && targets[i]) return false; else if (components()[i] && targets[i] && !components()[i]->isImplicitlyConvertibleTo(*targets[i])) return false; return true; } else return false; } string TupleType::richIdentifier() const { return "t_tuple" + identifierList(components()); } bool TupleType::operator==(Type const& _other) const { if (auto tupleType = dynamic_cast(&_other)) return components() == tupleType->components(); else return false; } string TupleType::toString(bool _short) const { if (components().empty()) return "tuple()"; string str = "tuple("; for (auto const& t: components()) str += (t ? t->toString(_short) : "") + ","; str.pop_back(); return str + ")"; } u256 TupleType::storageSize() const { solAssert(false, "Storage size of non-storable tuple type requested."); } vector> TupleType::makeStackItems() const { vector> slots; unsigned i = 1; for (auto const& t: components()) { if (t) slots.emplace_back("component_" + std::to_string(i), t); ++i; } return slots; } TypePointer TupleType::mobileType() const { TypePointers mobiles; for (auto const& c: components()) { if (c) { auto mt = c->mobileType(); if (!mt) return nullptr; mobiles.push_back(mt); } else mobiles.push_back(nullptr); } return TypeProvider::tuple(move(mobiles)); } TypePointer TupleType::closestTemporaryType(Type const* _targetType) const { solAssert(!!_targetType, ""); TypePointers const& targetComponents = dynamic_cast(*_targetType).components(); solAssert(components().size() == targetComponents.size(), ""); TypePointers tempComponents(targetComponents.size()); for (size_t i = 0; i < targetComponents.size(); ++i) { if (components()[i] && targetComponents[i]) { tempComponents[i] = components()[i]->closestTemporaryType(targetComponents[i]); solAssert(tempComponents[i], ""); } } return TypeProvider::tuple(move(tempComponents)); } FunctionType::FunctionType(FunctionDefinition const& _function, Kind _kind): m_kind(_kind), m_stateMutability(_function.stateMutability()), m_declaration(&_function) { solAssert( _kind == Kind::Internal || _kind == Kind::External || _kind == Kind::Declaration, "Only internal or external function types or function declaration types can be created from function definitions." ); if (_kind == Kind::Internal && m_stateMutability == StateMutability::Payable) m_stateMutability = StateMutability::NonPayable; for (ASTPointer const& var: _function.parameters()) { m_parameterNames.push_back(var->name()); m_parameterTypes.push_back(var->annotation().type); } for (ASTPointer const& var: _function.returnParameters()) { m_returnParameterNames.push_back(var->name()); m_returnParameterTypes.push_back(var->annotation().type); } solAssert( m_parameterNames.size() == m_parameterTypes.size(), "Parameter names list must match parameter types list!" ); solAssert( m_returnParameterNames.size() == m_returnParameterTypes.size(), "Return parameter names list must match return parameter types list!" ); } FunctionType::FunctionType(VariableDeclaration const& _varDecl): m_kind(Kind::External), m_stateMutability(StateMutability::View), m_declaration(&_varDecl) { auto returnType = _varDecl.annotation().type; while (true) { if (auto mappingType = dynamic_cast(returnType)) { m_parameterTypes.push_back(mappingType->keyType()); m_parameterNames.emplace_back(""); returnType = mappingType->valueType(); } else if (auto arrayType = dynamic_cast(returnType)) { if (arrayType->isByteArray()) // Return byte arrays as whole. break; returnType = arrayType->baseType(); m_parameterNames.emplace_back(""); m_parameterTypes.push_back(TypeProvider::uint256()); } else break; } if (auto structType = dynamic_cast(returnType)) { for (auto const& member: structType->members(nullptr)) { solAssert(member.type, ""); if (member.type->category() != Category::Mapping) { if (auto arrayType = dynamic_cast(member.type)) if (!arrayType->isByteArray()) continue; m_returnParameterTypes.push_back(TypeProvider::withLocationIfReference( DataLocation::Memory, member.type )); m_returnParameterNames.push_back(member.name); } } } else { m_returnParameterTypes.push_back(TypeProvider::withLocationIfReference( DataLocation::Memory, returnType )); m_returnParameterNames.emplace_back(""); } solAssert( m_parameterNames.size() == m_parameterTypes.size(), "Parameter names list must match parameter types list!" ); solAssert( m_returnParameterNames.size() == m_returnParameterTypes.size(), "Return parameter names list must match return parameter types list!" ); } FunctionType::FunctionType(EventDefinition const& _event): m_kind(Kind::Event), m_stateMutability(StateMutability::NonPayable), m_declaration(&_event) { for (ASTPointer const& var: _event.parameters()) { m_parameterNames.push_back(var->name()); m_parameterTypes.push_back(var->annotation().type); } solAssert( m_parameterNames.size() == m_parameterTypes.size(), "Parameter names list must match parameter types list!" ); solAssert( m_returnParameterNames.size() == m_returnParameterTypes.size(), "Return parameter names list must match return parameter types list!" ); } FunctionType::FunctionType(FunctionTypeName const& _typeName): m_parameterNames(_typeName.parameterTypes().size(), ""), m_returnParameterNames(_typeName.returnParameterTypes().size(), ""), m_kind(_typeName.visibility() == Visibility::External ? Kind::External : Kind::Internal), m_stateMutability(_typeName.stateMutability()) { if (_typeName.isPayable()) solAssert(m_kind == Kind::External, "Internal payable function type used."); for (auto const& t: _typeName.parameterTypes()) { solAssert(t->annotation().type, "Type not set for parameter."); m_parameterTypes.push_back(t->annotation().type); } for (auto const& t: _typeName.returnParameterTypes()) { solAssert(t->annotation().type, "Type not set for return parameter."); m_returnParameterTypes.push_back(t->annotation().type); } solAssert( m_parameterNames.size() == m_parameterTypes.size(), "Parameter names list must match parameter types list!" ); solAssert( m_returnParameterNames.size() == m_returnParameterTypes.size(), "Return parameter names list must match return parameter types list!" ); } FunctionTypePointer FunctionType::newExpressionType(ContractDefinition const& _contract) { FunctionDefinition const* constructor = _contract.constructor(); TypePointers parameters; strings parameterNames; StateMutability stateMutability = StateMutability::NonPayable; solAssert(!_contract.isInterface(), ""); if (constructor) { for (ASTPointer const& var: constructor->parameters()) { parameterNames.push_back(var->name()); parameters.push_back(var->annotation().type); } if (constructor->isPayable()) stateMutability = StateMutability::Payable; } return TypeProvider::function( parameters, TypePointers{TypeProvider::contract(_contract)}, parameterNames, strings{""}, Kind::Creation, false, stateMutability ); } vector FunctionType::parameterNames() const { if (!bound()) return m_parameterNames; return vector(m_parameterNames.cbegin() + 1, m_parameterNames.cend()); } TypePointers FunctionType::returnParameterTypesWithoutDynamicTypes() const { TypePointers returnParameterTypes = m_returnParameterTypes; if ( m_kind == Kind::External || m_kind == Kind::DelegateCall || m_kind == Kind::BareCall || m_kind == Kind::BareCallCode || m_kind == Kind::BareDelegateCall || m_kind == Kind::BareStaticCall ) for (auto& param: returnParameterTypes) if (param->isDynamicallySized() && !param->dataStoredIn(DataLocation::Storage)) param = TypeProvider::inaccessibleDynamic(); return returnParameterTypes; } TypePointers FunctionType::parameterTypes() const { if (!bound()) return m_parameterTypes; return TypePointers(m_parameterTypes.cbegin() + 1, m_parameterTypes.cend()); } string FunctionType::richIdentifier() const { string id = "t_function_"; switch (m_kind) { case Kind::Declaration: id += "declaration"; break; case Kind::Internal: id += "internal"; break; case Kind::External: id += "external"; break; case Kind::DelegateCall: id += "delegatecall"; break; case Kind::BareCall: id += "barecall"; break; case Kind::BareCallCode: id += "barecallcode"; break; case Kind::BareDelegateCall: id += "baredelegatecall"; break; case Kind::BareStaticCall: id += "barestaticcall"; break; case Kind::Creation: id += "creation"; break; case Kind::Send: id += "send"; break; case Kind::Transfer: id += "transfer"; break; case Kind::KECCAK256: id += "keccak256"; break; case Kind::Selfdestruct: id += "selfdestruct"; break; case Kind::Revert: id += "revert"; break; case Kind::ECRecover: id += "ecrecover"; break; case Kind::SHA256: id += "sha256"; break; case Kind::RIPEMD160: id += "ripemd160"; break; case Kind::Log0: id += "log0"; break; case Kind::Log1: id += "log1"; break; case Kind::Log2: id += "log2"; break; case Kind::Log3: id += "log3"; break; case Kind::Log4: id += "log4"; break; case Kind::GasLeft: id += "gasleft"; break; case Kind::Event: id += "event"; break; case Kind::SetGas: id += "setgas"; break; case Kind::SetValue: id += "setvalue"; break; case Kind::BlockHash: id += "blockhash"; break; case Kind::AddMod: id += "addmod"; break; case Kind::MulMod: id += "mulmod"; break; case Kind::ArrayPush: id += "arraypush"; break; case Kind::ArrayPop: id += "arraypop"; break; case Kind::ByteArrayPush: id += "bytearraypush"; break; case Kind::ObjectCreation: id += "objectcreation"; break; case Kind::Assert: id += "assert"; break; case Kind::Require: id += "require"; break; case Kind::ABIEncode: id += "abiencode"; break; case Kind::ABIEncodePacked: id += "abiencodepacked"; break; case Kind::ABIEncodeWithSelector: id += "abiencodewithselector"; break; case Kind::ABIEncodeWithSignature: id += "abiencodewithsignature"; break; case Kind::ABIDecode: id += "abidecode"; break; case Kind::MetaType: id += "metatype"; break; } id += "_" + stateMutabilityToString(m_stateMutability); id += identifierList(m_parameterTypes) + "returns" + identifierList(m_returnParameterTypes); if (m_gasSet) id += "gas"; if (m_valueSet) id += "value"; if (m_saltSet) id += "salt"; if (bound()) id += "bound_to" + identifierList(selfType()); return id; } bool FunctionType::operator==(Type const& _other) const { if (_other.category() != category()) return false; FunctionType const& other = dynamic_cast(_other); if (!equalExcludingStateMutability(other)) return false; if (m_stateMutability != other.stateMutability()) return false; return true; } BoolResult FunctionType::isExplicitlyConvertibleTo(Type const& _convertTo) const { if (_convertTo.category() == category()) { auto const& convertToType = dynamic_cast(_convertTo); return (m_kind == FunctionType::Kind::Declaration) == (convertToType.kind() == FunctionType::Kind::Declaration); } return false; } BoolResult FunctionType::isImplicitlyConvertibleTo(Type const& _convertTo) const { if (_convertTo.category() != category()) return false; FunctionType const& convertTo = dynamic_cast(_convertTo); if (!equalExcludingStateMutability(convertTo)) return false; // non-payable should not be convertible to payable if (m_stateMutability != StateMutability::Payable && convertTo.stateMutability() == StateMutability::Payable) return false; // payable should be convertible to non-payable, because you are free to pay 0 ether if (m_stateMutability == StateMutability::Payable && convertTo.stateMutability() == StateMutability::NonPayable) return true; // e.g. pure should be convertible to view, but not the other way around. if (m_stateMutability > convertTo.stateMutability()) return false; return true; } TypeResult FunctionType::unaryOperatorResult(Token _operator) const { if (_operator == Token::Delete) return TypeResult(TypeProvider::emptyTuple()); return nullptr; } TypeResult FunctionType::binaryOperatorResult(Token _operator, Type const* _other) const { if (_other->category() != category() || !(_operator == Token::Equal || _operator == Token::NotEqual)) return nullptr; FunctionType const& other = dynamic_cast(*_other); if (kind() == Kind::Internal && other.kind() == Kind::Internal && sizeOnStack() == 1 && other.sizeOnStack() == 1) return commonType(this, _other); return nullptr; } string FunctionType::canonicalName() const { solAssert(m_kind == Kind::External, ""); return "function"; } string FunctionType::toString(bool _short) const { string name = "function "; if (m_kind == Kind::Declaration) { auto const* functionDefinition = dynamic_cast(m_declaration); solAssert(functionDefinition, ""); auto const* contract = dynamic_cast(functionDefinition->scope()); solAssert(contract, ""); name += contract->annotation().canonicalName; name += '.'; name += functionDefinition->name(); } name += '('; for (auto it = m_parameterTypes.begin(); it != m_parameterTypes.end(); ++it) name += (*it)->toString(_short) + (it + 1 == m_parameterTypes.end() ? "" : ","); name += ")"; if (m_stateMutability != StateMutability::NonPayable) name += " " + stateMutabilityToString(m_stateMutability); if (m_kind == Kind::External) name += " external"; if (!m_returnParameterTypes.empty()) { name += " returns ("; for (auto it = m_returnParameterTypes.begin(); it != m_returnParameterTypes.end(); ++it) name += (*it)->toString(_short) + (it + 1 == m_returnParameterTypes.end() ? "" : ","); name += ")"; } return name; } unsigned FunctionType::calldataEncodedSize(bool _padded) const { unsigned size = storageBytes(); if (_padded) size = ((size + 31) / 32) * 32; return size; } u256 FunctionType::storageSize() const { if (m_kind == Kind::External || m_kind == Kind::Internal) return 1; else solAssert(false, "Storage size of non-storable function type requested."); } bool FunctionType::leftAligned() const { if (m_kind == Kind::External) return true; else solAssert(false, "Alignment property of non-exportable function type requested."); } unsigned FunctionType::storageBytes() const { if (m_kind == Kind::External) return 20 + 4; else if (m_kind == Kind::Internal) return 8; // it should really not be possible to create larger programs else solAssert(false, "Storage size of non-storable function type requested."); } vector> FunctionType::makeStackItems() const { vector> slots; Kind kind = m_kind; if (m_kind == Kind::SetGas || m_kind == Kind::SetValue) { solAssert(m_returnParameterTypes.size() == 1, ""); kind = dynamic_cast(*m_returnParameterTypes.front()).m_kind; } switch (kind) { case Kind::External: case Kind::DelegateCall: slots = { make_tuple("address", TypeProvider::address()), make_tuple("functionIdentifier", TypeProvider::uint(32)) }; break; case Kind::BareCall: case Kind::BareCallCode: case Kind::BareDelegateCall: case Kind::BareStaticCall: case Kind::Transfer: case Kind::Send: slots = {make_tuple("address", TypeProvider::address())}; break; case Kind::Internal: slots = {make_tuple("functionIdentifier", TypeProvider::uint256())}; break; case Kind::ArrayPush: case Kind::ArrayPop: case Kind::ByteArrayPush: slots = {make_tuple("slot", TypeProvider::uint256())}; break; default: break; } if (m_gasSet) slots.emplace_back("gas", TypeProvider::uint256()); if (m_valueSet) slots.emplace_back("value", TypeProvider::uint256()); if (m_saltSet) slots.emplace_back("salt", TypeProvider::fixedBytes(32)); if (bound()) for (auto const& [boundName, boundType]: m_parameterTypes.front()->stackItems()) slots.emplace_back("self_" + boundName, boundType); return slots; } FunctionTypePointer FunctionType::interfaceFunctionType() const { // Note that m_declaration might also be a state variable! solAssert(m_declaration, "Declaration needed to determine interface function type."); bool isLibraryFunction = kind() != Kind::Event && dynamic_cast(*m_declaration->scope()).isLibrary(); util::Result paramTypes = transformParametersToExternal(m_parameterTypes, isLibraryFunction); if (!paramTypes.message().empty()) return FunctionTypePointer(); util::Result retParamTypes = transformParametersToExternal(m_returnParameterTypes, isLibraryFunction); if (!retParamTypes.message().empty()) return FunctionTypePointer(); auto variable = dynamic_cast(m_declaration); if (variable && retParamTypes.get().empty()) return FunctionTypePointer(); return TypeProvider::function( paramTypes, retParamTypes, m_parameterNames, m_returnParameterNames, m_kind, m_arbitraryParameters, m_stateMutability, m_declaration ); } MemberList::MemberMap FunctionType::nativeMembers(ContractDefinition const* _scope) const { switch (m_kind) { case Kind::Declaration: if (declaration().isPartOfExternalInterface()) return {{"selector", TypeProvider::fixedBytes(4)}}; else return MemberList::MemberMap(); case Kind::Internal: if ( auto const* functionDefinition = dynamic_cast(m_declaration); functionDefinition && _scope && functionDefinition->annotation().contract && _scope != functionDefinition->annotation().contract && functionDefinition->isPartOfExternalInterface() ) { solAssert(_scope->derivesFrom(*functionDefinition->annotation().contract), ""); return {{"selector", TypeProvider::fixedBytes(4)}}; } else return MemberList::MemberMap(); case Kind::External: case Kind::Creation: case Kind::BareCall: case Kind::BareCallCode: case Kind::BareDelegateCall: case Kind::BareStaticCall: { MemberList::MemberMap members; if (m_kind == Kind::External) { members.emplace_back("selector", TypeProvider::fixedBytes(4)); members.emplace_back("address", TypeProvider::address()); } if (m_kind != Kind::BareDelegateCall) { if (isPayable()) members.emplace_back( "value", TypeProvider::function( parseElementaryTypeVector({"uint"}), TypePointers{copyAndSetCallOptions(false, true, false)}, strings(1, ""), strings(1, ""), Kind::SetValue, false, StateMutability::Pure, nullptr, m_gasSet, m_valueSet, m_saltSet ) ); } if (m_kind != Kind::Creation) members.emplace_back( "gas", TypeProvider::function( parseElementaryTypeVector({"uint"}), TypePointers{copyAndSetCallOptions(true, false, false)}, strings(1, ""), strings(1, ""), Kind::SetGas, false, StateMutability::Pure, nullptr, m_gasSet, m_valueSet, m_saltSet ) ); return members; } case Kind::DelegateCall: { auto const* functionDefinition = dynamic_cast(m_declaration); solAssert(functionDefinition, ""); solAssert(functionDefinition->visibility() != Visibility::Private, ""); if (functionDefinition->visibility() != Visibility::Internal) { auto const* contract = dynamic_cast(m_declaration->scope()); solAssert(contract, ""); solAssert(contract->isLibrary(), ""); return {{"selector", TypeProvider::fixedBytes(4)}}; } return {}; } default: return MemberList::MemberMap(); } } TypePointer FunctionType::encodingType() const { if (m_gasSet || m_valueSet) return nullptr; // Only external functions can be encoded, internal functions cannot leave code boundaries. if (m_kind == Kind::External) return this; else return nullptr; } TypeResult FunctionType::interfaceType(bool /*_inLibrary*/) const { if (m_kind == Kind::External) return this; else return TypeResult::err("Internal type is not allowed for public or external functions."); } bool FunctionType::canTakeArguments( FuncCallArguments const& _arguments, Type const* _selfType ) const { solAssert(!bound() || _selfType, ""); if (bound() && !_selfType->isImplicitlyConvertibleTo(*selfType())) return false; TypePointers paramTypes = parameterTypes(); std::vector const paramNames = parameterNames(); if (takesArbitraryParameters()) return true; else if (_arguments.numArguments() != paramTypes.size()) return false; else if (!_arguments.hasNamedArguments()) return equal( _arguments.types.cbegin(), _arguments.types.cend(), paramTypes.cbegin(), [](Type const* argumentType, Type const* parameterType) { return argumentType->isImplicitlyConvertibleTo(*parameterType); } ); else if (paramNames.size() != _arguments.numNames()) return false; else { solAssert(_arguments.numArguments() == _arguments.numNames(), "Expected equal sized type & name vectors"); size_t matchedNames = 0; for (auto const& argName: _arguments.names) for (size_t i = 0; i < paramNames.size(); i++) if (*argName == paramNames[i]) { matchedNames++; if (!_arguments.types[i]->isImplicitlyConvertibleTo(*paramTypes[i])) return false; } if (matchedNames == _arguments.numNames()) return true; return false; } } bool FunctionType::hasEqualParameterTypes(FunctionType const& _other) const { if (m_parameterTypes.size() != _other.m_parameterTypes.size()) return false; return equal( m_parameterTypes.cbegin(), m_parameterTypes.cend(), _other.m_parameterTypes.cbegin(), [](Type const* _a, Type const* _b) -> bool { return *_a == *_b; } ); } bool FunctionType::hasEqualReturnTypes(FunctionType const& _other) const { if (m_returnParameterTypes.size() != _other.m_returnParameterTypes.size()) return false; return equal( m_returnParameterTypes.cbegin(), m_returnParameterTypes.cend(), _other.m_returnParameterTypes.cbegin(), [](Type const* _a, Type const* _b) -> bool { return *_a == *_b; } ); } bool FunctionType::equalExcludingStateMutability(FunctionType const& _other) const { if (m_kind != _other.m_kind) return false; if (!hasEqualParameterTypes(_other) || !hasEqualReturnTypes(_other)) return false; //@todo this is ugly, but cannot be prevented right now if (m_gasSet != _other.m_gasSet || m_valueSet != _other.m_valueSet || m_saltSet != _other.m_saltSet) return false; if (bound() != _other.bound()) return false; solAssert(!bound() || *selfType() == *_other.selfType(), ""); return true; } bool FunctionType::isBareCall() const { switch (m_kind) { case Kind::BareCall: case Kind::BareCallCode: case Kind::BareDelegateCall: case Kind::BareStaticCall: case Kind::ECRecover: case Kind::SHA256: case Kind::RIPEMD160: return true; default: return false; } } string FunctionType::externalSignature() const { solAssert(m_declaration != nullptr, "External signature of function needs declaration"); solAssert(!m_declaration->name().empty(), "Fallback function has no signature."); switch (kind()) { case Kind::Internal: case Kind::External: case Kind::DelegateCall: case Kind::Event: case Kind::Declaration: break; default: solAssert(false, "Invalid function type for requesting external signature."); } // "inLibrary" is only relevant if this is not an event. bool const inLibrary = kind() != Kind::Event && dynamic_cast(*m_declaration->scope()).isLibrary(); auto extParams = transformParametersToExternal(m_parameterTypes, inLibrary); solAssert(extParams.message().empty(), extParams.message()); auto typeStrings = extParams.get() | boost::adaptors::transformed([&](TypePointer _t) -> string { string typeName = _t->signatureInExternalFunction(inLibrary); if (inLibrary && _t->dataStoredIn(DataLocation::Storage)) typeName += " storage"; return typeName; }); return m_declaration->name() + "(" + boost::algorithm::join(typeStrings, ",") + ")"; } u256 FunctionType::externalIdentifier() const { return util::FixedHash<4>::Arith(util::FixedHash<4>(util::keccak256(externalSignature()))); } string FunctionType::externalIdentifierHex() const { return util::FixedHash<4>(util::keccak256(externalSignature())).hex(); } bool FunctionType::isPure() const { // TODO: replace this with m_stateMutability == StateMutability::Pure once // the callgraph analyzer is in place return m_kind == Kind::KECCAK256 || m_kind == Kind::ECRecover || m_kind == Kind::SHA256 || m_kind == Kind::RIPEMD160 || m_kind == Kind::AddMod || m_kind == Kind::MulMod || m_kind == Kind::ObjectCreation || m_kind == Kind::ABIEncode || m_kind == Kind::ABIEncodePacked || m_kind == Kind::ABIEncodeWithSelector || m_kind == Kind::ABIEncodeWithSignature || m_kind == Kind::ABIDecode || m_kind == Kind::MetaType; } TypePointers FunctionType::parseElementaryTypeVector(strings const& _types) { TypePointers pointers; pointers.reserve(_types.size()); for (string const& type: _types) pointers.push_back(TypeProvider::fromElementaryTypeName(type)); return pointers; } TypePointer FunctionType::copyAndSetCallOptions(bool _setGas, bool _setValue, bool _setSalt) const { solAssert(m_kind != Kind::Declaration, ""); return TypeProvider::function( m_parameterTypes, m_returnParameterTypes, m_parameterNames, m_returnParameterNames, m_kind, m_arbitraryParameters, m_stateMutability, m_declaration, m_gasSet || _setGas, m_valueSet || _setValue, m_saltSet || _setSalt, m_bound ); } FunctionTypePointer FunctionType::asCallableFunction(bool _inLibrary, bool _bound) const { if (_bound) solAssert(!m_parameterTypes.empty(), ""); TypePointers parameterTypes; for (auto const& t: m_parameterTypes) { auto refType = dynamic_cast(t); if (refType && refType->location() == DataLocation::CallData) parameterTypes.push_back(TypeProvider::withLocation(refType, DataLocation::Memory, true)); else parameterTypes.push_back(t); } Kind kind = m_kind; if (_inLibrary) { solAssert(!!m_declaration, "Declaration has to be available."); if (!m_declaration->isPublic()) kind = Kind::Internal; // will be inlined else kind = Kind::DelegateCall; } return TypeProvider::function( parameterTypes, m_returnParameterTypes, m_parameterNames, m_returnParameterNames, kind, m_arbitraryParameters, m_stateMutability, m_declaration, m_gasSet, m_valueSet, m_saltSet, _bound ); } Type const* FunctionType::selfType() const { solAssert(bound(), "Function is not bound."); solAssert(m_parameterTypes.size() > 0, "Function has no self type."); return m_parameterTypes.at(0); } ASTPointer FunctionType::documentation() const { auto function = dynamic_cast(m_declaration); if (function) return function->documentation(); return ASTPointer(); } bool FunctionType::padArguments() const { // No padding only for hash functions, low-level calls and the packed encoding function. switch (m_kind) { case Kind::BareCall: case Kind::BareCallCode: case Kind::BareDelegateCall: case Kind::BareStaticCall: case Kind::SHA256: case Kind::RIPEMD160: case Kind::KECCAK256: case Kind::ABIEncodePacked: return false; default: return true; } return true; } Type const* MappingType::encodingType() const { return TypeProvider::integer(256, IntegerType::Modifier::Unsigned); } string MappingType::richIdentifier() const { return "t_mapping" + identifierList(m_keyType, m_valueType); } bool MappingType::operator==(Type const& _other) const { if (_other.category() != category()) return false; MappingType const& other = dynamic_cast(_other); return *other.m_keyType == *m_keyType && *other.m_valueType == *m_valueType; } string MappingType::toString(bool _short) const { return "mapping(" + keyType()->toString(_short) + " => " + valueType()->toString(_short) + ")"; } string MappingType::canonicalName() const { return "mapping(" + keyType()->canonicalName() + " => " + valueType()->canonicalName() + ")"; } TypeResult MappingType::interfaceType(bool _inLibrary) const { solAssert(keyType()->interfaceType(_inLibrary).get(), "Must be an elementary type!"); if (_inLibrary) { auto iType = valueType()->interfaceType(_inLibrary); if (!iType.get()) { solAssert(!iType.message().empty(), "Expected detailed error message!"); return iType; } } else return TypeResult::err("Only libraries are allowed to use the mapping type in public or external functions."); return this; } string TypeType::richIdentifier() const { return "t_type" + identifierList(actualType()); } bool TypeType::operator==(Type const& _other) const { if (_other.category() != category()) return false; TypeType const& other = dynamic_cast(_other); return *actualType() == *other.actualType(); } u256 TypeType::storageSize() const { solAssert(false, "Storage size of non-storable type type requested."); } vector> TypeType::makeStackItems() const { if (auto contractType = dynamic_cast(m_actualType)) if (contractType->contractDefinition().isLibrary()) return {make_tuple("address", TypeProvider::address())}; return {}; } MemberList::MemberMap TypeType::nativeMembers(ContractDefinition const* _currentScope) const { MemberList::MemberMap members; if (m_actualType->category() == Category::Contract) { ContractDefinition const& contract = dynamic_cast(*m_actualType).contractDefinition(); bool inDerivingScope = _currentScope && _currentScope->derivesFrom(contract); for (auto const* declaration: contract.declarations()) { if (dynamic_cast(declaration)) continue; if (!contract.isLibrary() && inDerivingScope && declaration->isVisibleInDerivedContracts()) { if ( auto const* functionDefinition = dynamic_cast(declaration); functionDefinition && !functionDefinition->isImplemented() ) members.emplace_back(declaration->name(), declaration->typeViaContractName(), declaration); else members.emplace_back(declaration->name(), declaration->type(), declaration); } else if ( (contract.isLibrary() && declaration->isVisibleAsLibraryMember()) || declaration->isVisibleViaContractTypeAccess() ) members.emplace_back(declaration->name(), declaration->typeViaContractName(), declaration); } } else if (m_actualType->category() == Category::Enum) { EnumDefinition const& enumDef = dynamic_cast(*m_actualType).enumDefinition(); auto enumType = TypeProvider::enumType(enumDef); for (ASTPointer const& enumValue: enumDef.members()) members.emplace_back(enumValue->name(), enumType); } return members; } BoolResult TypeType::isExplicitlyConvertibleTo(Type const& _convertTo) const { if (auto const* address = dynamic_cast(&_convertTo)) if (address->stateMutability() == StateMutability::NonPayable) if (auto const* contractType = dynamic_cast(m_actualType)) return contractType->contractDefinition().isLibrary(); return isImplicitlyConvertibleTo(_convertTo); } ModifierType::ModifierType(ModifierDefinition const& _modifier) { TypePointers params; params.reserve(_modifier.parameters().size()); for (ASTPointer const& var: _modifier.parameters()) params.push_back(var->annotation().type); swap(params, m_parameterTypes); } u256 ModifierType::storageSize() const { solAssert(false, "Storage size of non-storable type type requested."); } string ModifierType::richIdentifier() const { return "t_modifier" + identifierList(m_parameterTypes); } bool ModifierType::operator==(Type const& _other) const { if (_other.category() != category()) return false; ModifierType const& other = dynamic_cast(_other); if (m_parameterTypes.size() != other.m_parameterTypes.size()) return false; auto typeCompare = [](Type const* _a, Type const* _b) -> bool { return *_a == *_b; }; if (!equal( m_parameterTypes.cbegin(), m_parameterTypes.cend(), other.m_parameterTypes.cbegin(), typeCompare )) return false; return true; } string ModifierType::toString(bool _short) const { string name = "modifier ("; for (auto it = m_parameterTypes.begin(); it != m_parameterTypes.end(); ++it) name += (*it)->toString(_short) + (it + 1 == m_parameterTypes.end() ? "" : ","); return name + ")"; } string ModuleType::richIdentifier() const { return "t_module_" + to_string(m_sourceUnit.id()); } bool ModuleType::operator==(Type const& _other) const { if (_other.category() != category()) return false; return &m_sourceUnit == &dynamic_cast(_other).m_sourceUnit; } MemberList::MemberMap ModuleType::nativeMembers(ContractDefinition const*) const { MemberList::MemberMap symbols; for (auto const& symbolName: m_sourceUnit.annotation().exportedSymbols) for (Declaration const* symbol: symbolName.second) symbols.emplace_back(symbolName.first, symbol->type(), symbol); return symbols; } string ModuleType::toString(bool) const { return string("module \"") + m_sourceUnit.annotation().path + string("\""); } string MagicType::richIdentifier() const { switch (m_kind) { case Kind::Block: return "t_magic_block"; case Kind::Message: return "t_magic_message"; case Kind::Transaction: return "t_magic_transaction"; case Kind::ABI: return "t_magic_abi"; case Kind::MetaType: solAssert(m_typeArgument, ""); return "t_magic_meta_type_" + m_typeArgument->richIdentifier(); } return ""; } bool MagicType::operator==(Type const& _other) const { if (_other.category() != category()) return false; MagicType const& other = dynamic_cast(_other); return other.m_kind == m_kind; } MemberList::MemberMap MagicType::nativeMembers(ContractDefinition const*) const { switch (m_kind) { case Kind::Block: return MemberList::MemberMap({ {"coinbase", TypeProvider::payableAddress()}, {"timestamp", TypeProvider::uint256()}, {"blockhash", TypeProvider::function(strings{"uint"}, strings{"bytes32"}, FunctionType::Kind::BlockHash, false, StateMutability::View)}, {"difficulty", TypeProvider::uint256()}, {"number", TypeProvider::uint256()}, {"gaslimit", TypeProvider::uint256()} }); case Kind::Message: return MemberList::MemberMap({ {"sender", TypeProvider::payableAddress()}, {"gas", TypeProvider::uint256()}, {"value", TypeProvider::uint256()}, {"data", TypeProvider::array(DataLocation::CallData)}, {"sig", TypeProvider::fixedBytes(4)} }); case Kind::Transaction: return MemberList::MemberMap({ {"origin", TypeProvider::payableAddress()}, {"gasprice", TypeProvider::uint256()} }); case Kind::ABI: return MemberList::MemberMap({ {"encode", TypeProvider::function( TypePointers{}, TypePointers{TypeProvider::array(DataLocation::Memory)}, strings{}, strings{1, ""}, FunctionType::Kind::ABIEncode, true, StateMutability::Pure )}, {"encodePacked", TypeProvider::function( TypePointers{}, TypePointers{TypeProvider::array(DataLocation::Memory)}, strings{}, strings{1, ""}, FunctionType::Kind::ABIEncodePacked, true, StateMutability::Pure )}, {"encodeWithSelector", TypeProvider::function( TypePointers{TypeProvider::fixedBytes(4)}, TypePointers{TypeProvider::array(DataLocation::Memory)}, strings{1, ""}, strings{1, ""}, FunctionType::Kind::ABIEncodeWithSelector, true, StateMutability::Pure )}, {"encodeWithSignature", TypeProvider::function( TypePointers{TypeProvider::array(DataLocation::Memory, true)}, TypePointers{TypeProvider::array(DataLocation::Memory)}, strings{1, ""}, strings{1, ""}, FunctionType::Kind::ABIEncodeWithSignature, true, StateMutability::Pure )}, {"decode", TypeProvider::function( TypePointers(), TypePointers(), strings{}, strings{}, FunctionType::Kind::ABIDecode, true, StateMutability::Pure )} }); case Kind::MetaType: { solAssert( m_typeArgument && ( m_typeArgument->category() == Type::Category::Contract || m_typeArgument->category() == Type::Category::Integer ), "Only contracts or integer types supported for now" ); if (m_typeArgument->category() == Type::Category::Contract) { ContractDefinition const& contract = dynamic_cast(*m_typeArgument).contractDefinition(); if (contract.canBeDeployed()) return MemberList::MemberMap({ {"creationCode", TypeProvider::array(DataLocation::Memory)}, {"runtimeCode", TypeProvider::array(DataLocation::Memory)}, {"name", TypeProvider::stringMemory()}, }); else return MemberList::MemberMap({ {"interfaceId", TypeProvider::fixedBytes(4)}, }); } else if (m_typeArgument->category() == Type::Category::Integer) { IntegerType const* integerTypePointer = dynamic_cast(m_typeArgument); return MemberList::MemberMap({ {"min", integerTypePointer}, {"max", integerTypePointer}, }); } } } solAssert(false, "Unknown kind of magic."); return {}; } string MagicType::toString(bool _short) const { switch (m_kind) { case Kind::Block: return "block"; case Kind::Message: return "msg"; case Kind::Transaction: return "tx"; case Kind::ABI: return "abi"; case Kind::MetaType: solAssert(m_typeArgument, ""); return "type(" + m_typeArgument->toString(_short) + ")"; } solAssert(false, "Unknown kind of magic."); return {}; } TypePointer MagicType::typeArgument() const { solAssert(m_kind == Kind::MetaType, ""); solAssert(m_typeArgument, ""); return m_typeArgument; } TypePointer InaccessibleDynamicType::decodingType() const { return TypeProvider::integer(256, IntegerType::Modifier::Unsigned); }