/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
/**
* Component that translates Solidity code into Yul at statement level and below.
*/
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace dev;
using namespace dev::solidity;
namespace
{
struct CopyTranslate: public yul::ASTCopier
{
using ExternalRefsMap = std::map;
CopyTranslate(IRGenerationContext& _context, ExternalRefsMap const& _references):
m_context(_context), m_references(_references) {}
using ASTCopier::operator();
yul::YulString translateIdentifier(yul::YulString _name) override
{
return yul::YulString{"usr$" + _name.str()};
}
yul::Identifier translate(yul::Identifier const& _identifier) override
{
if (!m_references.count(&_identifier))
return ASTCopier::translate(_identifier);
auto const& reference = m_references.at(&_identifier);
auto const varDecl = dynamic_cast(reference.declaration);
solUnimplementedAssert(varDecl, "");
solUnimplementedAssert(
reference.isOffset == false && reference.isSlot == false,
""
);
return yul::Identifier{
_identifier.location,
yul::YulString{m_context.variableName(*varDecl)}
};
}
private:
IRGenerationContext& m_context;
ExternalRefsMap const& m_references;
};
}
bool IRGeneratorForStatements::visit(VariableDeclarationStatement const& _varDeclStatement)
{
for (auto const& decl: _varDeclStatement.declarations())
if (decl)
m_context.addLocalVariable(*decl);
if (Expression const* expression = _varDeclStatement.initialValue())
{
solUnimplementedAssert(_varDeclStatement.declarations().size() == 1, "");
expression->accept(*this);
VariableDeclaration const& varDecl = *_varDeclStatement.declarations().front();
m_code <<
"let " <<
m_context.variableName(varDecl) <<
" := " <<
expressionAsType(*expression, *varDecl.type()) <<
"\n";
}
else
for (auto const& decl: _varDeclStatement.declarations())
if (decl)
m_code << "let " << m_context.variableName(*decl) << "\n";
return false;
}
bool IRGeneratorForStatements::visit(Assignment const& _assignment)
{
solUnimplementedAssert(_assignment.assignmentOperator() == Token::Assign, "");
_assignment.rightHandSide().accept(*this);
// TODO proper lvalue handling
auto const& lvalue = dynamic_cast(_assignment.leftHandSide());
string varName = m_context.variableName(dynamic_cast(*lvalue.annotation().referencedDeclaration));
m_code <<
varName <<
" := " <<
expressionAsType(_assignment.rightHandSide(), *lvalue.annotation().type) <<
"\n";
m_code << "let " << m_context.variable(_assignment) << " := " << varName << "\n";
return false;
}
bool IRGeneratorForStatements::visit(Return const&)
{
solUnimplemented("Return not yet implemented in yul code generation");
}
void IRGeneratorForStatements::endVisit(BinaryOperation const& _binOp)
{
solUnimplementedAssert(_binOp.getOperator() == Token::Add, "");
solUnimplementedAssert(*_binOp.leftExpression().annotation().type == *_binOp.rightExpression().annotation().type, "");
if (IntegerType const* type = dynamic_cast(_binOp.annotation().commonType))
{
solUnimplementedAssert(!type->isSigned(), "");
m_code <<
"let " <<
m_context.variable(_binOp) <<
" := " <<
m_utils.overflowCheckedUIntAddFunction(type->numBits()) <<
"(" <<
m_context.variable(_binOp.leftExpression()) <<
", " <<
m_context.variable(_binOp.rightExpression()) <<
")\n";
}
else
solUnimplementedAssert(false, "");
}
bool IRGeneratorForStatements::visit(FunctionCall const& _functionCall)
{
solUnimplementedAssert(
_functionCall.annotation().kind == FunctionCallKind::FunctionCall ||
_functionCall.annotation().kind == FunctionCallKind::TypeConversion,
"This type of function call is not yet implemented"
);
TypePointer const funcType = _functionCall.expression().annotation().type;
if (_functionCall.annotation().kind == FunctionCallKind::TypeConversion)
{
solAssert(funcType->category() == Type::Category::TypeType, "Expected category to be TypeType");
solAssert(_functionCall.arguments().size() == 1, "Expected one argument for type conversion");
_functionCall.arguments().front()->accept(*this);
m_code <<
"let " <<
m_context.variable(_functionCall) <<
" := " <<
expressionAsType(*_functionCall.arguments().front(), *_functionCall.annotation().type) <<
"\n";
return false;
}
FunctionTypePointer functionType = dynamic_cast(funcType);
TypePointers parameterTypes = functionType->parameterTypes();
vector> const& callArguments = _functionCall.arguments();
vector> const& callArgumentNames = _functionCall.names();
if (!functionType->takesArbitraryParameters())
solAssert(callArguments.size() == parameterTypes.size(), "");
vector> arguments;
if (callArgumentNames.empty())
// normal arguments
arguments = callArguments;
else
// named arguments
for (auto const& parameterName: functionType->parameterNames())
{
auto const it = std::find_if(callArgumentNames.cbegin(), callArgumentNames.cend(), [&](ASTPointer const& _argName) {
return *_argName == parameterName;
});
solAssert(it != callArgumentNames.cend(), "");
arguments.push_back(callArguments[std::distance(callArgumentNames.begin(), it)]);
}
solUnimplementedAssert(!functionType->bound(), "");
switch (functionType->kind())
{
case FunctionType::Kind::Internal:
{
vector args;
for (unsigned i = 0; i < arguments.size(); ++i)
{
arguments[i]->accept(*this);
if (functionType->takesArbitraryParameters())
args.emplace_back(m_context.variable(*arguments[i]));
else
args.emplace_back(expressionAsType(*arguments[i], *parameterTypes[i]));
}
if (auto identifier = dynamic_cast(&_functionCall.expression()))
{
solAssert(!functionType->bound(), "");
if (auto functionDef = dynamic_cast(identifier->annotation().referencedDeclaration))
{
// @TODO The function can very well return multiple vars.
m_code <<
"let " <<
m_context.variable(_functionCall) <<
" := " <<
m_context.virtualFunctionName(*functionDef) <<
"(" <<
joinHumanReadable(args) <<
")\n";
return false;
}
}
_functionCall.expression().accept(*this);
// @TODO The function can very well return multiple vars.
args = vector{m_context.variable(_functionCall.expression())} + args;
m_code <<
"let " <<
m_context.variable(_functionCall) <<
" := " <<
m_context.internalDispatch(functionType->parameterTypes().size(), functionType->returnParameterTypes().size()) <<
"(" <<
joinHumanReadable(args) <<
")\n";
break;
}
default:
solUnimplemented("");
}
return false;
}
bool IRGeneratorForStatements::visit(InlineAssembly const& _inlineAsm)
{
CopyTranslate bodyCopier{m_context, _inlineAsm.annotation().externalReferences};
yul::Statement modified = bodyCopier(_inlineAsm.operations());
solAssert(modified.type() == typeid(yul::Block), "");
m_code << yul::AsmPrinter()(boost::get(std::move(modified))) << "\n";
return false;
}
bool IRGeneratorForStatements::visit(Identifier const& _identifier)
{
Declaration const* declaration = _identifier.annotation().referencedDeclaration;
string value;
if (FunctionDefinition const* functionDef = dynamic_cast(declaration))
value = to_string(m_context.virtualFunction(*functionDef).id());
else if (VariableDeclaration const* varDecl = dynamic_cast(declaration))
value = m_context.variableName(*varDecl);
else
solUnimplemented("");
m_code << "let " << m_context.variable(_identifier) << " := " << value << "\n";
return false;
}
bool IRGeneratorForStatements::visit(Literal const& _literal)
{
TypePointer type = _literal.annotation().type;
switch (type->category())
{
case Type::Category::RationalNumber:
case Type::Category::Bool:
case Type::Category::Address:
m_code << "let " << m_context.variable(_literal) << " := " << toCompactHexWithPrefix(type->literalValue(&_literal)) << "\n";
break;
case Type::Category::StringLiteral:
solUnimplemented("");
break; // will be done during conversion
default:
solUnimplemented("Only integer, boolean and string literals implemented for now.");
}
return false;
}
string IRGeneratorForStatements::expressionAsType(Expression const& _expression, Type const& _to)
{
Type const& from = *_expression.annotation().type;
string varName = m_context.variable(_expression);
if (from == _to)
return varName;
else
return m_utils.conversionFunction(from, _to) + "(" + std::move(varName) + ")";
}