/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * @author Christian * @date 2016 * Unit tests for inline assembly. */ #include "../TestHelper.h" #include #include #include #include #include #include #include #include #include #include using namespace std; namespace dev { namespace solidity { namespace test { namespace { boost::optional parseAndReturnFirstError( string const& _source, bool _assemble = false, bool _allowWarnings = true, AssemblyStack::Machine _machine = AssemblyStack::Machine::EVM ) { AssemblyStack stack; bool success = false; try { success = stack.parseAndAnalyze("", _source); if (success && _assemble) stack.assemble(_machine); } catch (FatalError const&) { BOOST_FAIL("Fatal error leaked."); success = false; } if (!success) { BOOST_REQUIRE_EQUAL(stack.errors().size(), 1); return *stack.errors().front(); } else { // If success is true, there might still be an error in the assembly stage. if (_allowWarnings && Error::containsOnlyWarnings(stack.errors())) return {}; else if (!stack.errors().empty()) { if (!_allowWarnings) BOOST_CHECK_EQUAL(stack.errors().size(), 1); return *stack.errors().front(); } } return {}; } bool successParse( string const& _source, bool _assemble = false, bool _allowWarnings = true, AssemblyStack::Machine _machine = AssemblyStack::Machine::EVM ) { return !parseAndReturnFirstError(_source, _assemble, _allowWarnings, _machine); } bool successAssemble(string const& _source, bool _allowWarnings = true) { return successParse(_source, true, _allowWarnings, AssemblyStack::Machine::EVM) && successParse(_source, true, _allowWarnings, AssemblyStack::Machine::EVM15); } Error expectError(std::string const& _source, bool _assemble, bool _allowWarnings = false) { auto error = parseAndReturnFirstError(_source, _assemble, _allowWarnings); BOOST_REQUIRE(error); return *error; } void parsePrintCompare(string const& _source) { AssemblyStack stack; BOOST_REQUIRE(stack.parseAndAnalyze("", _source)); BOOST_REQUIRE(stack.errors().empty()); BOOST_CHECK_EQUAL(stack.print(), _source); } } #define CHECK_ERROR(text, assemble, typ, substring) \ do \ { \ Error err = expectError((text), (assemble), false); \ BOOST_CHECK(err.type() == (Error::Type::typ)); \ BOOST_CHECK(searchErrorMessage(err, (substring))); \ } while(0) #define CHECK_PARSE_ERROR(text, type, substring) \ CHECK_ERROR(text, false, type, substring) #define CHECK_ASSEMBLE_ERROR(text, type, substring) \ CHECK_ERROR(text, true, type, substring) BOOST_AUTO_TEST_SUITE(SolidityInlineAssembly) BOOST_AUTO_TEST_SUITE(Parsing) BOOST_AUTO_TEST_CASE(smoke_test) { BOOST_CHECK(successParse("{ }")); } BOOST_AUTO_TEST_CASE(simple_instructions) { BOOST_CHECK(successParse("{ dup1 dup1 mul dup1 sub pop }")); } BOOST_AUTO_TEST_CASE(suicide_selfdestruct) { BOOST_CHECK(successParse("{ 0x01 suicide 0x02 selfdestruct }")); } BOOST_AUTO_TEST_CASE(keywords) { BOOST_CHECK(successParse("{ 1 2 byte 2 return address pop }")); } BOOST_AUTO_TEST_CASE(constants) { BOOST_CHECK(successParse("{ 7 8 mul pop }")); } BOOST_AUTO_TEST_CASE(vardecl) { BOOST_CHECK(successParse("{ let x := 7 }")); } BOOST_AUTO_TEST_CASE(vardecl_name_clashes) { CHECK_PARSE_ERROR("{ let x := 1 let x := 2 }", DeclarationError, "Variable name x already taken in this scope."); } BOOST_AUTO_TEST_CASE(vardecl_multi) { BOOST_CHECK(successParse("{ function f() -> x, y {} let x, y := f() }")); } BOOST_AUTO_TEST_CASE(vardecl_multi_conflict) { CHECK_PARSE_ERROR("{ function f() -> x, y {} let x, x := f() }", DeclarationError, "Variable name x already taken in this scope."); } BOOST_AUTO_TEST_CASE(vardecl_bool) { CHECK_PARSE_ERROR("{ let x := true }", ParserError, "True and false are not valid literals."); CHECK_PARSE_ERROR("{ let x := false }", ParserError, "True and false are not valid literals."); } BOOST_AUTO_TEST_CASE(assignment) { BOOST_CHECK(successParse("{ let x := 2 7 8 add =: x }")); } BOOST_AUTO_TEST_CASE(label) { BOOST_CHECK(successParse("{ 7 abc: 8 eq abc jump pop }")); } BOOST_AUTO_TEST_CASE(label_complex) { BOOST_CHECK(successParse("{ 7 abc: 8 eq jump(abc) jumpi(eq(7, 8), abc) pop }")); } BOOST_AUTO_TEST_CASE(functional) { BOOST_CHECK(successParse("{ let x := 2 add(7, mul(6, x)) mul(7, 8) add =: x }")); } BOOST_AUTO_TEST_CASE(functional_assignment) { BOOST_CHECK(successParse("{ let x := 2 x := 7 }")); } BOOST_AUTO_TEST_CASE(functional_assignment_complex) { BOOST_CHECK(successParse("{ let x := 2 x := add(7, mul(6, x)) mul(7, 8) add }")); } BOOST_AUTO_TEST_CASE(vardecl_complex) { BOOST_CHECK(successParse("{ let y := 2 let x := add(7, mul(6, y)) add mul(7, 8) }")); } BOOST_AUTO_TEST_CASE(variable_use_before_decl) { CHECK_PARSE_ERROR("{ x := 2 let x := 3 }", DeclarationError, "Variable x used before it was declared."); CHECK_PARSE_ERROR("{ let x := mul(2, x) }", DeclarationError, "Variable x used before it was declared."); } BOOST_AUTO_TEST_CASE(switch_statement) { BOOST_CHECK(successParse("{ switch 42 default {} }")); BOOST_CHECK(successParse("{ switch 42 case 1 {} }")); BOOST_CHECK(successParse("{ switch 42 case 1 {} case 2 {} }")); BOOST_CHECK(successParse("{ switch 42 case 1 {} default {} }")); BOOST_CHECK(successParse("{ switch 42 case 1 {} case 2 {} default {} }")); BOOST_CHECK(successParse("{ switch mul(1, 2) case 1 {} case 2 {} default {} }")); BOOST_CHECK(successParse("{ function f() -> x {} switch f() case 1 {} case 2 {} default {} }")); } BOOST_AUTO_TEST_CASE(switch_no_cases) { CHECK_PARSE_ERROR("{ switch 42 }", ParserError, "Switch statement without any cases."); } BOOST_AUTO_TEST_CASE(switch_duplicate_case) { CHECK_PARSE_ERROR("{ switch 42 case 1 {} case 1 {} default {} }", DeclarationError, "Duplicate case defined"); } BOOST_AUTO_TEST_CASE(switch_invalid_expression) { CHECK_PARSE_ERROR("{ switch {} default {} }", ParserError, "Literal, identifier or instruction expected."); CHECK_PARSE_ERROR("{ 1 2 switch mul default {} }", ParserError, "Instructions are not supported as expressions for switch."); } BOOST_AUTO_TEST_CASE(switch_default_before_case) { CHECK_PARSE_ERROR("{ switch 42 default {} case 1 {} }", ParserError, "Case not allowed after default case."); } BOOST_AUTO_TEST_CASE(switch_duplicate_default_case) { CHECK_PARSE_ERROR("{ switch 42 default {} default {} }", ParserError, "Only one default case allowed."); } BOOST_AUTO_TEST_CASE(switch_invalid_case) { CHECK_PARSE_ERROR("{ switch 42 case mul(1, 2) {} case 2 {} default {} }", ParserError, "Literal expected."); } BOOST_AUTO_TEST_CASE(switch_invalid_body) { CHECK_PARSE_ERROR("{ switch 42 case 1 mul case 2 {} default {} }", ParserError, "Expected token LBrace got 'Identifier'"); } BOOST_AUTO_TEST_CASE(blocks) { BOOST_CHECK(successParse("{ let x := 7 { let y := 3 } { let z := 2 } }")); } BOOST_AUTO_TEST_CASE(function_definitions) { BOOST_CHECK(successParse("{ function f() { } function g(a) -> x { } }")); } BOOST_AUTO_TEST_CASE(function_definitions_multiple_args) { BOOST_CHECK(successParse("{ function f(a, d) { } function g(a, d) -> x, y { } }")); } BOOST_AUTO_TEST_CASE(function_calls) { BOOST_CHECK(successParse("{ function f(a) -> b {} function g(a, b, c) {} function x() { g(1, 2, f(mul(2, 3))) x() } }")); } BOOST_AUTO_TEST_CASE(opcode_for_functions) { CHECK_PARSE_ERROR("{ function gas() { } }", ParserError, "Cannot use instruction names for identifier names."); } BOOST_AUTO_TEST_CASE(opcode_for_function_args) { CHECK_PARSE_ERROR("{ function f(gas) { } }", ParserError, "Cannot use instruction names for identifier names."); CHECK_PARSE_ERROR("{ function f() -> gas { } }", ParserError, "Cannot use instruction names for identifier names."); } BOOST_AUTO_TEST_CASE(name_clashes) { CHECK_PARSE_ERROR("{ let g := 2 function g() { } }", DeclarationError, "Function name g already taken in this scope"); } BOOST_AUTO_TEST_CASE(variable_access_cross_functions) { CHECK_PARSE_ERROR("{ let x := 2 function g() { x pop } }", DeclarationError, "Identifier not found."); } BOOST_AUTO_TEST_CASE(invalid_tuple_assignment) { /// The push(42) is added here to silence the unbalanced stack error, so that there's only one error reported. CHECK_PARSE_ERROR("{ 42 let x, y := 1 }", DeclarationError, "Variable count mismatch."); } BOOST_AUTO_TEST_CASE(instruction_too_few_arguments) { CHECK_PARSE_ERROR("{ mul() }", ParserError, "Expected expression (\"mul\" expects 2 arguments)"); CHECK_PARSE_ERROR("{ mul(1) }", ParserError, "Expected comma (\"mul\" expects 2 arguments)"); } BOOST_AUTO_TEST_CASE(instruction_too_many_arguments) { CHECK_PARSE_ERROR("{ mul(1, 2, 3) }", ParserError, "Expected ')' (\"mul\" expects 2 arguments)"); } BOOST_AUTO_TEST_SUITE_END() BOOST_AUTO_TEST_SUITE(Printing) BOOST_AUTO_TEST_CASE(print_smoke) { parsePrintCompare("{\n}"); } BOOST_AUTO_TEST_CASE(print_instructions) { parsePrintCompare("{\n 7\n 8\n mul\n dup10\n add\n pop\n}"); } BOOST_AUTO_TEST_CASE(print_subblock) { parsePrintCompare("{\n {\n dup4\n add\n }\n}"); } BOOST_AUTO_TEST_CASE(print_functional) { parsePrintCompare("{\n let x := mul(sload(0x12), 7)\n}"); } BOOST_AUTO_TEST_CASE(print_label) { parsePrintCompare("{\n loop:\n jump(loop)\n}"); } BOOST_AUTO_TEST_CASE(print_assignments) { parsePrintCompare("{\n let x := mul(2, 3)\n 7\n =: x\n x := add(1, 2)\n}"); } BOOST_AUTO_TEST_CASE(print_multi_assignments) { parsePrintCompare("{\n function f() -> x, y\n {\n }\n let x, y := f()\n}"); } BOOST_AUTO_TEST_CASE(print_string_literals) { parsePrintCompare("{\n \"\\n'\\xab\\x95\\\"\"\n pop\n}"); } BOOST_AUTO_TEST_CASE(print_string_literal_unicode) { string source = "{ let x := \"\\u1bac\" }"; string parsed = "{\n let x := \"\\xe1\\xae\\xac\"\n}"; AssemblyStack stack; BOOST_REQUIRE(stack.parseAndAnalyze("", source)); BOOST_REQUIRE(stack.errors().empty()); BOOST_CHECK_EQUAL(stack.print(), parsed); parsePrintCompare(parsed); } BOOST_AUTO_TEST_CASE(print_switch) { parsePrintCompare("{\n switch 42\n case 1 {\n }\n case 2 {\n }\n default {\n }\n}"); } BOOST_AUTO_TEST_CASE(function_definitions_multiple_args) { parsePrintCompare("{\n function f(a, d)\n {\n mstore(a, d)\n }\n function g(a, d) -> x, y\n {\n }\n}"); } BOOST_AUTO_TEST_CASE(function_calls) { string source = R"({ function y() { } function f(a) -> b { } function g(a, b, c) { } g(1, mul(2, address), f(mul(2, caller))) y() })"; boost::replace_all(source, "\t", " "); parsePrintCompare(source); } BOOST_AUTO_TEST_SUITE_END() BOOST_AUTO_TEST_SUITE(Analysis) BOOST_AUTO_TEST_CASE(string_literals) { BOOST_CHECK(successAssemble("{ let x := \"12345678901234567890123456789012\" }")); } BOOST_AUTO_TEST_CASE(oversize_string_literals) { CHECK_ASSEMBLE_ERROR("{ let x := \"123456789012345678901234567890123\" }", TypeError, "String literal too long"); } BOOST_AUTO_TEST_CASE(assignment_after_tag) { BOOST_CHECK(successParse("{ let x := 1 { 7 tag: =: x } }")); } BOOST_AUTO_TEST_CASE(magic_variables) { CHECK_ASSEMBLE_ERROR("{ this pop }", DeclarationError, "Identifier not found"); CHECK_ASSEMBLE_ERROR("{ ecrecover pop }", DeclarationError, "Identifier not found"); BOOST_CHECK(successAssemble("{ let ecrecover := 1 ecrecover pop }")); } BOOST_AUTO_TEST_CASE(stack_variables) { BOOST_CHECK(successAssemble("{ let y := 3 { 2 { let x := y } pop} }")); } BOOST_AUTO_TEST_CASE(imbalanced_stack) { BOOST_CHECK(successAssemble("{ 1 2 mul pop }", false)); CHECK_ASSEMBLE_ERROR("{ 1 }", DeclarationError, "Unbalanced stack at the end of a block: 1 surplus item(s)."); CHECK_ASSEMBLE_ERROR("{ pop }", DeclarationError, "Unbalanced stack at the end of a block: 1 missing item(s)."); BOOST_CHECK(successAssemble("{ let x := 4 7 add }", false)); } BOOST_AUTO_TEST_CASE(error_tag) { CHECK_ASSEMBLE_ERROR("{ jump(invalidJumpLabel) }", DeclarationError, "Identifier not found"); } BOOST_AUTO_TEST_CASE(designated_invalid_instruction) { BOOST_CHECK(successAssemble("{ invalid }")); } BOOST_AUTO_TEST_CASE(inline_assembly_shadowed_instruction_declaration) { CHECK_ASSEMBLE_ERROR("{ let gas := 1 }", ParserError, "Cannot use instruction names for identifier names."); } BOOST_AUTO_TEST_CASE(inline_assembly_shadowed_instruction_assignment) { CHECK_ASSEMBLE_ERROR("{ 2 =: gas }", ParserError, "Identifier expected, got instruction name."); } BOOST_AUTO_TEST_CASE(inline_assembly_shadowed_instruction_functional_assignment) { CHECK_ASSEMBLE_ERROR("{ gas := 2 }", ParserError, "Label name / variable name must precede \":\""); } BOOST_AUTO_TEST_CASE(revert) { BOOST_CHECK(successAssemble("{ revert(0, 0) }")); } BOOST_AUTO_TEST_CASE(function_calls) { BOOST_CHECK(successAssemble("{ function f() {} }")); BOOST_CHECK(successAssemble("{ function f() { let y := 2 } }")); BOOST_CHECK(successAssemble("{ function f() -> z { let y := 2 } }")); BOOST_CHECK(successAssemble("{ function f(a) { let y := 2 } }")); BOOST_CHECK(successAssemble("{ function f(a) { let y := a } }")); BOOST_CHECK(successAssemble("{ function f() -> x, y, z {} }")); BOOST_CHECK(successAssemble("{ function f(x, y, z) {} }")); BOOST_CHECK(successAssemble("{ function f(a, b) -> x, y, z { y := a } }")); BOOST_CHECK(successAssemble("{ function f() {} f() }")); BOOST_CHECK(successAssemble("{ function f() -> x, y { x := 1 y := 2} let a, b := f() }")); BOOST_CHECK(successAssemble("{ function f(a, b) -> x, y { x := b y := a } let a, b := f(2, 3) }")); BOOST_CHECK(successAssemble("{ function rec(a) { rec(sub(a, 1)) } rec(2) }")); BOOST_CHECK(successAssemble("{ let r := 2 function f() -> x, y { x := 1 y := 2} let a, b := f() b := r }")); BOOST_CHECK(successAssemble("{ function f() { g() } function g() { f() } }")); } BOOST_AUTO_TEST_CASE(embedded_functions) { BOOST_CHECK(successAssemble("{ function f(r, s) -> x { function g(a) -> b { } x := g(2) } let x := f(2, 3) }")); } BOOST_AUTO_TEST_CASE(switch_statement) { BOOST_CHECK(successAssemble("{ switch 1 default {} }")); BOOST_CHECK(successAssemble("{ switch 1 case 1 {} default {} }")); BOOST_CHECK(successAssemble("{ switch 1 case 1 {} }")); BOOST_CHECK(successAssemble("{ let a := 3 switch a case 1 { a := 1 } case 2 { a := 5 } a := 9}")); BOOST_CHECK(successAssemble("{ let a := 2 switch calldataload(0) case 1 { a := 1 } case 2 { a := 5 } }")); } BOOST_AUTO_TEST_CASE(large_constant) { auto source = R"({ switch mul(1, 2) case 0x0000000000000000000000000000000000000000000000000000000026121ff0 { } })"; BOOST_CHECK(successAssemble(source)); } BOOST_AUTO_TEST_CASE(keccak256) { BOOST_CHECK(successAssemble("{ 0 0 keccak256 pop }")); BOOST_CHECK(successAssemble("{ pop(keccak256(0, 0)) }")); BOOST_CHECK(successAssemble("{ 0 0 sha3 pop }")); BOOST_CHECK(successAssemble("{ pop(sha3(0, 0)) }")); } BOOST_AUTO_TEST_SUITE_END() BOOST_AUTO_TEST_SUITE_END() } } } // end namespaces