/*(
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
/**
* Optimisation stage that aggressively rematerializes certain variables ina a function to free
* space on the stack until it is compilable.
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace solidity;
using namespace solidity::yul;
namespace
{
/**
* Class that discovers all variables that can be fully eliminated by rematerialization,
* and the corresponding approximate costs.
*/
class RematCandidateSelector: public DataFlowAnalyzer
{
public:
explicit RematCandidateSelector(Dialect const& _dialect): DataFlowAnalyzer(_dialect) {}
/// @returns a map from rematerialisation costs to a vector of variables to rematerialise
/// and variables that occur in their expression.
/// While the map is sorted by cost, the contained vectors are sorted by the order of occurrence.
map>>> candidates()
{
map>>> cand;
for (auto const& candidate: m_candidates)
{
if (size_t const* cost = util::valueOrNullptr(m_expressionCodeCost, candidate))
{
size_t numRef = m_numReferences[candidate];
cand[*cost * numRef].emplace_back(candidate, m_references[candidate]);
}
}
return cand;
}
using DataFlowAnalyzer::operator();
void operator()(VariableDeclaration& _varDecl) override
{
DataFlowAnalyzer::operator()(_varDecl);
if (_varDecl.variables.size() == 1)
{
YulString varName = _varDecl.variables.front().name;
if (m_value.count(varName))
{
yulAssert(!m_expressionCodeCost.count(varName), "");
m_candidates.emplace_back(varName);
m_expressionCodeCost[varName] = CodeCost::codeCost(m_dialect, *m_value[varName].value);
}
}
}
void operator()(Assignment& _assignment) override
{
for (auto const& var: _assignment.variableNames)
rematImpossible(var.name);
DataFlowAnalyzer::operator()(_assignment);
}
// We use visit(Expression) because operator()(Identifier) would also
// get called on left-hand-sides of assignments.
void visit(Expression& _e) override
{
if (holds_alternative(_e))
{
YulString name = std::get(_e).name;
if (m_expressionCodeCost.count(name))
{
if (!m_value.count(name))
rematImpossible(name);
else
++m_numReferences[name];
}
}
DataFlowAnalyzer::visit(_e);
}
/// Remove the variable from the candidate set.
void rematImpossible(YulString _variable)
{
m_numReferences.erase(_variable);
m_expressionCodeCost.erase(_variable);
}
/// All candidate variables in order of occurrence.
vector m_candidates;
/// Candidate variables and the code cost of their value.
map m_expressionCodeCost;
/// Number of references to each candidate variable.
map m_numReferences;
};
/// Selects at most @a _numVariables among @a _candidates.
set chooseVarsToEliminate(
map>>> const& _candidates,
size_t _numVariables
)
{
set varsToEliminate;
for (auto&& [cost, candidates]: _candidates)
for (auto&& [candidate, references]: candidates)
{
if (varsToEliminate.size() >= _numVariables)
return varsToEliminate;
// If a variable we would like to eliminate references another one
// we already selected for elimination, then stop selecting
// candidates. If we would add that variable, then the cost calculation
// for the previous variable would be off. Furthermore, we
// do not skip the variable because it would be better to properly re-compute
// the costs of all other variables instead.
for (YulString const& referencedVar: references)
if (varsToEliminate.count(referencedVar))
return varsToEliminate;
varsToEliminate.insert(candidate);
}
return varsToEliminate;
}
template
void eliminateVariables(
Dialect const& _dialect,
ASTNode& _node,
size_t _numVariables,
bool _allowMSizeOptimization
)
{
RematCandidateSelector selector{_dialect};
selector(_node);
Rematerialiser::run(_dialect, _node, chooseVarsToEliminate(selector.candidates(), _numVariables));
UnusedPruner::runUntilStabilised(_dialect, _node, _allowMSizeOptimization);
}
void eliminateVariables(
Dialect const& _dialect,
Block& _block,
vector const& _unreachables,
bool _allowMSizeOptimization
)
{
RematCandidateSelector selector{_dialect};
selector(_block);
std::map candidates;
for (auto [cost, candidatesWithCost]: selector.candidates())
for (auto candidate: candidatesWithCost)
candidates[get<0>(candidate)] = cost;
set varsToEliminate;
// TODO: this currently ignores the fact that variables may reference other variables we want to eliminate.
for (auto const& unreachable: _unreachables)
{
map> suitableCandidates;
size_t neededSlots = unreachable.deficit;
for (auto varName: unreachable.variableChoices)
{
if (varsToEliminate.count(varName))
--neededSlots;
else if (size_t* cost = util::valueOrNullptr(candidates, varName))
if (!util::contains(suitableCandidates[*cost], varName))
suitableCandidates[*cost].emplace_back(varName);
}
for (auto candidatesByCost: suitableCandidates)
{
for (auto candidate: candidatesByCost.second)
if (neededSlots--)
varsToEliminate.emplace(candidate);
else
break;
if (!neededSlots)
break;
}
}
Rematerialiser::run(_dialect, _block, std::move(varsToEliminate), true);
UnusedPruner::runUntilStabilised(_dialect, _block, _allowMSizeOptimization);
}
}
bool StackCompressor::run(
Dialect const& _dialect,
Object& _object,
bool _optimizeStackAllocation,
size_t _maxIterations
)
{
yulAssert(
_object.code &&
_object.code->statements.size() > 0 && holds_alternative(_object.code->statements.at(0)),
"Need to run the function grouper before the stack compressor."
);
bool usesOptimizedCodeGenerator = false;
if (auto evmDialect = dynamic_cast(&_dialect))
usesOptimizedCodeGenerator =
_optimizeStackAllocation &&
evmDialect->evmVersion().canOverchargeGasForCall() &&
evmDialect->providesObjectAccess();
bool allowMSizeOptimzation = !MSizeFinder::containsMSize(_dialect, *_object.code);
if (usesOptimizedCodeGenerator)
{
yul::AsmAnalysisInfo analysisInfo = yul::AsmAnalyzer::analyzeStrictAssertCorrect(_dialect, _object);
unique_ptr cfg = ControlFlowGraphBuilder::build(analysisInfo, _dialect, *_object.code);
Block& mainBlock = std::get(_object.code->statements.at(0));
if (
auto stackTooDeepErrors = StackLayoutGenerator::reportStackTooDeep(*cfg, YulString{});
!stackTooDeepErrors.empty()
)
eliminateVariables(_dialect, mainBlock, stackTooDeepErrors, allowMSizeOptimzation);
for (size_t i = 1; i < _object.code->statements.size(); ++i)
{
auto& fun = std::get(_object.code->statements[i]);
if (
auto stackTooDeepErrors = StackLayoutGenerator::reportStackTooDeep(*cfg, fun.name);
!stackTooDeepErrors.empty()
)
eliminateVariables(_dialect, fun.body, stackTooDeepErrors, allowMSizeOptimzation);
}
}
else
for (size_t iterations = 0; iterations < _maxIterations; iterations++)
{
map stackSurplus = CompilabilityChecker(_dialect, _object, _optimizeStackAllocation).stackDeficit;
if (stackSurplus.empty())
return true;
if (stackSurplus.count(YulString{}))
{
yulAssert(stackSurplus.at({}) > 0, "Invalid surplus value.");
eliminateVariables(
_dialect,
std::get(_object.code->statements.at(0)),
static_cast(stackSurplus.at({})),
allowMSizeOptimzation
);
}
for (size_t i = 1; i < _object.code->statements.size(); ++i)
{
auto& fun = std::get(_object.code->statements[i]);
if (!stackSurplus.count(fun.name))
continue;
yulAssert(stackSurplus.at(fun.name) > 0, "Invalid surplus value.");
eliminateVariables(
_dialect,
fun,
static_cast(stackSurplus.at(fun.name)),
allowMSizeOptimzation
);
}
}
return false;
}