/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** * @author Christian * @date 2014 * Solidity compiler. */ #include #include #include #include #include #include #include #include #include using namespace std; using namespace dev; using namespace dev::solidity; /** * Simple helper class to ensure that the stack height is the same at certain places in the code. */ class StackHeightChecker { public: StackHeightChecker(CompilerContext const& _context): m_context(_context), stackHeight(m_context.stackHeight()) {} void check() { solAssert(m_context.stackHeight() == stackHeight, "I sense a disturbance in the stack."); } private: CompilerContext const& m_context; unsigned stackHeight; }; void Compiler::compileContract( ContractDefinition const& _contract, std::map const& _contracts ) { m_context = CompilerContext(); // clear it just in case { CompilerContext::LocationSetter locationSetterRunTime(m_context, _contract); initializeContext(_contract, _contracts); appendFunctionSelector(_contract); appendFunctionsWithoutCode(); } // Swap the runtime context with the creation-time context swap(m_context, m_runtimeContext); CompilerContext::LocationSetter locationSetterCreationTime(m_context, _contract); initializeContext(_contract, _contracts); packIntoContractCreator(_contract, m_runtimeContext); if (m_optimize) m_context.optimise(m_optimizeRuns); } void Compiler::compileClone( ContractDefinition const& _contract, map const& _contracts ) { m_context = CompilerContext(); // clear it just in case initializeContext(_contract, _contracts); appendInitAndConstructorCode(_contract); //@todo determine largest return size of all runtime functions eth::AssemblyItem runtimeSub = m_context.addSubroutine(cloneRuntime()); solAssert(runtimeSub.data() < numeric_limits::max(), ""); m_runtimeSub = size_t(runtimeSub.data()); // stack contains sub size m_context << eth::Instruction::DUP1 << runtimeSub << u256(0) << eth::Instruction::CODECOPY; m_context << u256(0) << eth::Instruction::RETURN; appendFunctionsWithoutCode(); if (m_optimize) m_context.optimise(m_optimizeRuns); } eth::AssemblyItem Compiler::functionEntryLabel(FunctionDefinition const& _function) const { return m_runtimeContext.functionEntryLabelIfExists(_function); } void Compiler::initializeContext( ContractDefinition const& _contract, map const& _compiledContracts ) { CompilerUtils(m_context).initialiseFreeMemoryPointer(); m_context.setCompiledContracts(_compiledContracts); m_context.setInheritanceHierarchy(_contract.linearizedBaseContracts()); registerStateVariables(_contract); m_context.resetVisitedNodes(&_contract); } void Compiler::appendInitAndConstructorCode(ContractDefinition const& _contract) { // Determine the arguments that are used for the base constructors. std::vector const& bases = _contract.linearizedBaseContracts(); for (ContractDefinition const* contract: bases) { if (FunctionDefinition const* constructor = contract->constructor()) for (auto const& modifier: constructor->modifiers()) { auto baseContract = dynamic_cast( &modifier->name()->referencedDeclaration()); if (baseContract) if (m_baseArguments.count(baseContract->constructor()) == 0) m_baseArguments[baseContract->constructor()] = &modifier->arguments(); } for (ASTPointer const& base: contract->baseContracts()) { ContractDefinition const* baseContract = dynamic_cast( &base->name()->referencedDeclaration()); solAssert(baseContract, ""); if (m_baseArguments.count(baseContract->constructor()) == 0) m_baseArguments[baseContract->constructor()] = &base->arguments(); } } // Initialization of state variables in base-to-derived order. for (ContractDefinition const* contract: boost::adaptors::reverse(bases)) initializeStateVariables(*contract); if (FunctionDefinition const* constructor = _contract.constructor()) appendConstructor(*constructor); else if (auto c = m_context.nextConstructor(_contract)) appendBaseConstructor(*c); } void Compiler::packIntoContractCreator(ContractDefinition const& _contract, CompilerContext const& _runtimeContext) { appendInitAndConstructorCode(_contract); eth::AssemblyItem runtimeSub = m_context.addSubroutine(_runtimeContext.assembly()); solAssert(runtimeSub.data() < numeric_limits::max(), ""); m_runtimeSub = size_t(runtimeSub.data()); // stack contains sub size m_context << eth::Instruction::DUP1 << runtimeSub << u256(0) << eth::Instruction::CODECOPY; m_context << u256(0) << eth::Instruction::RETURN; // note that we have to include the functions again because of absolute jump labels appendFunctionsWithoutCode(); } void Compiler::appendBaseConstructor(FunctionDefinition const& _constructor) { CompilerContext::LocationSetter locationSetter(m_context, _constructor); FunctionType constructorType(_constructor); if (!constructorType.parameterTypes().empty()) { solAssert(m_baseArguments.count(&_constructor), ""); std::vector> const* arguments = m_baseArguments[&_constructor]; solAssert(arguments, ""); for (unsigned i = 0; i < arguments->size(); ++i) compileExpression(*(arguments->at(i)), constructorType.parameterTypes()[i]); } _constructor.accept(*this); } void Compiler::appendConstructor(FunctionDefinition const& _constructor) { CompilerContext::LocationSetter locationSetter(m_context, _constructor); // copy constructor arguments from code to memory and then to stack, they are supplied after the actual program if (!_constructor.parameters().empty()) { unsigned argumentSize = 0; for (ASTPointer const& var: _constructor.parameters()) if (var->type()->isDynamicallySized()) { argumentSize = 0; break; } else argumentSize += var->type()->calldataEncodedSize(); CompilerUtils(m_context).fetchFreeMemoryPointer(); if (argumentSize == 0) { // argument size is dynamic, use CODESIZE to determine it m_context.appendProgramSize(); // program itself // CODESIZE is program plus manually added arguments m_context << eth::Instruction::CODESIZE << eth::Instruction::SUB; } else m_context << u256(argumentSize); // stack: m_context << eth::Instruction::DUP1; m_context.appendProgramSize(); m_context << eth::Instruction::DUP4 << eth::Instruction::CODECOPY; m_context << eth::Instruction::ADD; CompilerUtils(m_context).storeFreeMemoryPointer(); appendCalldataUnpacker( FunctionType(_constructor).parameterTypes(), true, CompilerUtils::freeMemoryPointer + 0x20 ); } _constructor.accept(*this); } void Compiler::appendFunctionSelector(ContractDefinition const& _contract) { map, FunctionTypePointer> interfaceFunctions = _contract.interfaceFunctions(); map, const eth::AssemblyItem> callDataUnpackerEntryPoints; FunctionDefinition const* fallback = _contract.fallbackFunction(); eth::AssemblyItem notFound = m_context.newTag(); // shortcut messages without data if we have many functions in order to be able to receive // ether with constant gas if (interfaceFunctions.size() > 5 || fallback) { m_context << eth::Instruction::CALLDATASIZE << eth::Instruction::ISZERO; m_context.appendConditionalJumpTo(notFound); } // retrieve the function signature hash from the calldata if (!interfaceFunctions.empty()) CompilerUtils(m_context).loadFromMemory(0, IntegerType(CompilerUtils::dataStartOffset * 8), true); // stack now is: 1 0 for (auto const& it: interfaceFunctions) { callDataUnpackerEntryPoints.insert(std::make_pair(it.first, m_context.newTag())); m_context << eth::dupInstruction(1) << u256(FixedHash<4>::Arith(it.first)) << eth::Instruction::EQ; m_context.appendConditionalJumpTo(callDataUnpackerEntryPoints.at(it.first)); } m_context.appendJumpTo(notFound); m_context << notFound; if (fallback) { eth::AssemblyItem returnTag = m_context.pushNewTag(); fallback->accept(*this); m_context << returnTag; appendReturnValuePacker(FunctionType(*fallback).returnParameterTypes()); } else m_context << eth::Instruction::STOP; // function not found for (auto const& it: interfaceFunctions) { FunctionTypePointer const& functionType = it.second; solAssert(functionType->hasDeclaration(), ""); CompilerContext::LocationSetter locationSetter(m_context, functionType->declaration()); m_context << callDataUnpackerEntryPoints.at(it.first); eth::AssemblyItem returnTag = m_context.pushNewTag(); appendCalldataUnpacker(functionType->parameterTypes()); m_context.appendJumpTo(m_context.functionEntryLabel(functionType->declaration())); m_context << returnTag; appendReturnValuePacker(functionType->returnParameterTypes()); } } void Compiler::appendCalldataUnpacker( TypePointers const& _typeParameters, bool _fromMemory, u256 _startOffset ) { // We do not check the calldata size, everything is zero-paddedd //@todo this does not yet support nested dynamic arrays if (_startOffset == u256(-1)) _startOffset = u256(CompilerUtils::dataStartOffset); m_context << _startOffset; for (TypePointer const& type: _typeParameters) { // stack: v1 v2 ... v(k-1) mem_offset switch (type->category()) { case Type::Category::Array: { auto const& arrayType = dynamic_cast(*type); solAssert(arrayType.location() != DataLocation::Storage, ""); solAssert(!arrayType.baseType()->isDynamicallySized(), "Nested arrays not yet implemented."); if (_fromMemory) { solAssert( arrayType.baseType()->isValueType(), "Nested memory arrays not yet implemented here." ); // @todo If base type is an array or struct, it is still calldata-style encoded, so // we would have to convert it like below. solAssert(arrayType.location() == DataLocation::Memory, ""); // compute data pointer m_context << eth::Instruction::DUP1 << eth::Instruction::MLOAD; //@todo once we support nested arrays, this offset needs to be dynamic. m_context << _startOffset << eth::Instruction::ADD; m_context << eth::Instruction::SWAP1 << u256(0x20) << eth::Instruction::ADD; } else { // first load from calldata and potentially convert to memory if arrayType is memory TypePointer calldataType = arrayType.copyForLocation(DataLocation::CallData, false); if (calldataType->isDynamicallySized()) { // put on stack: data_pointer length CompilerUtils(m_context).loadFromMemoryDynamic(IntegerType(256), !_fromMemory); // stack: data_offset next_pointer //@todo once we support nested arrays, this offset needs to be dynamic. m_context << eth::Instruction::SWAP1 << _startOffset << eth::Instruction::ADD; // stack: next_pointer data_pointer // retrieve length CompilerUtils(m_context).loadFromMemoryDynamic(IntegerType(256), !_fromMemory, true); // stack: next_pointer length data_pointer m_context << eth::Instruction::SWAP2; } else { // leave the pointer on the stack m_context << eth::Instruction::DUP1; m_context << u256(calldataType->calldataEncodedSize()) << eth::Instruction::ADD; } if (arrayType.location() == DataLocation::Memory) { // stack: calldata_ref [length] next_calldata // copy to memory // move calldata type up again CompilerUtils(m_context).moveIntoStack(calldataType->sizeOnStack()); CompilerUtils(m_context).convertType(*calldataType, arrayType); // fetch next pointer again CompilerUtils(m_context).moveToStackTop(arrayType.sizeOnStack()); } } break; } default: solAssert(!type->isDynamicallySized(), "Unknown dynamically sized type: " + type->toString()); CompilerUtils(m_context).loadFromMemoryDynamic(*type, !_fromMemory, true); } } m_context << eth::Instruction::POP; } void Compiler::appendReturnValuePacker(TypePointers const& _typeParameters) { CompilerUtils utils(m_context); if (_typeParameters.empty()) m_context << eth::Instruction::STOP; else { utils.fetchFreeMemoryPointer(); //@todo optimization: if we return a single memory array, there should be enough space before // its data to add the needed parts and we avoid a memory copy. utils.encodeToMemory(_typeParameters, _typeParameters); utils.toSizeAfterFreeMemoryPointer(); m_context << eth::Instruction::RETURN; } } void Compiler::registerStateVariables(ContractDefinition const& _contract) { for (auto const& var: ContractType(_contract).stateVariables()) m_context.addStateVariable(*get<0>(var), get<1>(var), get<2>(var)); } void Compiler::initializeStateVariables(ContractDefinition const& _contract) { for (ASTPointer const& variable: _contract.stateVariables()) if (variable->value() && !variable->isConstant()) ExpressionCompiler(m_context, m_optimize).appendStateVariableInitialization(*variable); } bool Compiler::visit(VariableDeclaration const& _variableDeclaration) { solAssert(_variableDeclaration.isStateVariable(), "Compiler visit to non-state variable declaration."); CompilerContext::LocationSetter locationSetter(m_context, _variableDeclaration); m_context.startFunction(_variableDeclaration); m_breakTags.clear(); m_continueTags.clear(); if (_variableDeclaration.isConstant()) ExpressionCompiler(m_context, m_optimize).appendConstStateVariableAccessor(_variableDeclaration); else ExpressionCompiler(m_context, m_optimize).appendStateVariableAccessor(_variableDeclaration); return false; } bool Compiler::visit(FunctionDefinition const& _function) { CompilerContext::LocationSetter locationSetter(m_context, _function); m_context.startFunction(_function); // stack upon entry: [return address] [arg0] [arg1] ... [argn] // reserve additional slots: [retarg0] ... [retargm] [localvar0] ... [localvarp] unsigned parametersSize = CompilerUtils::sizeOnStack(_function.parameters()); if (!_function.isConstructor()) // adding 1 for return address. m_context.adjustStackOffset(parametersSize + 1); for (ASTPointer const& variable: _function.parameters()) { m_context.addVariable(*variable, parametersSize); parametersSize -= variable->type()->sizeOnStack(); } for (ASTPointer const& variable: _function.returnParameters()) appendStackVariableInitialisation(*variable); for (VariableDeclaration const* localVariable: _function.localVariables()) appendStackVariableInitialisation(*localVariable); if (_function.isConstructor()) if (auto c = m_context.nextConstructor(dynamic_cast(*_function.scope()))) appendBaseConstructor(*c); m_returnTag = m_context.newTag(); m_breakTags.clear(); m_continueTags.clear(); m_stackCleanupForReturn = 0; m_currentFunction = &_function; m_modifierDepth = 0; appendModifierOrFunctionCode(); m_context << m_returnTag; // Now we need to re-shuffle the stack. For this we keep a record of the stack layout // that shows the target positions of the elements, where "-1" denotes that this element needs // to be removed from the stack. // Note that the fact that the return arguments are of increasing index is vital for this // algorithm to work. unsigned const c_argumentsSize = CompilerUtils::sizeOnStack(_function.parameters()); unsigned const c_returnValuesSize = CompilerUtils::sizeOnStack(_function.returnParameters()); unsigned const c_localVariablesSize = CompilerUtils::sizeOnStack(_function.localVariables()); vector stackLayout; stackLayout.push_back(c_returnValuesSize); // target of return address stackLayout += vector(c_argumentsSize, -1); // discard all arguments for (unsigned i = 0; i < c_returnValuesSize; ++i) stackLayout.push_back(i); stackLayout += vector(c_localVariablesSize, -1); solAssert(stackLayout.size() <= 17, "Stack too deep, try removing local variables."); while (stackLayout.back() != int(stackLayout.size() - 1)) if (stackLayout.back() < 0) { m_context << eth::Instruction::POP; stackLayout.pop_back(); } else { m_context << eth::swapInstruction(stackLayout.size() - stackLayout.back() - 1); swap(stackLayout[stackLayout.back()], stackLayout.back()); } //@todo assert that everything is in place now for (ASTPointer const& variable: _function.parameters() + _function.returnParameters()) m_context.removeVariable(*variable); for (VariableDeclaration const* localVariable: _function.localVariables()) m_context.removeVariable(*localVariable); m_context.adjustStackOffset(-(int)c_returnValuesSize); if (!_function.isConstructor()) m_context.appendJump(eth::AssemblyItem::JumpType::OutOfFunction); return false; } bool Compiler::visit(IfStatement const& _ifStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _ifStatement); compileExpression(_ifStatement.condition()); m_context << eth::Instruction::ISZERO; eth::AssemblyItem falseTag = m_context.appendConditionalJump(); eth::AssemblyItem endTag = falseTag; _ifStatement.trueStatement().accept(*this); if (_ifStatement.falseStatement()) { endTag = m_context.appendJumpToNew(); m_context << falseTag; _ifStatement.falseStatement()->accept(*this); } m_context << endTag; checker.check(); return false; } bool Compiler::visit(WhileStatement const& _whileStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _whileStatement); eth::AssemblyItem loopStart = m_context.newTag(); eth::AssemblyItem loopEnd = m_context.newTag(); m_continueTags.push_back(loopStart); m_breakTags.push_back(loopEnd); m_context << loopStart; compileExpression(_whileStatement.condition()); m_context << eth::Instruction::ISZERO; m_context.appendConditionalJumpTo(loopEnd); _whileStatement.body().accept(*this); m_context.appendJumpTo(loopStart); m_context << loopEnd; m_continueTags.pop_back(); m_breakTags.pop_back(); checker.check(); return false; } bool Compiler::visit(ForStatement const& _forStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _forStatement); eth::AssemblyItem loopStart = m_context.newTag(); eth::AssemblyItem loopEnd = m_context.newTag(); eth::AssemblyItem loopNext = m_context.newTag(); m_continueTags.push_back(loopNext); m_breakTags.push_back(loopEnd); if (_forStatement.initializationExpression()) _forStatement.initializationExpression()->accept(*this); m_context << loopStart; // if there is no terminating condition in for, default is to always be true if (_forStatement.condition()) { compileExpression(*_forStatement.condition()); m_context << eth::Instruction::ISZERO; m_context.appendConditionalJumpTo(loopEnd); } _forStatement.body().accept(*this); m_context << loopNext; // for's loop expression if existing if (_forStatement.loopExpression()) _forStatement.loopExpression()->accept(*this); m_context.appendJumpTo(loopStart); m_context << loopEnd; m_continueTags.pop_back(); m_breakTags.pop_back(); checker.check(); return false; } bool Compiler::visit(Continue const& _continueStatement) { CompilerContext::LocationSetter locationSetter(m_context, _continueStatement); if (!m_continueTags.empty()) m_context.appendJumpTo(m_continueTags.back()); return false; } bool Compiler::visit(Break const& _breakStatement) { CompilerContext::LocationSetter locationSetter(m_context, _breakStatement); if (!m_breakTags.empty()) m_context.appendJumpTo(m_breakTags.back()); return false; } bool Compiler::visit(Return const& _return) { CompilerContext::LocationSetter locationSetter(m_context, _return); //@todo modifications are needed to make this work with functions returning multiple values if (Expression const* expression = _return.expression()) { solAssert(_return.functionReturnParameters(), "Invalid return parameters pointer."); VariableDeclaration const& firstVariable = *_return.functionReturnParameters()->parameters().front(); compileExpression(*expression, firstVariable.type()); CompilerUtils(m_context).moveToStackVariable(firstVariable); } for (unsigned i = 0; i < m_stackCleanupForReturn; ++i) m_context << eth::Instruction::POP; m_context.appendJumpTo(m_returnTag); m_context.adjustStackOffset(m_stackCleanupForReturn); return false; } bool Compiler::visit(Throw const& _throw) { CompilerContext::LocationSetter locationSetter(m_context, _throw); m_context.appendJumpTo(m_context.errorTag()); return false; } bool Compiler::visit(VariableDeclarationStatement const& _variableDeclarationStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _variableDeclarationStatement); if (Expression const* expression = _variableDeclarationStatement.expression()) { compileExpression(*expression, _variableDeclarationStatement.declaration().type()); CompilerUtils(m_context).moveToStackVariable(_variableDeclarationStatement.declaration()); } checker.check(); return false; } bool Compiler::visit(ExpressionStatement const& _expressionStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _expressionStatement); Expression const& expression = _expressionStatement.expression(); compileExpression(expression); CompilerUtils(m_context).popStackElement(*expression.type()); checker.check(); return false; } bool Compiler::visit(PlaceholderStatement const& _placeholderStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _placeholderStatement); ++m_modifierDepth; appendModifierOrFunctionCode(); --m_modifierDepth; checker.check(); return true; } void Compiler::appendFunctionsWithoutCode() { set functions = m_context.functionsWithoutCode(); while (!functions.empty()) { for (Declaration const* function: functions) { m_context.setStackOffset(0); function->accept(*this); } functions = m_context.functionsWithoutCode(); } } void Compiler::appendModifierOrFunctionCode() { solAssert(m_currentFunction, ""); if (m_modifierDepth >= m_currentFunction->modifiers().size()) m_currentFunction->body().accept(*this); else { ASTPointer const& modifierInvocation = m_currentFunction->modifiers()[m_modifierDepth]; // constructor call should be excluded if (dynamic_cast(&modifierInvocation->name()->referencedDeclaration())) { ++m_modifierDepth; appendModifierOrFunctionCode(); --m_modifierDepth; return; } ModifierDefinition const& modifier = m_context.functionModifier(modifierInvocation->name()->name()); CompilerContext::LocationSetter locationSetter(m_context, modifier); solAssert(modifier.parameters().size() == modifierInvocation->arguments().size(), ""); for (unsigned i = 0; i < modifier.parameters().size(); ++i) { m_context.addVariable(*modifier.parameters()[i]); compileExpression( *modifierInvocation->arguments()[i], modifier.parameters()[i]->type() ); } for (VariableDeclaration const* localVariable: modifier.localVariables()) appendStackVariableInitialisation(*localVariable); unsigned const c_stackSurplus = CompilerUtils::sizeOnStack(modifier.parameters()) + CompilerUtils::sizeOnStack(modifier.localVariables()); m_stackCleanupForReturn += c_stackSurplus; modifier.body().accept(*this); for (unsigned i = 0; i < c_stackSurplus; ++i) m_context << eth::Instruction::POP; m_stackCleanupForReturn -= c_stackSurplus; } } void Compiler::appendStackVariableInitialisation(VariableDeclaration const& _variable) { CompilerContext::LocationSetter location(m_context, _variable); m_context.addVariable(_variable); CompilerUtils(m_context).pushZeroValue(*_variable.type()); } void Compiler::compileExpression(Expression const& _expression, TypePointer const& _targetType) { ExpressionCompiler expressionCompiler(m_context, m_optimize); expressionCompiler.compile(_expression); if (_targetType) CompilerUtils(m_context).convertType(*_expression.type(), *_targetType); } eth::Assembly Compiler::cloneRuntime() { eth::Assembly a; a << eth::Instruction::CALLDATASIZE; a << u256(0) << eth::Instruction::DUP1 << eth::Instruction::CALLDATACOPY; //@todo adjust for larger return values, make this dynamic. a << u256(0x20) << u256(0) << eth::Instruction::CALLDATASIZE; // unfortunately, we have to send the value again, so that CALLVALUE returns the correct value // in the callcoded contract. a << u256(0) << eth::Instruction::CALLVALUE; // this is the address which has to be substituted by the linker. //@todo implement as special "marker" AssemblyItem. a << u256("0xcafecafecafecafecafecafecafecafecafecafe"); a << u256(eth::c_callGas + eth::c_callValueTransferGas + 10) << eth::Instruction::GAS << eth::Instruction::SUB; a << eth::Instruction::CALLCODE; //Propagate error condition (if CALLCODE pushes 0 on stack). a << eth::Instruction::ISZERO; a.appendJumpI(a.errorTag()); //@todo adjust for larger return values, make this dynamic. a << u256(0x20) << u256(0) << eth::Instruction::RETURN; return a; }