/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
#include
#ifdef HAVE_Z3
#include
#elif HAVE_CVC4
#include
#else
#include
#endif
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace dev;
using namespace dev::solidity;
SMTChecker::SMTChecker(ErrorReporter& _errorReporter, ReadCallback::Callback const& _readFileCallback):
#ifdef HAVE_Z3
m_interface(make_shared()),
#elif HAVE_CVC4
m_interface(make_shared()),
#else
m_interface(make_shared(_readFileCallback)),
#endif
m_errorReporter(_errorReporter)
{
(void)_readFileCallback;
}
void SMTChecker::analyze(SourceUnit const& _source)
{
m_variableUsage = make_shared(_source);
if (_source.annotation().experimentalFeatures.count(ExperimentalFeature::SMTChecker))
_source.accept(*this);
}
bool SMTChecker::visit(ContractDefinition const& _contract)
{
for (auto _var : _contract.stateVariables())
if (_var->type()->isValueType())
createVariable(*_var);
return true;
}
void SMTChecker::endVisit(ContractDefinition const&)
{
m_stateVariables.clear();
}
void SMTChecker::endVisit(VariableDeclaration const& _varDecl)
{
if (_varDecl.isLocalVariable() && _varDecl.type()->isValueType() &&_varDecl.value())
assignment(_varDecl, *_varDecl.value(), _varDecl.location());
}
bool SMTChecker::visit(FunctionDefinition const& _function)
{
if (!_function.modifiers().empty() || _function.isConstructor())
m_errorReporter.warning(
_function.location(),
"Assertion checker does not yet support constructors and functions with modifiers."
);
m_currentFunction = &_function;
m_interface->reset();
m_variables.clear();
m_variables.insert(m_stateVariables.begin(), m_stateVariables.end());
m_pathConditions.clear();
m_loopExecutionHappened = false;
initializeLocalVariables(_function);
resetStateVariables();
return true;
}
void SMTChecker::endVisit(FunctionDefinition const&)
{
// TOOD we could check for "reachability", i.e. satisfiability here.
// We only handle local variables, so we clear at the beginning of the function.
// If we add storage variables, those should be cleared differently.
m_currentFunction = nullptr;
}
bool SMTChecker::visit(IfStatement const& _node)
{
_node.condition().accept(*this);
checkBooleanNotConstant(_node.condition(), "Condition is always $VALUE.");
auto countersEndTrue = visitBranch(_node.trueStatement(), expr(_node.condition()));
vector touchedVariables = m_variableUsage->touchedVariables(_node.trueStatement());
decltype(countersEndTrue) countersEndFalse;
if (_node.falseStatement())
{
countersEndFalse = visitBranch(*_node.falseStatement(), !expr(_node.condition()));
touchedVariables += m_variableUsage->touchedVariables(*_node.falseStatement());
}
else
{
countersEndFalse = m_variables;
}
mergeVariables(touchedVariables, expr(_node.condition()), countersEndTrue, countersEndFalse);
return false;
}
bool SMTChecker::visit(WhileStatement const& _node)
{
auto touchedVariables = m_variableUsage->touchedVariables(_node);
resetVariables(touchedVariables);
if (_node.isDoWhile())
{
visitBranch(_node.body());
// TODO the assertions generated in the body should still be active in the condition
_node.condition().accept(*this);
checkBooleanNotConstant(_node.condition(), "Do-while loop condition is always $VALUE.");
}
else
{
_node.condition().accept(*this);
checkBooleanNotConstant(_node.condition(), "While loop condition is always $VALUE.");
visitBranch(_node.body(), expr(_node.condition()));
}
m_loopExecutionHappened = true;
resetVariables(touchedVariables);
return false;
}
bool SMTChecker::visit(ForStatement const& _node)
{
if (_node.initializationExpression())
_node.initializationExpression()->accept(*this);
// Do not reset the init expression part.
auto touchedVariables =
m_variableUsage->touchedVariables(_node.body());
if (_node.condition())
touchedVariables += m_variableUsage->touchedVariables(*_node.condition());
if (_node.loopExpression())
touchedVariables += m_variableUsage->touchedVariables(*_node.loopExpression());
// Remove duplicates
std::sort(touchedVariables.begin(), touchedVariables.end());
touchedVariables.erase(std::unique(touchedVariables.begin(), touchedVariables.end()), touchedVariables.end());
resetVariables(touchedVariables);
if (_node.condition())
{
_node.condition()->accept(*this);
checkBooleanNotConstant(*_node.condition(), "For loop condition is always $VALUE.");
}
VariableSequenceCounters sequenceCountersStart = m_variables;
m_interface->push();
if (_node.condition())
m_interface->addAssertion(expr(*_node.condition()));
_node.body().accept(*this);
if (_node.loopExpression())
_node.loopExpression()->accept(*this);
m_interface->pop();
m_loopExecutionHappened = true;
std::swap(sequenceCountersStart, m_variables);
resetVariables(touchedVariables);
return false;
}
void SMTChecker::endVisit(VariableDeclarationStatement const& _varDecl)
{
if (_varDecl.declarations().size() != 1)
m_errorReporter.warning(
_varDecl.location(),
"Assertion checker does not yet support such variable declarations."
);
else if (knownVariable(*_varDecl.declarations()[0]))
{
if (_varDecl.initialValue())
assignment(*_varDecl.declarations()[0], *_varDecl.initialValue(), _varDecl.location());
}
else
m_errorReporter.warning(
_varDecl.location(),
"Assertion checker does not yet implement such variable declarations."
);
}
void SMTChecker::endVisit(ExpressionStatement const&)
{
}
void SMTChecker::endVisit(Assignment const& _assignment)
{
if (_assignment.assignmentOperator() != Token::Value::Assign)
m_errorReporter.warning(
_assignment.location(),
"Assertion checker does not yet implement compound assignment."
);
else if (!SSAVariable::isSupportedType(_assignment.annotation().type->category()))
m_errorReporter.warning(
_assignment.location(),
"Assertion checker does not yet implement type " + _assignment.annotation().type->toString()
);
else if (Identifier const* identifier = dynamic_cast(&_assignment.leftHandSide()))
{
Declaration const* decl = identifier->annotation().referencedDeclaration;
if (knownVariable(*decl))
{
assignment(*decl, _assignment.rightHandSide(), _assignment.location());
defineExpr(_assignment, expr(_assignment.rightHandSide()));
}
else
m_errorReporter.warning(
_assignment.location(),
"Assertion checker does not yet implement such assignments."
);
}
else
m_errorReporter.warning(
_assignment.location(),
"Assertion checker does not yet implement such assignments."
);
}
void SMTChecker::endVisit(TupleExpression const& _tuple)
{
if (_tuple.isInlineArray() || _tuple.components().size() != 1)
m_errorReporter.warning(
_tuple.location(),
"Assertion checker does not yet implement tules and inline arrays."
);
else
defineExpr(_tuple, expr(*_tuple.components()[0]));
}
void SMTChecker::checkUnderOverflow(smt::Expression _value, IntegerType const& _type, SourceLocation const& _location)
{
checkCondition(
_value < SymbolicIntVariable::minValue(_type),
_location,
"Underflow (resulting value less than " + formatNumber(_type.minValue()) + ")",
"value",
&_value
);
checkCondition(
_value > SymbolicIntVariable::maxValue(_type),
_location,
"Overflow (resulting value larger than " + formatNumber(_type.maxValue()) + ")",
"value",
&_value
);
}
void SMTChecker::endVisit(UnaryOperation const& _op)
{
switch (_op.getOperator())
{
case Token::Not: // !
{
solAssert(SSAVariable::isBool(_op.annotation().type->category()), "");
defineExpr(_op, !expr(_op.subExpression()));
break;
}
case Token::Inc: // ++ (pre- or postfix)
case Token::Dec: // -- (pre- or postfix)
{
solAssert(SSAVariable::isInteger(_op.annotation().type->category()), "");
solAssert(_op.subExpression().annotation().lValueRequested, "");
if (Identifier const* identifier = dynamic_cast(&_op.subExpression()))
{
Declaration const* decl = identifier->annotation().referencedDeclaration;
if (knownVariable(*decl))
{
auto innerValue = currentValue(*decl);
auto newValue = _op.getOperator() == Token::Inc ? innerValue + 1 : innerValue - 1;
assignment(*decl, newValue, _op.location());
defineExpr(_op, _op.isPrefixOperation() ? newValue : innerValue);
}
else
m_errorReporter.warning(
_op.location(),
"Assertion checker does not yet implement such assignments."
);
}
else
m_errorReporter.warning(
_op.location(),
"Assertion checker does not yet implement such increments / decrements."
);
break;
}
case Token::Add: // +
defineExpr(_op, expr(_op.subExpression()));
break;
case Token::Sub: // -
{
defineExpr(_op, 0 - expr(_op.subExpression()));
if (auto intType = dynamic_cast(_op.annotation().type.get()))
checkUnderOverflow(expr(_op), *intType, _op.location());
break;
}
default:
m_errorReporter.warning(
_op.location(),
"Assertion checker does not yet implement this operator."
);
}
}
void SMTChecker::endVisit(BinaryOperation const& _op)
{
if (Token::isArithmeticOp(_op.getOperator()))
arithmeticOperation(_op);
else if (Token::isCompareOp(_op.getOperator()))
compareOperation(_op);
else if (Token::isBooleanOp(_op.getOperator()))
booleanOperation(_op);
else
m_errorReporter.warning(
_op.location(),
"Assertion checker does not yet implement this operator."
);
}
void SMTChecker::endVisit(FunctionCall const& _funCall)
{
solAssert(_funCall.annotation().kind != FunctionCallKind::Unset, "");
if (_funCall.annotation().kind != FunctionCallKind::FunctionCall)
{
m_errorReporter.warning(
_funCall.location(),
"Assertion checker does not yet implement this expression."
);
return;
}
FunctionType const& funType = dynamic_cast(*_funCall.expression().annotation().type);
std::vector> const args = _funCall.arguments();
if (funType.kind() == FunctionType::Kind::Assert)
{
solAssert(args.size() == 1, "");
solAssert(args[0]->annotation().type->category() == Type::Category::Bool, "");
checkCondition(!(expr(*args[0])), _funCall.location(), "Assertion violation");
addPathImpliedExpression(expr(*args[0]));
}
else if (funType.kind() == FunctionType::Kind::Require)
{
solAssert(args.size() == 1, "");
solAssert(args[0]->annotation().type->category() == Type::Category::Bool, "");
checkBooleanNotConstant(*args[0], "Condition is always $VALUE.");
addPathImpliedExpression(expr(*args[0]));
}
}
void SMTChecker::endVisit(Identifier const& _identifier)
{
Declaration const* decl = _identifier.annotation().referencedDeclaration;
solAssert(decl, "");
if (_identifier.annotation().lValueRequested)
{
// Will be translated as part of the node that requested the lvalue.
}
else if (SSAVariable::isSupportedType(_identifier.annotation().type->category()))
defineExpr(_identifier, currentValue(*decl));
else if (FunctionType const* fun = dynamic_cast(_identifier.annotation().type.get()))
{
if (fun->kind() == FunctionType::Kind::Assert || fun->kind() == FunctionType::Kind::Require)
return;
}
}
void SMTChecker::endVisit(Literal const& _literal)
{
Type const& type = *_literal.annotation().type;
if (type.category() == Type::Category::Integer || type.category() == Type::Category::RationalNumber)
{
if (RationalNumberType const* rational = dynamic_cast(&type))
solAssert(!rational->isFractional(), "");
defineExpr(_literal, smt::Expression(type.literalValue(&_literal)));
}
else if (type.category() == Type::Category::Bool)
defineExpr(_literal, smt::Expression(_literal.token() == Token::TrueLiteral ? true : false));
else
m_errorReporter.warning(
_literal.location(),
"Assertion checker does not yet support the type of this literal (" +
_literal.annotation().type->toString() +
")."
);
}
void SMTChecker::arithmeticOperation(BinaryOperation const& _op)
{
switch (_op.getOperator())
{
case Token::Add:
case Token::Sub:
case Token::Mul:
case Token::Div:
{
solAssert(_op.annotation().commonType, "");
solAssert(_op.annotation().commonType->category() == Type::Category::Integer, "");
auto const& intType = dynamic_cast(*_op.annotation().commonType);
smt::Expression left(expr(_op.leftExpression()));
smt::Expression right(expr(_op.rightExpression()));
Token::Value op = _op.getOperator();
smt::Expression value(
op == Token::Add ? left + right :
op == Token::Sub ? left - right :
op == Token::Div ? division(left, right, intType) :
/*op == Token::Mul*/ left * right
);
if (_op.getOperator() == Token::Div)
{
checkCondition(right == 0, _op.location(), "Division by zero", "value", &right);
m_interface->addAssertion(right != 0);
}
checkUnderOverflow(value, intType, _op.location());
defineExpr(_op, value);
break;
}
default:
m_errorReporter.warning(
_op.location(),
"Assertion checker does not yet implement this operator."
);
}
}
void SMTChecker::compareOperation(BinaryOperation const& _op)
{
solAssert(_op.annotation().commonType, "");
if (SSAVariable::isSupportedType(_op.annotation().commonType->category()))
{
smt::Expression left(expr(_op.leftExpression()));
smt::Expression right(expr(_op.rightExpression()));
Token::Value op = _op.getOperator();
shared_ptr value;
if (SSAVariable::isInteger(_op.annotation().commonType->category()))
{
value = make_shared(
op == Token::Equal ? (left == right) :
op == Token::NotEqual ? (left != right) :
op == Token::LessThan ? (left < right) :
op == Token::LessThanOrEqual ? (left <= right) :
op == Token::GreaterThan ? (left > right) :
/*op == Token::GreaterThanOrEqual*/ (left >= right)
);
}
else // Bool
{
solUnimplementedAssert(SSAVariable::isBool(_op.annotation().commonType->category()), "Operation not yet supported");
value = make_shared(
op == Token::Equal ? (left == right) :
/*op == Token::NotEqual*/ (left != right)
);
}
// TODO: check that other values for op are not possible.
defineExpr(_op, *value);
}
else
m_errorReporter.warning(
_op.location(),
"Assertion checker does not yet implement the type " + _op.annotation().commonType->toString() + " for comparisons"
);
}
void SMTChecker::booleanOperation(BinaryOperation const& _op)
{
solAssert(_op.getOperator() == Token::And || _op.getOperator() == Token::Or, "");
solAssert(_op.annotation().commonType, "");
if (_op.annotation().commonType->category() == Type::Category::Bool)
{
// @TODO check that both of them are not constant
if (_op.getOperator() == Token::And)
defineExpr(_op, expr(_op.leftExpression()) && expr(_op.rightExpression()));
else
defineExpr(_op, expr(_op.leftExpression()) || expr(_op.rightExpression()));
}
else
m_errorReporter.warning(
_op.location(),
"Assertion checker does not yet implement the type " + _op.annotation().commonType->toString() + " for boolean operations"
);
}
smt::Expression SMTChecker::division(smt::Expression _left, smt::Expression _right, IntegerType const& _type)
{
// Signed division in SMTLIB2 rounds differently for negative division.
if (_type.isSigned())
return (smt::Expression::ite(
_left >= 0,
smt::Expression::ite(_right >= 0, _left / _right, 0 - (_left / (0 - _right))),
smt::Expression::ite(_right >= 0, 0 - ((0 - _left) / _right), (0 - _left) / (0 - _right))
));
else
return _left / _right;
}
void SMTChecker::assignment(Declaration const& _variable, Expression const& _value, SourceLocation const& _location)
{
assignment(_variable, expr(_value), _location);
}
void SMTChecker::assignment(Declaration const& _variable, smt::Expression const& _value, SourceLocation const& _location)
{
TypePointer type = _variable.type();
if (auto const* intType = dynamic_cast(type.get()))
checkUnderOverflow(_value, *intType, _location);
m_interface->addAssertion(newValue(_variable) == _value);
}
SMTChecker::VariableSequenceCounters SMTChecker::visitBranch(Statement const& _statement, smt::Expression _condition)
{
return visitBranch(_statement, &_condition);
}
SMTChecker::VariableSequenceCounters SMTChecker::visitBranch(Statement const& _statement, smt::Expression const* _condition)
{
VariableSequenceCounters beforeVars = m_variables;
if (_condition)
pushPathCondition(*_condition);
_statement.accept(*this);
if (_condition)
popPathCondition();
std::swap(m_variables, beforeVars);
return beforeVars;
}
void SMTChecker::checkCondition(
smt::Expression _condition,
SourceLocation const& _location,
string const& _description,
string const& _additionalValueName,
smt::Expression* _additionalValue
)
{
m_interface->push();
addPathConjoinedExpression(_condition);
vector expressionsToEvaluate;
vector expressionNames;
if (m_currentFunction)
{
if (_additionalValue)
{
expressionsToEvaluate.emplace_back(*_additionalValue);
expressionNames.push_back(_additionalValueName);
}
for (auto const& param: m_currentFunction->parameters())
if (knownVariable(*param))
{
expressionsToEvaluate.emplace_back(currentValue(*param));
expressionNames.push_back(param->name());
}
for (auto const& var: m_currentFunction->localVariables())
if (knownVariable(*var))
{
expressionsToEvaluate.emplace_back(currentValue(*var));
expressionNames.push_back(var->name());
}
for (auto const& var: m_stateVariables)
if (knownVariable(*var.first))
{
expressionsToEvaluate.emplace_back(currentValue(*var.first));
expressionNames.push_back(var.first->name());
}
}
smt::CheckResult result;
vector values;
tie(result, values) = checkSatisfiableAndGenerateModel(expressionsToEvaluate);
string loopComment;
if (m_loopExecutionHappened)
loopComment =
"\nNote that some information is erased after the execution of loops.\n"
"You can re-introduce information using require().";
switch (result)
{
case smt::CheckResult::SATISFIABLE:
{
std::ostringstream message;
message << _description << " happens here";
if (m_currentFunction)
{
message << " for:\n";
solAssert(values.size() == expressionNames.size(), "");
for (size_t i = 0; i < values.size(); ++i)
if (expressionsToEvaluate.at(i).name != values.at(i))
message << " " << expressionNames.at(i) << " = " << values.at(i) << "\n";
}
else
message << ".";
m_errorReporter.warning(_location, message.str() + loopComment);
break;
}
case smt::CheckResult::UNSATISFIABLE:
break;
case smt::CheckResult::UNKNOWN:
m_errorReporter.warning(_location, _description + " might happen here." + loopComment);
break;
case smt::CheckResult::ERROR:
m_errorReporter.warning(_location, "Error trying to invoke SMT solver.");
break;
default:
solAssert(false, "");
}
m_interface->pop();
}
void SMTChecker::checkBooleanNotConstant(Expression const& _condition, string const& _description)
{
// Do not check for const-ness if this is a constant.
if (dynamic_cast(&_condition))
return;
m_interface->push();
addPathConjoinedExpression(expr(_condition));
auto positiveResult = checkSatisfiable();
m_interface->pop();
m_interface->push();
addPathConjoinedExpression(!expr(_condition));
auto negatedResult = checkSatisfiable();
m_interface->pop();
if (positiveResult == smt::CheckResult::ERROR || negatedResult == smt::CheckResult::ERROR)
m_errorReporter.warning(_condition.location(), "Error trying to invoke SMT solver.");
else if (positiveResult == smt::CheckResult::SATISFIABLE && negatedResult == smt::CheckResult::SATISFIABLE)
{
// everything fine.
}
else if (positiveResult == smt::CheckResult::UNSATISFIABLE && negatedResult == smt::CheckResult::UNSATISFIABLE)
m_errorReporter.warning(_condition.location(), "Condition unreachable.");
else
{
string value;
if (positiveResult == smt::CheckResult::SATISFIABLE)
{
solAssert(negatedResult == smt::CheckResult::UNSATISFIABLE, "");
value = "true";
}
else
{
solAssert(positiveResult == smt::CheckResult::UNSATISFIABLE, "");
solAssert(negatedResult == smt::CheckResult::SATISFIABLE, "");
value = "false";
}
m_errorReporter.warning(_condition.location(), boost::algorithm::replace_all_copy(_description, "$VALUE", value));
}
}
pair>
SMTChecker::checkSatisfiableAndGenerateModel(vector const& _expressionsToEvaluate)
{
smt::CheckResult result;
vector values;
try
{
tie(result, values) = m_interface->check(_expressionsToEvaluate);
}
catch (smt::SolverError const& _e)
{
string description("Error querying SMT solver");
if (_e.comment())
description += ": " + *_e.comment();
m_errorReporter.warning(description);
result = smt::CheckResult::ERROR;
}
for (string& value: values)
{
try
{
// Parse and re-format nicely
value = formatNumber(bigint(value));
}
catch (...) { }
}
return make_pair(result, values);
}
smt::CheckResult SMTChecker::checkSatisfiable()
{
return checkSatisfiableAndGenerateModel({}).first;
}
void SMTChecker::initializeLocalVariables(FunctionDefinition const& _function)
{
for (auto const& variable: _function.localVariables())
if (createVariable(*variable))
setZeroValue(*variable);
for (auto const& param: _function.parameters())
if (createVariable(*param))
setUnknownValue(*param);
if (_function.returnParameterList())
for (auto const& retParam: _function.returnParameters())
if (createVariable(*retParam))
setZeroValue(*retParam);
}
void SMTChecker::resetStateVariables()
{
for (auto const& variable: m_stateVariables)
{
newValue(*variable.first);
setUnknownValue(*variable.first);
}
}
void SMTChecker::resetVariables(vector _variables)
{
for (auto const* decl: _variables)
{
newValue(*decl);
setUnknownValue(*decl);
}
}
void SMTChecker::mergeVariables(vector const& _variables, smt::Expression const& _condition, VariableSequenceCounters const& _countersEndTrue, VariableSequenceCounters const& _countersEndFalse)
{
set uniqueVars(_variables.begin(), _variables.end());
for (auto const* decl: uniqueVars)
{
int trueCounter = _countersEndTrue.at(decl).index();
int falseCounter = _countersEndFalse.at(decl).index();
solAssert(trueCounter != falseCounter, "");
m_interface->addAssertion(newValue(*decl) == smt::Expression::ite(
_condition,
valueAtSequence(*decl, trueCounter),
valueAtSequence(*decl, falseCounter))
);
}
}
bool SMTChecker::createVariable(VariableDeclaration const& _varDecl)
{
if (SSAVariable::isSupportedType(_varDecl.type()->category()))
{
solAssert(m_variables.count(&_varDecl) == 0, "");
solAssert(m_stateVariables.count(&_varDecl) == 0, "");
if (_varDecl.isLocalVariable())
m_variables.emplace(&_varDecl, SSAVariable(_varDecl, *m_interface));
else
{
solAssert(_varDecl.isStateVariable(), "");
m_stateVariables.emplace(&_varDecl, SSAVariable(_varDecl, *m_interface));
}
return true;
}
else
{
m_errorReporter.warning(
_varDecl.location(),
"Assertion checker does not yet support the type of this variable."
);
return false;
}
}
string SMTChecker::uniqueSymbol(Expression const& _expr)
{
return "expr_" + to_string(_expr.id());
}
bool SMTChecker::knownVariable(Declaration const& _decl)
{
return m_variables.count(&_decl);
}
smt::Expression SMTChecker::currentValue(Declaration const& _decl)
{
solAssert(knownVariable(_decl), "");
return m_variables.at(&_decl)();
}
smt::Expression SMTChecker::valueAtSequence(Declaration const& _decl, int _sequence)
{
solAssert(knownVariable(_decl), "");
return m_variables.at(&_decl)(_sequence);
}
smt::Expression SMTChecker::newValue(Declaration const& _decl)
{
solAssert(knownVariable(_decl), "");
++m_variables.at(&_decl);
return m_variables.at(&_decl)();
}
void SMTChecker::setZeroValue(Declaration const& _decl)
{
solAssert(knownVariable(_decl), "");
m_variables.at(&_decl).setZeroValue();
}
void SMTChecker::setUnknownValue(Declaration const& _decl)
{
solAssert(knownVariable(_decl), "");
m_variables.at(&_decl).setUnknownValue();
}
smt::Expression SMTChecker::expr(Expression const& _e)
{
if (!m_expressions.count(&_e))
{
m_errorReporter.warning(_e.location(), "Internal error: Expression undefined for SMT solver." );
createExpr(_e);
}
return m_expressions.at(&_e);
}
void SMTChecker::createExpr(Expression const& _e)
{
if (m_expressions.count(&_e))
m_errorReporter.warning(_e.location(), "Internal error: Expression created twice in SMT solver." );
else
{
solAssert(_e.annotation().type, "");
switch (_e.annotation().type->category())
{
case Type::Category::RationalNumber:
{
if (RationalNumberType const* rational = dynamic_cast(_e.annotation().type.get()))
solAssert(!rational->isFractional(), "");
m_expressions.emplace(&_e, m_interface->newInteger(uniqueSymbol(_e)));
break;
}
case Type::Category::Integer:
m_expressions.emplace(&_e, m_interface->newInteger(uniqueSymbol(_e)));
break;
case Type::Category::Bool:
m_expressions.emplace(&_e, m_interface->newBool(uniqueSymbol(_e)));
break;
default:
solUnimplementedAssert(false, "Type not implemented.");
}
}
}
void SMTChecker::defineExpr(Expression const& _e, smt::Expression _value)
{
createExpr(_e);
m_interface->addAssertion(expr(_e) == _value);
}
void SMTChecker::popPathCondition()
{
solAssert(m_pathConditions.size() > 0, "Cannot pop path condition, empty.");
m_pathConditions.pop_back();
}
void SMTChecker::pushPathCondition(smt::Expression const& _e)
{
m_pathConditions.push_back(currentPathConditions() && _e);
}
smt::Expression SMTChecker::currentPathConditions()
{
if (m_pathConditions.size() == 0)
return smt::Expression(true);
return m_pathConditions.back();
}
void SMTChecker::addPathConjoinedExpression(smt::Expression const& _e)
{
m_interface->addAssertion(currentPathConditions() && _e);
}
void SMTChecker::addPathImpliedExpression(smt::Expression const& _e)
{
m_interface->addAssertion(smt::Expression::implies(currentPathConditions(), _e));
}