/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ // SPDX-License-Identifier: GPL-3.0 #include using namespace solidity::test::fuzzer::lpsolver; using namespace solidity::util; using namespace std; FuzzerSolverInterface::FuzzerSolverInterface(bool _supportModels): m_solver(_supportModels) { m_solvingState.variableNames.emplace_back(""); } LinearExpression FuzzerSolverInterface::constant(rational _value) { return LinearExpression::factorForVariable(0, _value); } LinearExpression FuzzerSolverInterface::variable( rational _factor, string const& _variable ) { return LinearExpression::factorForVariable(variableIndex(_variable), _factor); } void FuzzerSolverInterface::addLEConstraint(LinearExpression _lhs) { // Move constant to RHS if (_lhs[0]) _lhs[0] = -_lhs[0]; m_solvingState.constraints.push_back({move(_lhs), false}); } void FuzzerSolverInterface::addEQConstraint(LinearExpression _lhs) { // Move constant to RHS if (_lhs[0]) _lhs[0] = -_lhs[0]; m_solvingState.constraints.push_back({move(_lhs), true}); } LinearExpression FuzzerSolverInterface::linearExpression(vector _factors) { bool first = true; unsigned count = 0; LinearExpression lexp; for (auto f: _factors) { if (first) { first = false; lexp += constant(f); } else lexp += variable(f, "x" + to_string(count++)); } return lexp; } void FuzzerSolverInterface::addEQConstraint(vector _factors) { addEQConstraint(linearExpression(_factors)); } void FuzzerSolverInterface::addLEConstraint(vector _factors) { addLEConstraint(linearExpression(_factors)); } void FuzzerSolverInterface::addConstraint(pair> _constraint) { if (_constraint.first) addEQConstraint(_constraint.second); else addLEConstraint(_constraint.second); } void FuzzerSolverInterface::addConstraints(vector>> _constraints) { for (auto c: _constraints) addConstraint(c); } solution FuzzerSolverInterface::check() { return m_solver.check(m_solvingState); } string FuzzerSolverInterface::checkResult() { auto r = check(); return lpResult(r.first); } string FuzzerSolverInterface::lpResult(LPResult _result) { switch (_result) { case LPResult::Unknown: return "unknown"; case LPResult::Unbounded: return "unbounded"; case LPResult::Feasible: return "feasible"; case LPResult::Infeasible: return "infeasible"; } } size_t FuzzerSolverInterface::variableIndex(string const& _name) { if (m_solvingState.variableNames.empty()) m_solvingState.variableNames.emplace_back(""); auto index = findOffset(m_solvingState.variableNames, _name); if (!index) { index = m_solvingState.variableNames.size(); m_solvingState.variableNames.emplace_back(_name); } return *index; }