/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
// SPDX-License-Identifier: GPL-3.0
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace solidity::phaser;
void AlgorithmRunner::run(GeneticAlgorithm& _algorithm)
{
populationAutosave();
printInitialPopulation();
cacheClear();
clock_t totalTimeStart = clock();
for (size_t round = 0; !m_options.maxRounds.has_value() || round < m_options.maxRounds.value(); ++round)
{
clock_t roundTimeStart = clock();
cacheStartRound(round + 1);
m_population = _algorithm.runNextRound(m_population);
randomiseDuplicates();
printRoundSummary(round, roundTimeStart, totalTimeStart);
printCacheStats();
populationAutosave();
}
}
void AlgorithmRunner::printRoundSummary(
size_t _round,
clock_t _roundTimeStart,
clock_t _totalTimeStart
) const
{
clock_t now = clock();
double roundTime = static_cast(now - _roundTimeStart) / CLOCKS_PER_SEC;
double totalTime = static_cast(now - _totalTimeStart) / CLOCKS_PER_SEC;
if (!m_options.showOnlyTopChromosome)
{
if (m_options.showRoundInfo)
{
m_outputStream << "---------- ROUND " << _round + 1;
m_outputStream << " [round: " << fixed << setprecision(1) << roundTime << " s,";
m_outputStream << " total: " << fixed << setprecision(1) << totalTime << " s]";
m_outputStream << " ----------" << endl;
}
else if (m_population.individuals().size() > 0)
m_outputStream << endl;
m_outputStream << m_population;
}
else if (m_population.individuals().size() > 0)
{
if (m_options.showRoundInfo)
{
m_outputStream << setw(5) << _round + 1 << " | ";
m_outputStream << setw(5) << fixed << setprecision(1) << totalTime << " | ";
}
m_outputStream << m_population.individuals()[0] << endl;
}
}
void AlgorithmRunner::printInitialPopulation() const
{
if (!m_options.showInitialPopulation)
return;
m_outputStream << "---------- INITIAL POPULATION ----------" << endl;
m_outputStream << m_population;
}
void AlgorithmRunner::printCacheStats() const
{
if (!m_options.showCacheStats)
return;
CacheStats totalStats{};
size_t disabledCacheCount = 0;
for (size_t i = 0; i < m_programCaches.size(); ++i)
if (m_programCaches[i] != nullptr)
totalStats += m_programCaches[i]->gatherStats();
else
++disabledCacheCount;
m_outputStream << "---------- CACHE STATS ----------" << endl;
if (disabledCacheCount < m_programCaches.size())
{
for (auto& [round, count]: totalStats.roundEntryCounts)
m_outputStream << "Round " << round << ": " << count << " entries" << endl;
m_outputStream << "Total hits: " << totalStats.hits << endl;
m_outputStream << "Total misses: " << totalStats.misses << endl;
m_outputStream << "Size of cached code: " << totalStats.totalCodeSize << endl;
}
if (disabledCacheCount == m_programCaches.size())
m_outputStream << "Program cache disabled" << endl;
else if (disabledCacheCount > 0)
{
m_outputStream << "Program cache disabled for " << disabledCacheCount << " out of ";
m_outputStream << m_programCaches.size() << " programs" << endl;
}
}
void AlgorithmRunner::populationAutosave() const
{
if (!m_options.populationAutosaveFile.has_value())
return;
ofstream outputStream(m_options.populationAutosaveFile.value(), ios::out | ios::trunc);
assertThrow(
outputStream.is_open(),
FileOpenError,
"Could not open file '" + m_options.populationAutosaveFile.value() + "': " + strerror(errno)
);
for (auto& individual: m_population.individuals())
outputStream << individual.chromosome << endl;
assertThrow(
!outputStream.bad(),
FileWriteError,
"Error while writing to file '" + m_options.populationAutosaveFile.value() + "': " + strerror(errno)
);
}
void AlgorithmRunner::cacheClear()
{
for (auto& cache: m_programCaches)
if (cache != nullptr)
cache->clear();
}
void AlgorithmRunner::cacheStartRound(size_t _roundNumber)
{
for (auto& cache: m_programCaches)
if (cache != nullptr)
cache->startRound(_roundNumber);
}
void AlgorithmRunner::randomiseDuplicates()
{
if (m_options.randomiseDuplicates)
{
assert(m_options.minChromosomeLength.has_value());
assert(m_options.maxChromosomeLength.has_value());
m_population = randomiseDuplicates(
m_population,
m_options.minChromosomeLength.value(),
m_options.maxChromosomeLength.value()
);
}
}
Population AlgorithmRunner::randomiseDuplicates(
Population _population,
size_t _minChromosomeLength,
size_t _maxChromosomeLength
)
{
if (_population.individuals().size() == 0)
return _population;
vector individuals{_population.individuals()[0]};
size_t duplicateCount = 0;
for (size_t i = 1; i < _population.individuals().size(); ++i)
if (_population.individuals()[i].chromosome == _population.individuals()[i - 1].chromosome)
++duplicateCount;
else
individuals.push_back(_population.individuals()[i]);
return (
Population(_population.fitnessMetric(), individuals) +
Population::makeRandom(_population.fitnessMetric(), duplicateCount, _minChromosomeLength, _maxChromosomeLength)
);
}