/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ // SPDX-License-Identifier: GPL-3.0 #include #include #include #include #include #include #include #include using namespace std; using namespace boost::unit_test::framework; using namespace boost::test_tools; using namespace solidity::util; namespace solidity::phaser::test { class GeneticAlgorithmFixture { protected: shared_ptr m_fitnessMetric = make_shared(); }; class ClassicGeneticAlgorithmFixture: public GeneticAlgorithmFixture { protected: ClassicGeneticAlgorithm::Options m_options = { /* elitePoolSize = */ 0.0, /* crossoverChance = */ 0.0, /* mutationChance = */ 0.0, /* deletionChance = */ 0.0, /* additionChance = */ 0.0, /* CrossoverChoice = */ CrossoverChoice::SinglePoint, /* uniformCrossoverSwapChance= */ 0.5, }; }; BOOST_AUTO_TEST_SUITE(Phaser, *boost::unit_test::label("nooptions")) BOOST_AUTO_TEST_SUITE(GeneticAlgorithmsTest) BOOST_AUTO_TEST_SUITE(RandomAlgorithmTest) BOOST_FIXTURE_TEST_CASE(runNextRound_should_preserve_elite_and_randomise_rest_of_population, GeneticAlgorithmFixture) { auto population = Population::makeRandom(m_fitnessMetric, 4, 3, 3) + Population::makeRandom(m_fitnessMetric, 4, 5, 5); assert((chromosomeLengths(population) == vector{3, 3, 3, 3, 5, 5, 5, 5})); RandomAlgorithm algorithm({0.5, 1, 1}); Population newPopulation = algorithm.runNextRound(population); BOOST_TEST((chromosomeLengths(newPopulation) == vector{1, 1, 1, 1, 3, 3, 3, 3})); } BOOST_FIXTURE_TEST_CASE(runNextRound_should_not_replace_elite_with_worse_individuals, GeneticAlgorithmFixture) { auto population = Population::makeRandom(m_fitnessMetric, 4, 3, 3) + Population::makeRandom(m_fitnessMetric, 4, 5, 5); assert((chromosomeLengths(population) == vector{3, 3, 3, 3, 5, 5, 5, 5})); RandomAlgorithm algorithm({0.5, 7, 7}); Population newPopulation = algorithm.runNextRound(population); BOOST_TEST((chromosomeLengths(newPopulation) == vector{3, 3, 3, 3, 7, 7, 7, 7})); } BOOST_FIXTURE_TEST_CASE(runNextRound_should_replace_all_chromosomes_if_zero_size_elite, GeneticAlgorithmFixture) { auto population = Population::makeRandom(m_fitnessMetric, 4, 3, 3) + Population::makeRandom(m_fitnessMetric, 4, 5, 5); assert((chromosomeLengths(population) == vector{3, 3, 3, 3, 5, 5, 5, 5})); RandomAlgorithm algorithm({0.0, 1, 1}); Population newPopulation = algorithm.runNextRound(population); BOOST_TEST((chromosomeLengths(newPopulation) == vector{1, 1, 1, 1, 1, 1, 1, 1})); } BOOST_FIXTURE_TEST_CASE(runNextRound_should_not_replace_any_chromosomes_if_whole_population_is_the_elite, GeneticAlgorithmFixture) { auto population = Population::makeRandom(m_fitnessMetric, 4, 3, 3) + Population::makeRandom(m_fitnessMetric, 4, 5, 5); assert((chromosomeLengths(population) == vector{3, 3, 3, 3, 5, 5, 5, 5})); RandomAlgorithm algorithm({1.0, 1, 1}); Population newPopulation = algorithm.runNextRound(population); BOOST_TEST((chromosomeLengths(newPopulation) == vector{3, 3, 3, 3, 5, 5, 5, 5})); } BOOST_AUTO_TEST_SUITE_END() BOOST_AUTO_TEST_SUITE(GenerationalElitistWithExclusivePoolsTest) BOOST_FIXTURE_TEST_CASE(runNextRound_should_preserve_elite_and_regenerate_rest_of_population, GeneticAlgorithmFixture) { auto population = Population::makeRandom(m_fitnessMetric, 6, 3, 3) + Population::makeRandom(m_fitnessMetric, 4, 5, 5); assert((chromosomeLengths(population) == vector{3, 3, 3, 3, 3, 3, 5, 5, 5, 5})); GenerationalElitistWithExclusivePools::Options options = { /* mutationPoolSize = */ 0.2, /* crossoverPoolSize = */ 0.2, /* randomisationChance = */ 0.0, /* deletionVsAdditionChance = */ 1.0, /* percentGenesToRandomise = */ 0.0, /* percentGenesToAddOrDelete = */ 1.0, /* CrossoverChoice = */ CrossoverChoice::SinglePoint, /* uniformCrossoverSwapChance= */ 0.5, }; GenerationalElitistWithExclusivePools algorithm(options); Population newPopulation = algorithm.runNextRound(population); BOOST_TEST((chromosomeLengths(newPopulation) == vector{0, 0, 3, 3, 3, 3, 3, 3, 3, 3})); } BOOST_FIXTURE_TEST_CASE(runNextRound_should_not_replace_elite_with_worse_individuals, GeneticAlgorithmFixture) { auto population = Population::makeRandom(m_fitnessMetric, 6, 3, 3) + Population::makeRandom(m_fitnessMetric, 4, 5, 5); assert(chromosomeLengths(population) == (vector{3, 3, 3, 3, 3, 3, 5, 5, 5, 5})); GenerationalElitistWithExclusivePools::Options options = { /* mutationPoolSize = */ 0.2, /* crossoverPoolSize = */ 0.2, /* randomisationChance = */ 0.0, /* deletionVsAdditionChance = */ 0.0, /* percentGenesToRandomise = */ 0.0, /* percentGenesToAddOrDelete = */ 1.0, /* CrossoverChoice = */ CrossoverChoice::SinglePoint, /* uniformCrossoverSwapChance= */ 0.5, }; GenerationalElitistWithExclusivePools algorithm(options); Population newPopulation = algorithm.runNextRound(population); BOOST_TEST((chromosomeLengths(newPopulation) == vector{3, 3, 3, 3, 3, 3, 3, 3, 7, 7})); } BOOST_FIXTURE_TEST_CASE(runNextRound_should_generate_individuals_in_the_crossover_pool_by_mutating_the_elite, GeneticAlgorithmFixture) { auto population = Population::makeRandom(m_fitnessMetric, 20, 5, 5); GenerationalElitistWithExclusivePools::Options options = { /* mutationPoolSize = */ 0.8, /* crossoverPoolSize = */ 0.0, /* randomisationChance = */ 0.5, /* deletionVsAdditionChance = */ 0.5, /* percentGenesToRandomise = */ 1.0, /* percentGenesToAddOrDelete = */ 1.0, /* CrossoverChoice = */ CrossoverChoice::SinglePoint, /* uniformCrossoverSwapChance= */ 0.5, }; GenerationalElitistWithExclusivePools algorithm(options); SimulationRNG::reset(1); Population newPopulation = algorithm.runNextRound(population); BOOST_TEST(( chromosomeLengths(newPopulation) == vector{0, 0, 0, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 11, 11, 11} )); } BOOST_FIXTURE_TEST_CASE(runNextRound_should_generate_individuals_in_the_crossover_pool_by_crossing_over_the_elite, GeneticAlgorithmFixture) { auto population = ( Population(m_fitnessMetric, {Chromosome("aa"), Chromosome("ff")}) + Population::makeRandom(m_fitnessMetric, 8, 6, 6) ); assert((chromosomeLengths(population) == vector{2, 2, 6, 6, 6, 6, 6, 6, 6, 6})); GenerationalElitistWithExclusivePools::Options options = { /* mutationPoolSize = */ 0.0, /* crossoverPoolSize = */ 0.8, /* randomisationChance = */ 0.0, /* deletionVsAdditionChance = */ 0.0, /* percentGenesToRandomise = */ 0.0, /* percentGenesToAddOrDelete = */ 0.0, /* CrossoverChoice = */ CrossoverChoice::SinglePoint, /* uniformCrossoverSwapChance= */ 0.5, }; GenerationalElitistWithExclusivePools algorithm(options); SimulationRNG::reset(1); Population newPopulation = algorithm.runNextRound(population); vector const& newIndividuals = newPopulation.individuals(); BOOST_TEST((chromosomeLengths(newPopulation) == vector{2, 2, 2, 2, 2, 2, 2, 2, 2, 2})); for (auto& individual: newIndividuals) BOOST_TEST(( individual.chromosome == Chromosome("aa") || individual.chromosome == Chromosome("af") || individual.chromosome == Chromosome("fa") || individual.chromosome == Chromosome("ff") )); BOOST_TEST(any_of(newIndividuals.begin() + 2, newIndividuals.end(), [](auto& individual){ return individual.chromosome != Chromosome("aa") && individual.chromosome != Chromosome("ff"); })); } BOOST_AUTO_TEST_SUITE_END() BOOST_AUTO_TEST_SUITE(ClassicGeneticAlgorithmTest) BOOST_FIXTURE_TEST_CASE(runNextRound_should_select_individuals_with_probability_proportional_to_fitness, ClassicGeneticAlgorithmFixture) { constexpr double relativeTolerance = 0.1; constexpr size_t populationSize = 1000; SimulationRNG::reset(1); assert(populationSize % 4 == 0 && "Choose a number divisible by 4 for this test"); auto population = Population::makeRandom(m_fitnessMetric, populationSize / 4, 0, 0) + Population::makeRandom(m_fitnessMetric, populationSize / 4, 1, 1) + Population::makeRandom(m_fitnessMetric, populationSize / 4, 2, 2) + Population::makeRandom(m_fitnessMetric, populationSize / 4, 3, 3); map expectedProbabilities = { {0, 4.0 / (4 + 3 + 2 + 1)}, {1, 3.0 / (4 + 3 + 2 + 1)}, {2, 2.0 / (4 + 3 + 2 + 1)}, {3, 1.0 / (4 + 3 + 2 + 1)}, }; double const expectedValue = ( 0.0 * expectedProbabilities[0] + 1.0 * expectedProbabilities[1] + 2.0 * expectedProbabilities[2] + 3.0 * expectedProbabilities[3] ); double const variance = ( (0.0 - expectedValue) * (0.0 - expectedValue) * expectedProbabilities[0] + (1.0 - expectedValue) * (1.0 - expectedValue) * expectedProbabilities[1] + (2.0 - expectedValue) * (2.0 - expectedValue) * expectedProbabilities[2] + (3.0 - expectedValue) * (3.0 - expectedValue) * expectedProbabilities[3] ); ClassicGeneticAlgorithm algorithm(m_options); Population newPopulation = algorithm.runNextRound(population); BOOST_TEST(newPopulation.individuals().size() == population.individuals().size()); vector newFitness = chromosomeLengths(newPopulation); BOOST_TEST(abs(mean(newFitness) - expectedValue) < expectedValue * relativeTolerance); BOOST_TEST(abs(meanSquaredError(newFitness, expectedValue) - variance) < variance * relativeTolerance); } BOOST_FIXTURE_TEST_CASE(runNextRound_should_select_only_individuals_existing_in_the_original_population, ClassicGeneticAlgorithmFixture) { constexpr size_t populationSize = 1000; auto population = Population::makeRandom(m_fitnessMetric, populationSize, 1, 10); set originalSteps; for (auto const& individual: population.individuals()) originalSteps.insert(toString(individual.chromosome)); ClassicGeneticAlgorithm algorithm(m_options); Population newPopulation = algorithm.runNextRound(population); for (auto const& individual: newPopulation.individuals()) BOOST_TEST(originalSteps.count(toString(individual.chromosome)) == 1); } BOOST_FIXTURE_TEST_CASE(runNextRound_should_do_crossover, ClassicGeneticAlgorithmFixture) { auto population = Population(m_fitnessMetric, { Chromosome("aa"), Chromosome("aa"), Chromosome("aa"), Chromosome("ff"), Chromosome("ff"), Chromosome("ff"), Chromosome("gg"), Chromosome("gg"), Chromosome("gg"), }); set originalSteps{"aa", "ff", "gg"}; set crossedSteps{"af", "fa", "fg", "gf", "ga", "ag"}; m_options.crossoverChance = 0.8; ClassicGeneticAlgorithm algorithm(m_options); SimulationRNG::reset(1); Population newPopulation = algorithm.runNextRound(population); size_t totalCrossed = 0; size_t totalUnchanged = 0; for (auto const& individual: newPopulation.individuals()) { totalCrossed += crossedSteps.count(toString(individual.chromosome)); totalUnchanged += originalSteps.count(toString(individual.chromosome)); } BOOST_TEST(totalCrossed + totalUnchanged == newPopulation.individuals().size()); BOOST_TEST(totalCrossed >= 2); } BOOST_FIXTURE_TEST_CASE(runNextRound_should_do_mutation, ClassicGeneticAlgorithmFixture) { m_options.mutationChance = 0.6; ClassicGeneticAlgorithm algorithm(m_options); constexpr size_t populationSize = 1000; constexpr double relativeTolerance = 0.05; double const expectedValue = m_options.mutationChance; double const variance = m_options.mutationChance * (1 - m_options.mutationChance); Chromosome chromosome("aaaaaaaaaa"); vector chromosomes(populationSize, chromosome); Population population(m_fitnessMetric, chromosomes); SimulationRNG::reset(1); Population newPopulation = algorithm.runNextRound(population); vector bernoulliTrials; for (auto const& individual: newPopulation.individuals()) { string steps = toString(individual.chromosome); for (char step: steps) bernoulliTrials.push_back(static_cast(step != 'a')); } BOOST_TEST(abs(mean(bernoulliTrials) - expectedValue) < expectedValue * relativeTolerance); BOOST_TEST(abs(meanSquaredError(bernoulliTrials, expectedValue) - variance) < variance * relativeTolerance); } BOOST_FIXTURE_TEST_CASE(runNextRound_should_do_deletion, ClassicGeneticAlgorithmFixture) { m_options.deletionChance = 0.6; ClassicGeneticAlgorithm algorithm(m_options); constexpr size_t populationSize = 1000; constexpr double relativeTolerance = 0.05; double const expectedValue = m_options.deletionChance; double const variance = m_options.deletionChance * (1 - m_options.deletionChance); Chromosome chromosome("aaaaaaaaaa"); vector chromosomes(populationSize, chromosome); Population population(m_fitnessMetric, chromosomes); SimulationRNG::reset(1); Population newPopulation = algorithm.runNextRound(population); vector bernoulliTrials; for (auto const& individual: newPopulation.individuals()) { string steps = toString(individual.chromosome); for (size_t i = 0; i < chromosome.length(); ++i) bernoulliTrials.push_back(static_cast(i >= steps.size())); } BOOST_TEST(abs(mean(bernoulliTrials) - expectedValue) < expectedValue * relativeTolerance); BOOST_TEST(abs(meanSquaredError(bernoulliTrials, expectedValue) - variance) < variance * relativeTolerance); } BOOST_FIXTURE_TEST_CASE(runNextRound_should_do_addition, ClassicGeneticAlgorithmFixture) { m_options.additionChance = 0.6; ClassicGeneticAlgorithm algorithm(m_options); constexpr size_t populationSize = 1000; constexpr double relativeTolerance = 0.05; double const expectedValue = m_options.additionChance; double const variance = m_options.additionChance * (1 - m_options.additionChance); Chromosome chromosome("aaaaaaaaaa"); vector chromosomes(populationSize, chromosome); Population population(m_fitnessMetric, chromosomes); SimulationRNG::reset(1); Population newPopulation = algorithm.runNextRound(population); vector bernoulliTrials; for (auto const& individual: newPopulation.individuals()) { string steps = toString(individual.chromosome); for (size_t i = 0; i < chromosome.length() + 1; ++i) { BOOST_REQUIRE(chromosome.length() <= steps.size() && steps.size() <= 2 * chromosome.length() + 1); bernoulliTrials.push_back(static_cast(i < steps.size() - chromosome.length())); } } BOOST_TEST(abs(mean(bernoulliTrials) - expectedValue) < expectedValue * relativeTolerance); BOOST_TEST(abs(meanSquaredError(bernoulliTrials, expectedValue) - variance) < variance * relativeTolerance); } BOOST_FIXTURE_TEST_CASE(runNextRound_should_preserve_elite, ClassicGeneticAlgorithmFixture) { auto population = Population::makeRandom(m_fitnessMetric, 4, 3, 3) + Population::makeRandom(m_fitnessMetric, 6, 5, 5); assert((chromosomeLengths(population) == vector{3, 3, 3, 3, 5, 5, 5, 5, 5, 5})); m_options.elitePoolSize = 0.5; m_options.deletionChance = 1.0; ClassicGeneticAlgorithm algorithm(m_options); Population newPopulation = algorithm.runNextRound(population); BOOST_TEST((chromosomeLengths(newPopulation) == vector{0, 0, 0, 0, 0, 3, 3, 3, 3, 5})); } BOOST_AUTO_TEST_SUITE_END() BOOST_AUTO_TEST_SUITE_END() BOOST_AUTO_TEST_SUITE_END() }