/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/**
* @author Christian
* @date 2014
* Solidity data types
*/
#include
#include
#include
#include
namespace dev
{
namespace solidity
{
std::shared_ptr Type::fromElementaryTypeName(Token::Value _typeToken)
{
if (asserts(Token::isElementaryTypeName(_typeToken)))
BOOST_THROW_EXCEPTION(InternalCompilerError());
if (Token::INT <= _typeToken && _typeToken <= Token::HASH256)
{
int offset = _typeToken - Token::INT;
int bits = offset % 5;
if (bits == 0)
bits = 256;
else
bits = (1 << (bits - 1)) * 32;
int modifier = offset / 5;
return std::make_shared(bits,
modifier == 0 ? IntegerType::Modifier::SIGNED :
modifier == 1 ? IntegerType::Modifier::UNSIGNED :
IntegerType::Modifier::HASH);
}
else if (_typeToken == Token::ADDRESS)
return std::make_shared(0, IntegerType::Modifier::ADDRESS);
else if (_typeToken == Token::BOOL)
return std::make_shared();
else
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unable to convert elementary typename " +
std::string(Token::toString(_typeToken)) + " to type."));
return std::shared_ptr();
}
std::shared_ptr Type::fromUserDefinedTypeName(UserDefinedTypeName const& _typeName)
{
return std::make_shared(*_typeName.getReferencedStruct());
}
std::shared_ptr Type::fromMapping(Mapping const&)
{
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Mapping types not yet implemented."));
return std::shared_ptr();
}
std::shared_ptr Type::forLiteral(Literal const& _literal)
{
switch (_literal.getToken())
{
case Token::TRUE_LITERAL:
case Token::FALSE_LITERAL:
return std::make_shared();
case Token::NUMBER:
return IntegerType::smallestTypeForLiteral(_literal.getValue());
case Token::STRING_LITERAL:
return std::shared_ptr(); // @todo
default:
return std::shared_ptr();
}
}
std::shared_ptr IntegerType::smallestTypeForLiteral(std::string const&)
{
//@todo
return std::make_shared(256, Modifier::UNSIGNED);
}
IntegerType::IntegerType(int _bits, IntegerType::Modifier _modifier):
m_bits(_bits), m_modifier(_modifier)
{
if (isAddress())
_bits = 160;
if (asserts(_bits > 0 && _bits <= 256 && _bits % 8 == 0))
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Invalid bit number for integer type: " + dev::toString(_bits)));
}
bool IntegerType::isImplicitlyConvertibleTo(Type const& _convertTo) const
{
if (_convertTo.getCategory() != getCategory())
return false;
IntegerType const& convertTo = dynamic_cast(_convertTo);
if (convertTo.m_bits < m_bits)
return false;
if (isAddress())
return convertTo.isAddress();
else if (isHash())
return convertTo.isHash();
else if (isSigned())
return convertTo.isSigned();
else
return !convertTo.isSigned() || convertTo.m_bits > m_bits;
}
bool IntegerType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
return _convertTo.getCategory() == getCategory();
}
bool IntegerType::acceptsBinaryOperator(Token::Value _operator) const
{
if (isAddress())
return Token::isCompareOp(_operator);
else if (isHash())
return Token::isCompareOp(_operator) || Token::isBitOp(_operator);
else
return true;
}
bool IntegerType::acceptsUnaryOperator(Token::Value _operator) const
{
if (_operator == Token::DELETE)
return true;
if (isAddress())
return false;
if (_operator == Token::BIT_NOT)
return true;
if (isHash())
return false;
return _operator == Token::ADD || _operator == Token::SUB ||
_operator == Token::INC || _operator == Token::DEC;
}
bool IntegerType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
IntegerType const& other = dynamic_cast(_other);
return other.m_bits == m_bits && other.m_modifier == m_modifier;
}
std::string IntegerType::toString() const
{
if (isAddress())
return "address";
std::string prefix = isHash() ? "hash" : (isSigned() ? "int" : "uint");
return prefix + dev::toString(m_bits);
}
u256 IntegerType::literalValue(Literal const& _literal) const
{
bigint value(_literal.getValue());
//@todo check that the number is not too large
//@todo does this work for signed numbers?
return u256(value);
}
bool BoolType::isExplicitlyConvertibleTo(Type const& _convertTo) const
{
// conversion to integer is fine, but not to address
// this is an example of explicit conversions being not transitive (though implicit should be)
if (_convertTo.getCategory() == getCategory())
{
IntegerType const& convertTo = dynamic_cast(_convertTo);
if (!convertTo.isAddress())
return true;
}
return isImplicitlyConvertibleTo(_convertTo);
}
u256 BoolType::literalValue(Literal const& _literal) const
{
if (_literal.getToken() == Token::TRUE_LITERAL)
return u256(1);
else if (_literal.getToken() == Token::FALSE_LITERAL)
return u256(0);
else
BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Bool type constructed from non-boolean literal."));
}
bool ContractType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
ContractType const& other = dynamic_cast(_other);
return other.m_contract == m_contract;
}
bool StructType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
StructType const& other = dynamic_cast(_other);
return other.m_struct == m_struct;
}
bool FunctionType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
FunctionType const& other = dynamic_cast(_other);
return other.m_function == m_function;
}
bool MappingType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
MappingType const& other = dynamic_cast(_other);
return *other.m_keyType == *m_keyType && *other.m_valueType == *m_valueType;
}
bool TypeType::operator==(Type const& _other) const
{
if (_other.getCategory() != getCategory())
return false;
TypeType const& other = dynamic_cast(_other);
return *getActualType() == *other.getActualType();
}
}
}