/** * @title Library to validate AZTEC zero-knowledge proofs * @author Zachary Williamson, AZTEC * @dev Don't include this as an internal library. This contract uses a static memory table to cache elliptic curve primitives and hashes. * Calling this internally from another function will lead to memory mutation and undefined behaviour. * The intended use case is to call this externally via `staticcall`. External calls to OptimizedAZTEC can be treated as pure functions as this contract contains no storage and makes no external calls (other than to precompiles) * Copyright Spilbury Holdings Ltd 2018. All rights reserved. * We will be releasing AZTEC as an open-source protocol that provides efficient transaction privacy for Ethereum. * This will include our bespoke AZTEC decentralized exchange, allowing for cross-asset transfers with full transaction privacy * and interopability with public decentralized exchanges. * Stay tuned for updates! * * Permission to use as test case in the Solidity compiler granted by the author: * https://github.com/ethereum/solidity/pull/5713#issuecomment-449042830 **/ { validateJoinSplit() // should not get here mstore(0x00, 404) revert(0x00, 0x20) function validateJoinSplit() { mstore(0x80, 7673901602397024137095011250362199966051872585513276903826533215767972925880) // h_x mstore(0xa0, 8489654445897228341090914135473290831551238522473825886865492707826370766375) // h_y let notes := add(0x04, calldataload(0x04)) let m := calldataload(0x24) let n := calldataload(notes) let gen_order := 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001 let challenge := mod(calldataload(0x44), gen_order) // validate m <= n if gt(m, n) { mstore(0x00, 404) revert(0x00, 0x20) } // recover k_{public} and calculate k_{public} let kn := calldataload(sub(calldatasize(), 0xc0)) // add kn and m to final hash table mstore(0x2a0, caller()) mstore(0x2c0, kn) mstore(0x2e0, m) kn := mulmod(sub(gen_order, kn), challenge, gen_order) // we actually want c*k_{public} hashCommitments(notes, n) let b := add(0x300, mul(n, 0x80)) // Iterate over every note and calculate the blinding factor B_i = \gamma_i^{kBar}h^{aBar}\sigma_i^{-c}. // We use the AZTEC protocol pairing optimization to reduce the number of pairing comparisons to 1, which adds some minor alterations for { let i := 0 } lt(i, n) { i := add(i, 0x01) } { // Get the calldata index of this note let noteIndex := add(add(notes, 0x20), mul(i, 0xc0)) let k let a := calldataload(add(noteIndex, 0x20)) let c := challenge switch eq(add(i, 0x01), n) case 1 { k := kn // if all notes are input notes, invert k if eq(m, n) { k := sub(gen_order, k) } } case 0 { k := calldataload(noteIndex) } // Check this commitment is well formed... validateCommitment(noteIndex, k, a) // If i > m then this is an output note. // Set k = kx_j, a = ax_j, c = cx_j, where j = i - (m+1) switch gt(add(i, 0x01), m) case 1 { // before we update k, update kn = \sum_{i=0}^{m-1}k_i - \sum_{i=m}^{n-1}k_i kn := addmod(kn, sub(gen_order, k), gen_order) let x := mod(mload(0x00), gen_order) k := mulmod(k, x, gen_order) a := mulmod(a, x, gen_order) c := mulmod(challenge, x, gen_order) // calculate x_{j+1} mstore(0x00, keccak256(0x00, 0x20)) } case 0 { // nothing to do here except update kn = \sum_{i=0}^{m-1}k_i - \sum_{i=m}^{n-1}k_i kn := addmod(kn, k, gen_order) } calldatacopy(0xe0, add(noteIndex, 0x80), 0x40) calldatacopy(0x20, add(noteIndex, 0x40), 0x40) mstore(0x120, sub(gen_order, c)) mstore(0x60, k) mstore(0xc0, a) // Using call instead of staticcall here to make it work on all targets. let result := call(gas(), 7, 0, 0xe0, 0x60, 0x1a0, 0x40) result := and(result, call(gas(), 7, 0, 0x20, 0x60, 0x120, 0x40)) result := and(result, call(gas(), 7, 0, 0x80, 0x60, 0x160, 0x40)) result := and(result, call(gas(), 6, 0, 0x120, 0x80, 0x160, 0x40)) result := and(result, call(gas(), 6, 0, 0x160, 0x80, b, 0x40)) if eq(i, m) { mstore(0x260, mload(0x20)) mstore(0x280, mload(0x40)) mstore(0x1e0, mload(0xe0)) mstore(0x200, sub(0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47, mload(0x100))) } if gt(i, m) { mstore(0x60, c) result := and(result, call(gas(), 7, 0, 0x20, 0x60, 0x220, 0x40)) result := and(result, call(gas(), 6, 0, 0x220, 0x80, 0x260, 0x40)) result := and(result, call(gas(), 6, 0, 0x1a0, 0x80, 0x1e0, 0x40)) } if iszero(result) { mstore(0x00, 400) revert(0x00, 0x20) } b := add(b, 0x40) // increase B pointer by 2 words } if lt(m, n) { validatePairing(0x64) } let expected := mod(keccak256(0x2a0, sub(b, 0x2a0)), gen_order) if iszero(eq(expected, challenge)) { // No! Bad! No soup for you! mstore(0x00, 404) revert(0x00, 0x20) } // Great! All done. This is a valid proof so return ```true``` mstore(0x00, 0x01) return(0x00, 0x20) } function validatePairing(t2) { let field_order := 0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47 let t2_x_1 := calldataload(t2) let t2_x_2 := calldataload(add(t2, 0x20)) let t2_y_1 := calldataload(add(t2, 0x40)) let t2_y_2 := calldataload(add(t2, 0x60)) // check provided setup pubkey is not zero or g2 if or(or(or(or(or(or(or( iszero(t2_x_1), iszero(t2_x_2)), iszero(t2_y_1)), iszero(t2_y_2)), eq(t2_x_1, 0x1800deef121f1e76426a00665e5c4479674322d4f75edadd46debd5cd992f6ed)), eq(t2_x_2, 0x198e9393920d483a7260bfb731fb5d25f1aa493335a9e71297e485b7aef312c2)), eq(t2_y_1, 0x12c85ea5db8c6deb4aab71808dcb408fe3d1e7690c43d37b4ce6cc0166fa7daa)), eq(t2_y_2, 0x90689d0585ff075ec9e99ad690c3395bc4b313370b38ef355acdadcd122975b)) { mstore(0x00, 400) revert(0x00, 0x20) } mstore(0x20, mload(0x1e0)) // sigma accumulator x mstore(0x40, mload(0x200)) // sigma accumulator y mstore(0x80, 0x1800deef121f1e76426a00665e5c4479674322d4f75edadd46debd5cd992f6ed) mstore(0x60, 0x198e9393920d483a7260bfb731fb5d25f1aa493335a9e71297e485b7aef312c2) mstore(0xc0, 0x12c85ea5db8c6deb4aab71808dcb408fe3d1e7690c43d37b4ce6cc0166fa7daa) mstore(0xa0, 0x90689d0585ff075ec9e99ad690c3395bc4b313370b38ef355acdadcd122975b) mstore(0xe0, mload(0x260)) // gamma accumulator x mstore(0x100, mload(0x280)) // gamma accumulator y mstore(0x140, t2_x_1) mstore(0x120, t2_x_2) mstore(0x180, t2_y_1) mstore(0x160, t2_y_2) let success := call(gas(), 8, 0, 0x20, 0x180, 0x20, 0x20) if or(iszero(success), iszero(mload(0x20))) { mstore(0x00, 400) revert(0x00, 0x20) } } function validateCommitment(note, k, a) { let gen_order := 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001 let field_order := 0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47 let gammaX := calldataload(add(note, 0x40)) let gammaY := calldataload(add(note, 0x60)) let sigmaX := calldataload(add(note, 0x80)) let sigmaY := calldataload(add(note, 0xa0)) if iszero( and( and( and( eq(mod(a, gen_order), a), // a is modulo generator order? gt(a, 1) // can't be 0 or 1 either! ), and( eq(mod(k, gen_order), k), // k is modulo generator order? gt(k, 1) // and not 0 or 1 ) ), and( eq( // y^2 ?= x^3 + 3 addmod(mulmod(mulmod(sigmaX, sigmaX, field_order), sigmaX, field_order), 3, field_order), mulmod(sigmaY, sigmaY, field_order) ), eq( // y^2 ?= x^3 + 3 addmod(mulmod(mulmod(gammaX, gammaX, field_order), gammaX, field_order), 3, field_order), mulmod(gammaY, gammaY, field_order) ) ) ) ) { mstore(0x00, 400) revert(0x00, 0x20) } } function hashCommitments(notes, n) { for { let i := 0 } lt(i, n) { i := add(i, 0x01) } { let index := add(add(notes, mul(i, 0xc0)), 0x60) calldatacopy(add(0x300, mul(i, 0x80)), index, 0x80) } mstore(0x00, keccak256(0x300, mul(n, 0x80))) } } // ==== // step: fullSuite // ---- // { // { // mstore(0x80, 7673901602397024137095011250362199966051872585513276903826533215767972925880) // mstore(0xa0, 8489654445897228341090914135473290831551238522473825886865492707826370766375) // let n := calldataload(add(0x04, calldataload(0x04))) // let _1 := 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001 // if gt(calldataload(0x24), n) // { // mstore(0x00, 404) // revert(0x00, 0x20) // } // let kn := calldataload(add(calldatasize(), not(191))) // mstore(0x2a0, caller()) // mstore(0x2c0, kn) // mstore(0x2e0, calldataload(0x24)) // kn := mulmod(sub(_1, kn), mod(calldataload(0x44), _1), _1) // hashCommitments(add(0x04, calldataload(0x04)), n) // let b := add(0x300, mul(n, 0x80)) // let i := 0 // for { } lt(i, n) { i := add(i, 0x01) } // { // let _2 := add(calldataload(0x04), mul(i, 0xc0)) // let k := 0 // let a := calldataload(add(_2, 0x44)) // let c := mod(calldataload(0x44), _1) // let _3 := eq(add(i, 0x01), n) // let _4 := _3 // let _5 := _3 // let _6 := _3 // switch _3 // case 1 { // _3 := 0x01 // _4 := _3 // _5 := _3 // _6 := _3 // k := kn // if eq(calldataload(0x24), n) { k := sub(_1, kn) } // } // case 0 { // _3 := 0 // _4 := _3 // _5 := _3 // _6 := _3 // k := calldataload(add(_2, 0x24)) // } // validateCommitment(add(_2, 0x24), k, a) // let _7 := gt(add(i, 0x01), calldataload(0x24)) // let _8 := _7 // let _9 := _7 // let _10 := _7 // switch _7 // case 1 { // _7 := 0x01 // _8 := _7 // _9 := _7 // _10 := _7 // kn := addmod(kn, sub(_1, k), _1) // let x := mod(mload(0), _1) // k := mulmod(k, x, _1) // a := mulmod(a, x, _1) // c := mulmod(c, x, _1) // mstore(0, keccak256(0, 0x20)) // } // case 0 { // _7 := 0 // _8 := _7 // _9 := _7 // _10 := _7 // kn := addmod(kn, k, _1) // } // calldatacopy(0xe0, add(_2, 164), 0x40) // calldatacopy(0x20, add(_2, 100), 0x40) // mstore(0x120, sub(_1, c)) // mstore(0x60, k) // mstore(0xc0, a) // let result := call(gas(), 7, 0, 0xe0, 0x60, 0x1a0, 0x40) // let result_1 := and(result, call(gas(), 7, 0, 0x20, 0x60, 0x120, 0x40)) // let result_2 := and(result_1, call(gas(), 7, 0, 0x80, 0x60, 0x160, 0x40)) // let result_3 := and(result_2, call(gas(), 6, 0, 0x120, 0x80, 0x160, 0x40)) // result := and(result_3, call(gas(), 6, 0, 0x160, 0x80, b, 0x40)) // if eq(i, calldataload(0x24)) // { // mstore(0x260, mload(0x20)) // mstore(0x280, mload(0x40)) // mstore(0x1e0, mload(0xe0)) // mstore(0x200, sub(0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47, mload(0x100))) // } // if gt(i, calldataload(0x24)) // { // mstore(0x60, c) // let result_4 := and(result, call(gas(), 7, 0, 0x20, 0x60, 0x220, 0x40)) // let result_5 := and(result_4, call(gas(), 6, 0, 0x220, 0x80, 0x260, 0x40)) // result := and(result_5, call(gas(), 6, 0, 0x1a0, 0x80, 0x1e0, 0x40)) // } // if iszero(result) // { // mstore(0, 400) // revert(0, 0x20) // } // b := add(b, 0x40) // } // if lt(calldataload(0x24), n) { validatePairing(0x64) } // if iszero(eq(mod(keccak256(0x2a0, add(b, not(671))), _1), mod(calldataload(0x44), _1))) // { // mstore(0, 404) // revert(0, 0x20) // } // mstore(0, 0x01) // return(0, 0x20) // } // function validatePairing(t2) // { // let t2_x := calldataload(t2) // let _1 := 0x20 // let t2_x_1 := calldataload(add(t2, _1)) // let t2_y := calldataload(add(t2, 0x40)) // let t2_y_1 := calldataload(add(t2, 0x60)) // let _2 := 0x90689d0585ff075ec9e99ad690c3395bc4b313370b38ef355acdadcd122975b // let _3 := 0x12c85ea5db8c6deb4aab71808dcb408fe3d1e7690c43d37b4ce6cc0166fa7daa // let _4 := 0x198e9393920d483a7260bfb731fb5d25f1aa493335a9e71297e485b7aef312c2 // let _5 := 0x1800deef121f1e76426a00665e5c4479674322d4f75edadd46debd5cd992f6ed // if or(or(or(or(or(or(or(iszero(t2_x), iszero(t2_x_1)), iszero(t2_y)), iszero(t2_y_1)), eq(t2_x, _5)), eq(t2_x_1, _4)), eq(t2_y, _3)), eq(t2_y_1, _2)) // { // mstore(0x00, 400) // revert(0x00, _1) // } // mstore(_1, mload(0x1e0)) // mstore(0x40, mload(0x200)) // mstore(0x80, _5) // mstore(0x60, _4) // mstore(0xc0, _3) // mstore(0xa0, _2) // mstore(0xe0, mload(0x260)) // mstore(0x100, mload(0x280)) // mstore(0x140, t2_x) // mstore(0x120, t2_x_1) // let _6 := 0x180 // mstore(_6, t2_y) // mstore(0x160, t2_y_1) // let success := call(gas(), 8, 0, _1, _6, _1, _1) // if or(iszero(success), iszero(mload(_1))) // { // mstore(0, 400) // revert(0, _1) // } // } // function validateCommitment(note, k, a) // { // let gammaX := calldataload(add(note, 0x40)) // let gammaY := calldataload(add(note, 0x60)) // let sigmaX := calldataload(add(note, 0x80)) // let sigmaY := calldataload(add(note, 0xa0)) // let _1 := 0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47 // let _2 := 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001 // if iszero(and(and(and(eq(mod(a, _2), a), gt(a, 1)), and(eq(mod(k, _2), k), gt(k, 1))), and(eq(addmod(mulmod(mulmod(sigmaX, sigmaX, _1), sigmaX, _1), 3, _1), mulmod(sigmaY, sigmaY, _1)), eq(addmod(mulmod(mulmod(gammaX, gammaX, _1), gammaX, _1), 3, _1), mulmod(gammaY, gammaY, _1))))) // { // mstore(0x00, 400) // revert(0x00, 0x20) // } // } // function hashCommitments(notes, n) // { // let i := 0 // for { } lt(i, n) { i := add(i, 0x01) } // { // calldatacopy(add(0x300, mul(i, 0x80)), add(add(notes, mul(i, 0xc0)), 0x60), 0x80) // } // mstore(0, keccak256(0x300, mul(n, 0x80))) // } // }