/*
	This file is part of solidity.
	solidity is free software: you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation, either version 3 of the License, or
	(at your option) any later version.
	solidity is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
	GNU General Public License for more details.
	You should have received a copy of the GNU General Public License
	along with solidity.  If not, see .
*/
#include 
#ifdef HAVE_Z3
#include 
#else
#include 
#endif
#include 
#include 
using namespace std;
using namespace dev;
using namespace dev::solidity;
SMTChecker::SMTChecker(ErrorReporter& _errorReporter, ReadCallback::Callback const& _readFileCallback):
#ifdef HAVE_Z3
	m_interface(make_shared()),
#else
	m_interface(make_shared(_readFileCallback)),
#endif
	m_errorReporter(_errorReporter)
{
	(void)_readFileCallback;
}
void SMTChecker::analyze(SourceUnit const& _source)
{
	if (_source.annotation().experimentalFeatures.count(ExperimentalFeature::SMTChecker))
	{
		m_interface->reset();
		m_currentSequenceCounter.clear();
		m_nextFreeSequenceCounter.clear();
		_source.accept(*this);
	}
}
void SMTChecker::endVisit(VariableDeclaration const& _varDecl)
{
	if (_varDecl.value())
	{
		m_errorReporter.warning(
			_varDecl.location(),
			"Assertion checker does not yet support this."
		);
	}
	else if (_varDecl.isLocalOrReturn())
		createVariable(_varDecl, true);
	else if (_varDecl.isCallableParameter())
		createVariable(_varDecl, false);
}
bool SMTChecker::visit(FunctionDefinition const& _function)
{
	if (!_function.modifiers().empty() || _function.isConstructor())
		m_errorReporter.warning(
			_function.location(),
			"Assertion checker does not yet support constructors and functions with modifiers."
		);
	// TODO actually we probably also have to reset all local variables and similar things.
	m_currentFunction = &_function;
	m_interface->push();
	return true;
}
void SMTChecker::endVisit(FunctionDefinition const&)
{
	// TOOD we could check for "reachability", i.e. satisfiability here.
	// We only handle local variables, so we clear everything.
	// If we add storage variables, those should be cleared differently.
	m_currentSequenceCounter.clear();
	m_nextFreeSequenceCounter.clear();
	m_interface->pop();
	m_currentFunction = nullptr;
}
bool SMTChecker::visit(IfStatement const& _node)
{
	_node.condition().accept(*this);
	// TODO Check if condition is always true
	auto countersAtStart = m_currentSequenceCounter;
	m_interface->push();
	m_interface->addAssertion(expr(_node.condition()));
	_node.trueStatement().accept(*this);
	auto countersAtEndOfTrue = m_currentSequenceCounter;
	m_interface->pop();
	decltype(m_currentSequenceCounter) countersAtEndOfFalse;
	if (_node.falseStatement())
	{
		m_currentSequenceCounter = countersAtStart;
		m_interface->push();
		m_interface->addAssertion(!expr(_node.condition()));
		_node.falseStatement()->accept(*this);
		countersAtEndOfFalse = m_currentSequenceCounter;
		m_interface->pop();
	}
	else
		countersAtEndOfFalse = countersAtStart;
	// Reset all values that have been touched.
	// TODO this should use a previously generated side-effect structure
	solAssert(countersAtEndOfFalse.size() == countersAtEndOfTrue.size(), "");
	for (auto const& declCounter: countersAtEndOfTrue)
	{
		solAssert(countersAtEndOfFalse.count(declCounter.first), "");
		auto decl = declCounter.first;
		int trueCounter = countersAtEndOfTrue.at(decl);
		int falseCounter = countersAtEndOfFalse.at(decl);
		if (trueCounter == falseCounter)
			continue; // Was not modified
		newValue(*decl);
		setValue(*decl, 0);
	}
	return false;
}
bool SMTChecker::visit(WhileStatement const& _node)
{
	_node.condition().accept(*this);
	//m_interface->push();
	//m_interface->addAssertion(expr(_node.condition()));
	// TDOO clear knowledge (increment sequence numbers and add bounds assertions	) apart from assertions
	// TODO combine similar to if
	return true;
}
void SMTChecker::endVisit(VariableDeclarationStatement const& _varDecl)
{
	if (_varDecl.declarations().size() != 1)
		m_errorReporter.warning(
			_varDecl.location(),
			"Assertion checker does not yet support such variable declarations."
		);
	else if (knownVariable(*_varDecl.declarations()[0]))
	{
		if (_varDecl.initialValue())
			// TODO more checks?
			// TODO add restrictions about type (might be assignment from smaller type)
			m_interface->addAssertion(newValue(*_varDecl.declarations()[0]) == expr(*_varDecl.initialValue()));
	}
	else
		m_errorReporter.warning(
			_varDecl.location(),
			"Assertion checker does not yet implement such variable declarations."
		);
}
void SMTChecker::endVisit(ExpressionStatement const&)
{
}
void SMTChecker::endVisit(Assignment const& _assignment)
{
	if (_assignment.assignmentOperator() != Token::Value::Assign)
		m_errorReporter.warning(
			_assignment.location(),
			"Assertion checker does not yet implement compound assignment."
		);
	else if (_assignment.annotation().type->category() != Type::Category::Integer)
		m_errorReporter.warning(
			_assignment.location(),
			"Assertion checker does not yet implement type " + _assignment.annotation().type->toString()
		);
	else if (Identifier const* identifier = dynamic_cast(&_assignment.leftHandSide()))
	{
		Declaration const* decl = identifier->annotation().referencedDeclaration;
		if (knownVariable(*decl))
			// TODO more checks?
			// TODO add restrictions about type (might be assignment from smaller type)
			m_interface->addAssertion(newValue(*decl) == expr(_assignment.rightHandSide()));
		else
			m_errorReporter.warning(
				_assignment.location(),
				"Assertion checker does not yet implement such assignments."
			);
	}
	else
		m_errorReporter.warning(
			_assignment.location(),
			"Assertion checker does not yet implement such assignments."
		);
}
void SMTChecker::endVisit(TupleExpression const& _tuple)
{
	if (_tuple.isInlineArray() || _tuple.components().size() != 1)
		m_errorReporter.warning(
			_tuple.location(),
			"Assertion checker does not yet implement tules and inline arrays."
		);
	else
		m_interface->addAssertion(expr(_tuple) == expr(*_tuple.components()[0]));
}
void SMTChecker::endVisit(BinaryOperation const& _op)
{
	if (Token::isArithmeticOp(_op.getOperator()))
		arithmeticOperation(_op);
	else if (Token::isCompareOp(_op.getOperator()))
		compareOperation(_op);
	else if (Token::isBooleanOp(_op.getOperator()))
		booleanOperation(_op);
	else
		m_errorReporter.warning(
			_op.location(),
			"Assertion checker does not yet implement this operator."
		);
}
void SMTChecker::endVisit(FunctionCall const& _funCall)
{
	FunctionType const& funType = dynamic_cast(*_funCall.expression().annotation().type);
	std::vector> const args = _funCall.arguments();
	if (funType.kind() == FunctionType::Kind::Assert)
	{
		solAssert(args.size() == 1, "");
		solAssert(args[0]->annotation().type->category() == Type::Category::Bool, "");
		checkCondition(!(expr(*args[0])), _funCall.location(), "Assertion violation");
		m_interface->addAssertion(expr(*args[0]));
	}
	else if (funType.kind() == FunctionType::Kind::Require)
	{
		solAssert(args.size() == 1, "");
		solAssert(args[0]->annotation().type->category() == Type::Category::Bool, "");
		m_interface->addAssertion(expr(*args[0]));
		checkCondition(!(expr(*args[0])), _funCall.location(), "Unreachable code");
		// TODO is there something meaningful we can check here?
		// We can check whether the condition is always fulfilled or never fulfilled.
	}
}
void SMTChecker::endVisit(Identifier const& _identifier)
{
	Declaration const* decl = _identifier.annotation().referencedDeclaration;
	solAssert(decl, "");
	if (dynamic_cast(_identifier.annotation().type.get()))
	{
		m_interface->addAssertion(expr(_identifier) == currentValue(*decl));
		return;
	}
	else if (FunctionType const* fun = dynamic_cast(_identifier.annotation().type.get()))
	{
		if (fun->kind() == FunctionType::Kind::Assert || fun->kind() == FunctionType::Kind::Require)
			return;
		// TODO for others, clear our knowledge about storage and memory
	}
	m_errorReporter.warning(
		_identifier.location(),
		"Assertion checker does not yet support the type of this expression (" +
		_identifier.annotation().type->toString() +
		")."
	);
}
void SMTChecker::endVisit(Literal const& _literal)
{
	Type const& type = *_literal.annotation().type;
	if (type.category() == Type::Category::Integer || type.category() == Type::Category::RationalNumber)
	{
		if (RationalNumberType const* rational = dynamic_cast(&type))
			solAssert(!rational->isFractional(), "");
		m_interface->addAssertion(expr(_literal) == smt::Expression(type.literalValue(&_literal)));
	}
	else
		m_errorReporter.warning(
			_literal.location(),
			"Assertion checker does not yet support the type of this expression (" +
			_literal.annotation().type->toString() +
			")."
		);
}
void SMTChecker::arithmeticOperation(BinaryOperation const& _op)
{
	switch (_op.getOperator())
	{
	case Token::Add:
	case Token::Sub:
	case Token::Mul:
	{
		solAssert(_op.annotation().commonType, "");
		solAssert(_op.annotation().commonType->category() == Type::Category::Integer, "");
		smt::Expression left(expr(_op.leftExpression()));
		smt::Expression right(expr(_op.rightExpression()));
		Token::Value op = _op.getOperator();
		smt::Expression value(
			op == Token::Add ? left + right :
			op == Token::Sub ? left - right :
			/*op == Token::Mul*/ left * right
		);
		// Overflow check
		auto const& intType = dynamic_cast(*_op.annotation().commonType);
		checkCondition(
			value < minValue(intType),
			_op.location(),
			"Underflow (resulting value less than " + formatNumber(intType.minValue()) + ")",
			"value",
			&value
		);
		checkCondition(
			value > maxValue(intType),
			_op.location(),
			"Overflow (resulting value larger than " + formatNumber(intType.maxValue()) + ")",
			"value",
			&value
		);
		m_interface->addAssertion(expr(_op) == value);
		break;
	}
	default:
		m_errorReporter.warning(
			_op.location(),
			"Assertion checker does not yet implement this operator."
		);
	}
}
void SMTChecker::compareOperation(BinaryOperation const& _op)
{
	solAssert(_op.annotation().commonType, "");
	if (_op.annotation().commonType->category() == Type::Category::Integer)
	{
		smt::Expression left(expr(_op.leftExpression()));
		smt::Expression right(expr(_op.rightExpression()));
		Token::Value op = _op.getOperator();
		smt::Expression value = (
			op == Token::Equal ? (left == right) :
			op == Token::NotEqual ? (left != right) :
			op == Token::LessThan ? (left < right) :
			op == Token::LessThanOrEqual ? (left <= right) :
			op == Token::GreaterThan ? (left > right) :
			/*op == Token::GreaterThanOrEqual*/ (left >= right)
		);
		// TODO: check that other values for op are not possible.
		m_interface->addAssertion(expr(_op) == value);
	}
	else
		m_errorReporter.warning(
			_op.location(),
			"Assertion checker does not yet implement the type " + _op.annotation().commonType->toString() + " for comparisons"
		);
}
void SMTChecker::booleanOperation(BinaryOperation const& _op)
{
	solAssert(_op.getOperator() == Token::And || _op.getOperator() == Token::Or, "");
	solAssert(_op.annotation().commonType, "");
	if (_op.annotation().commonType->category() == Type::Category::Bool)
	{
		if (_op.getOperator() == Token::And)
			m_interface->addAssertion(expr(_op) == expr(_op.leftExpression()) && expr(_op.rightExpression()));
		else
			m_interface->addAssertion(expr(_op) == expr(_op.leftExpression()) || expr(_op.rightExpression()));
	}
	else
		m_errorReporter.warning(
			_op.location(),
			"Assertion checker does not yet implement the type " + _op.annotation().commonType->toString() + " for boolean operations"
		);
}
void SMTChecker::checkCondition(
	smt::Expression _condition,
	SourceLocation const& _location,
	string const& _description,
	string const& _additionalValueName,
	smt::Expression* _additionalValue
)
{
	m_interface->push();
	m_interface->addAssertion(_condition);
	vector expressionsToEvaluate;
	vector expressionNames;
	if (m_currentFunction)
	{
		if (_additionalValue)
		{
			expressionsToEvaluate.emplace_back(*_additionalValue);
			expressionNames.push_back(_additionalValueName);
		}
		for (auto const& param: m_currentFunction->parameters())
			if (knownVariable(*param))
			{
				expressionsToEvaluate.emplace_back(currentValue(*param));
				expressionNames.push_back(param->name());
			}
		for (auto const& var: m_currentFunction->localVariables())
			if (knownVariable(*var))
			{
				expressionsToEvaluate.emplace_back(currentValue(*var));
				expressionNames.push_back(var->name());
			}
	}
	smt::CheckResult result;
	vector values;
	try
	{
		tie(result, values) = m_interface->check(expressionsToEvaluate);
	}
	catch (smt::SolverError const& _e)
	{
		string description("Error querying SMT solver");
		if (_e.comment())
			description += ": " + *_e.comment();
		m_errorReporter.warning(_location, description);
		return;
	}
	switch (result)
	{
	case smt::CheckResult::SATISFIABLE:
	{
		std::ostringstream message;
		message << _description << " happens here";
		if (m_currentFunction)
		{
			message << " for:\n";
			solAssert(values.size() == expressionNames.size(), "");
			for (size_t i = 0; i < values.size(); ++i)
			{
				string formattedValue = values.at(i);
				try
				{
					// Parse and re-format nicely
					formattedValue = formatNumber(bigint(formattedValue));
				}
				catch (...) { }
				message << "  " << expressionNames.at(i) << " = " << formattedValue << "\n";
			}
		}
		else
			message << ".";
		m_errorReporter.warning(_location, message.str());
		break;
	}
	case smt::CheckResult::UNSATISFIABLE:
		break;
	case smt::CheckResult::UNKNOWN:
		m_errorReporter.warning(_location, _description + " might happen here.");
		break;
	case smt::CheckResult::ERROR:
		m_errorReporter.warning(_location, "Error trying to invoke SMT solver.");
		break;
	default:
		solAssert(false, "");
	}
	m_interface->pop();
}
void SMTChecker::createVariable(VariableDeclaration const& _varDecl, bool _setToZero)
{
	if (dynamic_cast(_varDecl.type().get()))
	{
		solAssert(m_currentSequenceCounter.count(&_varDecl) == 0, "");
		solAssert(m_nextFreeSequenceCounter.count(&_varDecl) == 0, "");
		solAssert(m_Variables.count(&_varDecl) == 0, "");
		m_currentSequenceCounter[&_varDecl] = 0;
		m_nextFreeSequenceCounter[&_varDecl] = 1;
		m_Variables.emplace(&_varDecl, m_interface->newFunction(uniqueSymbol(_varDecl), smt::Sort::Int, smt::Sort::Int));
		setValue(_varDecl, _setToZero);
	}
	else
		m_errorReporter.warning(
			_varDecl.location(),
			"Assertion checker does not yet support the type of this variable."
		);
}
string SMTChecker::uniqueSymbol(Declaration const& _decl)
{
	return _decl.name() + "_" + to_string(_decl.id());
}
string SMTChecker::uniqueSymbol(Expression const& _expr)
{
	return "expr_" + to_string(_expr.id());
}
bool SMTChecker::knownVariable(Declaration const& _decl)
{
	return m_currentSequenceCounter.count(&_decl);
}
smt::Expression SMTChecker::currentValue(Declaration const& _decl)
{
	solAssert(m_currentSequenceCounter.count(&_decl), "");
	return valueAtSequence(_decl, m_currentSequenceCounter.at(&_decl));
}
smt::Expression SMTChecker::valueAtSequence(const Declaration& _decl, int _sequence)
{
	return var(_decl)(_sequence);
}
smt::Expression SMTChecker::newValue(Declaration const& _decl)
{
	solAssert(m_currentSequenceCounter.count(&_decl), "");
	solAssert(m_nextFreeSequenceCounter.count(&_decl), "");
	m_currentSequenceCounter[&_decl] = m_nextFreeSequenceCounter[&_decl]++;
	return currentValue(_decl);
}
void SMTChecker::setValue(Declaration const& _decl, bool _setToZero)
{
	auto const& intType = dynamic_cast(*_decl.type());
	if (_setToZero)
		m_interface->addAssertion(currentValue(_decl) == 0);
	else
	{
		m_interface->addAssertion(currentValue(_decl) >= minValue(intType));
		m_interface->addAssertion(currentValue(_decl) <= maxValue(intType));
	}
}
smt::Expression SMTChecker::minValue(IntegerType const& _t)
{
	return smt::Expression(_t.minValue());
}
smt::Expression SMTChecker::maxValue(IntegerType const& _t)
{
	return smt::Expression(_t.maxValue());
}
smt::Expression SMTChecker::expr(Expression const& _e)
{
	if (!m_Expressions.count(&_e))
	{
		solAssert(_e.annotation().type, "");
		switch (_e.annotation().type->category())
		{
		case Type::Category::RationalNumber:
		{
			if (RationalNumberType const* rational = dynamic_cast(_e.annotation().type.get()))
				solAssert(!rational->isFractional(), "");
			m_Expressions.emplace(&_e, m_interface->newInteger(uniqueSymbol(_e)));
			break;
		}
		case Type::Category::Integer:
			m_Expressions.emplace(&_e, m_interface->newInteger(uniqueSymbol(_e)));
			break;
		case Type::Category::Bool:
			m_Expressions.emplace(&_e, m_interface->newBool(uniqueSymbol(_e)));
			break;
		default:
			solAssert(false, "Type not implemented.");
		}
	}
	return m_Expressions.at(&_e);
}
smt::Expression SMTChecker::var(Declaration const& _decl)
{
	solAssert(m_Variables.count(&_decl), "");
	return m_Variables.at(&_decl);
}