/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * @author Alex Beregszaszi * @date 2017 * Component that translates Solidity code into Yul. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace solidity; using namespace solidity::util; using namespace solidity::frontend; pair IRGenerator::run(ContractDefinition const& _contract) { string const ir = yul::reindent(generate(_contract)); yul::AssemblyStack asmStack(m_evmVersion, yul::AssemblyStack::Language::StrictAssembly, m_optimiserSettings); if (!asmStack.parseAndAnalyze("", ir)) { string errorMessage; for (auto const& error: asmStack.errors()) errorMessage += langutil::SourceReferenceFormatter::formatErrorInformation(*error); solAssert(false, ir + "\n\nInvalid IR generated:\n" + errorMessage + "\n"); } asmStack.optimize(); string warning = "/*******************************************************\n" " * WARNING *\n" " * Solidity to Yul compilation is still EXPERIMENTAL *\n" " * It can result in LOSS OF FUNDS or worse *\n" " * !USE AT YOUR OWN RISK! *\n" " *******************************************************/\n\n"; return {warning + ir, warning + asmStack.print()}; } string IRGenerator::generate(ContractDefinition const& _contract) { solUnimplementedAssert(!_contract.isLibrary(), "Libraries not yet implemented."); Whiskers t(R"( object "" { code { } object "" { code { } } } )"); resetContext(_contract); t("CreationObject", creationObjectName(_contract)); t("memoryInit", memoryInit()); t("constructor", constructorCode(_contract)); t("deploy", deployCode(_contract)); // We generate code for all functions and rely on the optimizer to remove them again // TODO it would probably be better to only generate functions when internalDispatch or // virtualFunctionName is called - same below. for (auto const* contract: _contract.annotation().linearizedBaseContracts) for (auto const* fun: contract->definedFunctions()) generateFunction(*fun); t("functions", m_context.functionCollector().requestedFunctions()); resetContext(_contract); t("RuntimeObject", runtimeObjectName(_contract)); t("dispatch", dispatchRoutine(_contract)); for (auto const* contract: _contract.annotation().linearizedBaseContracts) for (auto const* fun: contract->definedFunctions()) generateFunction(*fun); t("runtimeFunctions", m_context.functionCollector().requestedFunctions()); return t.render(); } string IRGenerator::generate(Block const& _block) { IRGeneratorForStatements generator(m_context, m_utils); _block.accept(generator); return generator.code(); } string IRGenerator::generateFunction(FunctionDefinition const& _function) { string functionName = m_context.functionName(_function); return m_context.functionCollector().createFunction(functionName, [&]() { Whiskers t(R"( function () { } )"); t("functionName", functionName); string params; for (auto const& varDecl: _function.parameters()) params += (params.empty() ? "" : ", ") + m_context.addLocalVariable(*varDecl).commaSeparatedList(); t("params", params); string retParams; string retInit; for (auto const& varDecl: _function.returnParameters()) { retParams += (retParams.empty() ? "" : ", ") + m_context.addLocalVariable(*varDecl).commaSeparatedList(); retInit += generateInitialAssignment(*varDecl); } t("returns", retParams.empty() ? "" : " -> " + retParams); t("initReturnVariables", retInit); t("body", generate(_function.body())); return t.render(); }); } string IRGenerator::generateGetter(VariableDeclaration const& _varDecl) { string functionName = m_context.functionName(_varDecl); Type const* type = _varDecl.annotation().type; solAssert(!_varDecl.isConstant(), ""); solAssert(!_varDecl.immutable(), ""); solAssert(_varDecl.isStateVariable(), ""); if (auto const* mappingType = dynamic_cast(type)) return m_context.functionCollector().createFunction(functionName, [&]() { pair slot_offset = m_context.storageLocationOfVariable(_varDecl); solAssert(slot_offset.second == 0, ""); FunctionType funType(_varDecl); solUnimplementedAssert(funType.returnParameterTypes().size() == 1, ""); TypePointer returnType = funType.returnParameterTypes().front(); unsigned num_keys = 0; stringstream indexAccesses; string slot = m_context.newYulVariable(); do { solUnimplementedAssert( mappingType->keyType()->sizeOnStack() == 1, "Multi-slot mapping key unimplemented - might not be a problem" ); indexAccesses << slot << " := " << m_utils.mappingIndexAccessFunction(*mappingType, *mappingType->keyType()) << "(" << slot; if (mappingType->keyType()->sizeOnStack() > 0) indexAccesses << ", " << suffixedVariableNameList("key", num_keys, num_keys + mappingType->keyType()->sizeOnStack()); indexAccesses << ")\n"; num_keys += mappingType->keyType()->sizeOnStack(); } while ((mappingType = dynamic_cast(mappingType->valueType()))); return Whiskers(R"( function () -> rval { let := rval := () } )") ("functionName", functionName) ("keys", suffixedVariableNameList("key", 0, num_keys)) ("readStorage", m_utils.readFromStorage(*returnType, 0, false)) ("indexAccesses", indexAccesses.str()) ("slot", slot) ("base", slot_offset.first.str()) .render(); }); else { solUnimplementedAssert(type->isValueType(), ""); return m_context.functionCollector().createFunction(functionName, [&]() { pair slot_offset = m_context.storageLocationOfVariable(_varDecl); return Whiskers(R"( function () -> rval { rval := () } )") ("functionName", functionName) ("readStorage", m_utils.readFromStorage(*type, slot_offset.second, false)) ("slot", slot_offset.first.str()) .render(); }); } } string IRGenerator::generateInitialAssignment(VariableDeclaration const& _varDecl) { IRGeneratorForStatements generator(m_context, m_utils); generator.initializeLocalVar(_varDecl); return generator.code(); } string IRGenerator::constructorCode(ContractDefinition const& _contract) { // Initialization of state variables in base-to-derived order. solAssert(!_contract.isLibrary(), "Tried to initialize state variables of library."); using boost::adaptors::reverse; ostringstream out; FunctionDefinition const* constructor = _contract.constructor(); if (constructor && !constructor->isPayable()) out << callValueCheck(); for (ContractDefinition const* contract: reverse(_contract.annotation().linearizedBaseContracts)) { out << "\n// Begin state variable initialization for contract \"" << contract->name() << "\" (" << contract->stateVariables().size() << " variables)\n"; IRGeneratorForStatements generator{m_context, m_utils}; for (VariableDeclaration const* variable: contract->stateVariables()) if (!variable->isConstant() && !variable->immutable()) generator.initializeStateVar(*variable); out << generator.code(); out << "// End state variable initialization for contract \"" << contract->name() << "\".\n"; } if (constructor) { ABIFunctions abiFunctions(m_evmVersion, m_context.revertStrings(), m_context.functionCollector()); unsigned paramVars = make_shared(constructor->functionType(false)->parameterTypes())->sizeOnStack(); Whiskers t(R"X( let programSize := datasize("") let argSize := sub(codesize(), programSize) let memoryDataOffset := (argSize) codecopy(memoryDataOffset, programSize, argSize) (memoryDataOffset, add(memoryDataOffset, argSize)) () )X"); t("object", creationObjectName(_contract)); t("allocate", m_utils.allocationFunction()); t("assignToParams", paramVars == 0 ? "" : "let " + suffixedVariableNameList("param_", 0, paramVars) + " := "); t("params", suffixedVariableNameList("param_", 0, paramVars)); t("abiDecode", abiFunctions.tupleDecoder(constructor->functionType(false)->parameterTypes(), true)); t("constructorName", m_context.functionName(*constructor)); out << t.render(); } return out.str(); } string IRGenerator::deployCode(ContractDefinition const& _contract) { Whiskers t(R"X( codecopy(0, dataoffset(""), datasize("")) return(0, datasize("")) )X"); t("object", runtimeObjectName(_contract)); return t.render(); } string IRGenerator::callValueCheck() { return "if callvalue() { revert(0, 0) }"; } string IRGenerator::creationObjectName(ContractDefinition const& _contract) { return _contract.name() + "_" + to_string(_contract.id()); } string IRGenerator::runtimeObjectName(ContractDefinition const& _contract) { return _contract.name() + "_" + to_string(_contract.id()) + "_deployed"; } string IRGenerator::dispatchRoutine(ContractDefinition const& _contract) { Whiskers t(R"X( if iszero(lt(calldatasize(), 4)) { let selector := (calldataload(0)) switch selector <#cases> case { // (4, calldatasize()) () let memPos := (0) let memEnd := (memPos ) return(memPos, sub(memEnd, memPos)) } default {} } if iszero(calldatasize()) { } )X"); t("shr224", m_utils.shiftRightFunction(224)); vector> functions; for (auto const& function: _contract.interfaceFunctions()) { functions.emplace_back(); map& templ = functions.back(); templ["functionSelector"] = "0x" + function.first.hex(); FunctionTypePointer const& type = function.second; templ["functionName"] = type->externalSignature(); templ["callValueCheck"] = type->isPayable() ? "" : callValueCheck(); unsigned paramVars = make_shared(type->parameterTypes())->sizeOnStack(); unsigned retVars = make_shared(type->returnParameterTypes())->sizeOnStack(); templ["assignToParams"] = paramVars == 0 ? "" : "let " + suffixedVariableNameList("param_", 0, paramVars) + " := "; templ["assignToRetParams"] = retVars == 0 ? "" : "let " + suffixedVariableNameList("ret_", 0, retVars) + " := "; ABIFunctions abiFunctions(m_evmVersion, m_context.revertStrings(), m_context.functionCollector()); templ["abiDecode"] = abiFunctions.tupleDecoder(type->parameterTypes()); templ["params"] = suffixedVariableNameList("param_", 0, paramVars); templ["retParams"] = suffixedVariableNameList("ret_", retVars, 0); if (FunctionDefinition const* funDef = dynamic_cast(&type->declaration())) templ["function"] = generateFunction(*funDef); else if (VariableDeclaration const* varDecl = dynamic_cast(&type->declaration())) templ["function"] = generateGetter(*varDecl); else solAssert(false, "Unexpected declaration for function!"); templ["allocate"] = m_utils.allocationFunction(); templ["abiEncode"] = abiFunctions.tupleEncoder(type->returnParameterTypes(), type->returnParameterTypes(), false); templ["comma"] = retVars == 0 ? "" : ", "; } t("cases", functions); if (FunctionDefinition const* fallback = _contract.fallbackFunction()) { string fallbackCode; if (!fallback->isPayable()) fallbackCode += callValueCheck(); fallbackCode += generateFunction(*fallback) + "() stop()"; t("fallback", fallbackCode); } else t("fallback", "revert(0, 0)"); if (FunctionDefinition const* etherReceiver = _contract.receiveFunction()) t("receiveEther", generateFunction(*etherReceiver) + "() stop()"); else t("receiveEther", ""); return t.render(); } string IRGenerator::memoryInit() { // This function should be called at the beginning of the EVM call frame // and thus can assume all memory to be zero, including the contents of // the "zero memory area" (the position CompilerUtils::zeroPointer points to). return Whiskers{"mstore(, )"} ("memPtr", to_string(CompilerUtils::freeMemoryPointer)) ("generalPurposeStart", to_string(CompilerUtils::generalPurposeMemoryStart)) .render(); } void IRGenerator::resetContext(ContractDefinition const& _contract) { solAssert( m_context.functionCollector().requestedFunctions().empty(), "Reset context while it still had functions." ); m_context = IRGenerationContext(m_evmVersion, m_context.revertStrings(), m_optimiserSettings); m_context.setMostDerivedContract(_contract); for (auto const& var: ContractType(_contract).stateVariables()) m_context.addStateVariable(*get<0>(var), get<1>(var), get<2>(var)); }