/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file crypto.cpp * @author Gav Wood * @date 2014 * Crypto test functions. */ #include #include #include #include #include #include #include #include #include "TestHelperCrypto.h" using namespace std; using namespace dev; using namespace dev::crypto; using namespace CryptoPP; BOOST_AUTO_TEST_SUITE(devcrypto) BOOST_AUTO_TEST_CASE(common_encrypt_decrypt) { string message("Now is the time for all good persons to come to the aide of humanity."); bytes m = asBytes(message); bytesConstRef bcr(&m); SecretKeyRef k; bytes cipher; encrypt(k.pub(), bcr, cipher); assert(cipher != asBytes(message) && cipher.size() > 0); bytes plain; decrypt(k.sec(), bytesConstRef(&cipher), plain); assert(asString(plain) == message); assert(plain == asBytes(message)); } BOOST_AUTO_TEST_CASE(cryptopp_vs_secp256k1) { ECIES::Decryptor d(pp::PRNG(), pp::secp256k1()); ECIES::Encryptor e(d.GetKey()); Secret s; pp::SecretFromDL_PrivateKey_EC(d.GetKey(), s); Public p; pp::PublicFromDL_PublicKey_EC(e.GetKey(), p); assert(dev::toAddress(s) == right160(dev::sha3(p.ref()))); Secret previous = s; for (auto i = 0; i < 30; i++) { ECIES::Decryptor d(pp::PRNG(), pp::secp256k1()); ECIES::Encryptor e(d.GetKey()); Secret s; pp::SecretFromDL_PrivateKey_EC(d.GetKey(), s); assert(s != previous); Public p; pp::PublicFromDL_PublicKey_EC(e.GetKey(), p); assert(dev::toAddress(s) == right160(dev::sha3(p.ref()))); } } BOOST_AUTO_TEST_CASE(cryptopp_keys_cryptor_sipaseckp256k1) { SecretKeyRef k; Secret s = k.sec(); // Convert secret to exponent used by pp Integer e = pp::ExponentFromSecret(s); // Test that exported DL_EC private is same as exponent from Secret CryptoPP::DL_PrivateKey_EC privatek; privatek.AccessGroupParameters().Initialize(pp::secp256k1()); privatek.SetPrivateExponent(e); assert(e == privatek.GetPrivateExponent()); // Test that exported secret is same as decryptor(privatek) secret ECIES::Decryptor d; d.AccessKey().AccessGroupParameters().Initialize(pp::secp256k1()); d.AccessKey().SetPrivateExponent(e); assert(d.AccessKey().GetPrivateExponent() == e); // Test that decryptor->encryptor->public == private->makepublic->public CryptoPP::DL_PublicKey_EC pubk; pubk.AccessGroupParameters().Initialize(pp::secp256k1()); privatek.MakePublicKey(pubk); ECIES::Encryptor enc(d); assert(pubk.GetPublicElement() == enc.AccessKey().GetPublicElement()); // Test against sipa/seckp256k1 Public p; pp::PublicFromExponent(pp::ExponentFromSecret(s), p); assert(toAddress(s) == dev::right160(dev::sha3(p.ref()))); assert(k.pub() == p); } BOOST_AUTO_TEST_CASE(cryptopp_public_export_import) { ECIES::Decryptor d(pp::PRNG(), pp::secp256k1()); ECIES::Encryptor e(d.GetKey()); Secret s; pp::SecretFromDL_PrivateKey_EC(d.GetKey(), s); Public p; pp::PublicFromDL_PublicKey_EC(e.GetKey(), p); Address addr = right160(dev::sha3(p.ref())); assert(toAddress(s) == addr); KeyPair l(s); assert(l.address() == addr); DL_PublicKey_EC pub; pub.Initialize(pp::secp256k1(), pp::PointFromPublic(p)); assert(pub.GetPublicElement() == e.GetKey().GetPublicElement()); SecretKeyRef k; Public p2; pp::PublicFromExponent(pp::ExponentFromSecret(k.sec()), p2); assert(k.pub() == p2); Address a = k.address(); Address a2 = toAddress(k.sec()); assert(a2 == a); } BOOST_AUTO_TEST_CASE(ecies_eckeypair) { KeyPair l = KeyPair::create(); SecretKeyRef k(l.sec()); string message("Now is the time for all good persons to come to the aide of humanity."); string original = message; bytes b = asBytes(message); encrypt(k.pub(), b); assert(b != asBytes(original)); decrypt(k.sec(), b); assert(b == asBytes(original)); } BOOST_AUTO_TEST_CASE(ecdhe_aes128_ctr_sha3mac) { // New connections require new ECDH keypairs // Every new connection requires a new EC keypair // Every new trust requires a new EC keypair // All connections should share seed for PRF (or PRNG) for nonces } BOOST_AUTO_TEST_CASE(cryptopp_ecies_message) { cnote << "Testing cryptopp_ecies_message..."; string const message("Now is the time for all good persons to come to the aide of humanity."); ECIES::Decryptor localDecryptor(pp::PRNG(), pp::secp256k1()); SavePrivateKey(localDecryptor.GetPrivateKey()); ECIES::Encryptor localEncryptor(localDecryptor); SavePublicKey(localEncryptor.GetPublicKey()); ECIES::Decryptor futureDecryptor; LoadPrivateKey(futureDecryptor.AccessPrivateKey()); futureDecryptor.GetPrivateKey().ThrowIfInvalid(pp::PRNG(), 3); ECIES::Encryptor futureEncryptor; LoadPublicKey(futureEncryptor.AccessPublicKey()); futureEncryptor.GetPublicKey().ThrowIfInvalid(pp::PRNG(), 3); // encrypt/decrypt with local string cipherLocal; StringSource ss1 (message, true, new PK_EncryptorFilter(pp::PRNG(), localEncryptor, new StringSink(cipherLocal) ) ); string plainLocal; StringSource ss2 (cipherLocal, true, new PK_DecryptorFilter(pp::PRNG(), localDecryptor, new StringSink(plainLocal) ) ); // encrypt/decrypt with future string cipherFuture; StringSource ss3 (message, true, new PK_EncryptorFilter(pp::PRNG(), futureEncryptor, new StringSink(cipherFuture) ) ); string plainFuture; StringSource ss4 (cipherFuture, true, new PK_DecryptorFilter(pp::PRNG(), futureDecryptor, new StringSink(plainFuture) ) ); // decrypt local w/future string plainFutureFromLocal; StringSource ss5 (cipherLocal, true, new PK_DecryptorFilter(pp::PRNG(), futureDecryptor, new StringSink(plainFutureFromLocal) ) ); // decrypt future w/local string plainLocalFromFuture; StringSource ss6 (cipherFuture, true, new PK_DecryptorFilter(pp::PRNG(), localDecryptor, new StringSink(plainLocalFromFuture) ) ); assert(plainLocal == message); assert(plainFuture == plainLocal); assert(plainFutureFromLocal == plainLocal); assert(plainLocalFromFuture == plainLocal); } BOOST_AUTO_TEST_CASE(cryptopp_ecdh_prime) { cnote << "Testing cryptopp_ecdh_prime..."; using namespace CryptoPP; OID curve = ASN1::secp256k1(); ECDH::Domain dhLocal(curve); SecByteBlock privLocal(dhLocal.PrivateKeyLength()); SecByteBlock pubLocal(dhLocal.PublicKeyLength()); dhLocal.GenerateKeyPair(pp::PRNG(), privLocal, pubLocal); ECDH::Domain dhRemote(curve); SecByteBlock privRemote(dhRemote.PrivateKeyLength()); SecByteBlock pubRemote(dhRemote.PublicKeyLength()); dhRemote.GenerateKeyPair(pp::PRNG(), privRemote, pubRemote); assert(dhLocal.AgreedValueLength() == dhRemote.AgreedValueLength()); // local: send public to remote; remote: send public to local // Local SecByteBlock sharedLocal(dhLocal.AgreedValueLength()); assert(dhLocal.Agree(sharedLocal, privLocal, pubRemote)); // Remote SecByteBlock sharedRemote(dhRemote.AgreedValueLength()); assert(dhRemote.Agree(sharedRemote, privRemote, pubLocal)); // Test Integer ssLocal, ssRemote; ssLocal.Decode(sharedLocal.BytePtr(), sharedLocal.SizeInBytes()); ssRemote.Decode(sharedRemote.BytePtr(), sharedRemote.SizeInBytes()); assert(ssLocal != 0); assert(ssLocal == ssRemote); } BOOST_AUTO_TEST_CASE(cryptopp_aes128_ctr) { const int aesKeyLen = 16; assert(sizeof(char) == sizeof(byte)); // generate test key AutoSeededRandomPool rng; SecByteBlock key(0x00, aesKeyLen); rng.GenerateBlock(key, key.size()); // cryptopp uses IV as nonce/counter which is same as using nonce w/0 ctr byte ctr[AES::BLOCKSIZE]; rng.GenerateBlock(ctr, sizeof(ctr)); string text = "Now is the time for all good persons to come to the aide of humanity."; // c++11 ftw unsigned char const* in = (unsigned char*)&text[0]; unsigned char* out = (unsigned char*)&text[0]; string original = text; string cipherCopy; try { CTR_Mode::Encryption e; e.SetKeyWithIV(key, key.size(), ctr); e.ProcessData(out, in, text.size()); assert(text != original); cipherCopy = text; } catch(CryptoPP::Exception& e) { cerr << e.what() << endl; } try { CTR_Mode< AES >::Decryption d; d.SetKeyWithIV(key, key.size(), ctr); d.ProcessData(out, in, text.size()); assert(text == original); } catch(CryptoPP::Exception& e) { cerr << e.what() << endl; } // reencrypt ciphertext... try { assert(cipherCopy != text); in = (unsigned char*)&cipherCopy[0]; out = (unsigned char*)&cipherCopy[0]; CTR_Mode::Encryption e; e.SetKeyWithIV(key, key.size(), ctr); e.ProcessData(out, in, text.size()); // yep, ctr mode. assert(cipherCopy == original); } catch(CryptoPP::Exception& e) { cerr << e.what() << endl; } } BOOST_AUTO_TEST_CASE(cryptopp_aes128_cbc) { const int aesKeyLen = 16; assert(sizeof(char) == sizeof(byte)); AutoSeededRandomPool rng; SecByteBlock key(0x00, aesKeyLen); rng.GenerateBlock(key, key.size()); // Generate random IV byte iv[AES::BLOCKSIZE]; rng.GenerateBlock(iv, AES::BLOCKSIZE); string string128("AAAAAAAAAAAAAAAA"); string plainOriginal = string128; CryptoPP::CBC_Mode::Encryption cbcEncryption(key, key.size(), iv); cbcEncryption.ProcessData((byte*)&string128[0], (byte*)&string128[0], string128.size()); assert(string128 != plainOriginal); CBC_Mode::Decryption cbcDecryption(key, key.size(), iv); cbcDecryption.ProcessData((byte*)&string128[0], (byte*)&string128[0], string128.size()); assert(plainOriginal == string128); // plaintext whose size isn't divisible by block size must use stream filter for padding string string192("AAAAAAAAAAAAAAAABBBBBBBB"); plainOriginal = string192; string cipher; StreamTransformationFilter* aesStream = new StreamTransformationFilter(cbcEncryption, new StringSink(cipher)); StringSource source(string192, true, aesStream); assert(cipher.size() == 32); cbcDecryption.ProcessData((byte*)&cipher[0], (byte*)&string192[0], cipher.size()); assert(string192 == plainOriginal); } BOOST_AUTO_TEST_CASE(eth_keypairs) { cnote << "Testing Crypto..."; secp256k1_start(); KeyPair p(Secret(fromHex("3ecb44df2159c26e0f995712d4f39b6f6e499b40749b1cf1246c37f9516cb6a4"))); BOOST_REQUIRE(p.pub() == Public(fromHex("97466f2b32bc3bb76d4741ae51cd1d8578b48d3f1e68da206d47321aec267ce78549b514e4453d74ef11b0cd5e4e4c364effddac8b51bcfc8de80682f952896f"))); BOOST_REQUIRE(p.address() == Address(fromHex("8a40bfaa73256b60764c1bf40675a99083efb075"))); { eth::Transaction t; t.nonce = 0; t.receiveAddress = h160(fromHex("944400f4b88ac9589a0f17ed4671da26bddb668b")); t.value = 1000; auto rlp = t.rlp(false); cnote << RLP(rlp); cnote << toHex(rlp); cnote << t.sha3(false); t.sign(p.secret()); rlp = t.rlp(true); cnote << RLP(rlp); cnote << toHex(rlp); cnote << t.sha3(true); BOOST_REQUIRE(t.sender() == p.address()); } } int cryptoTest() { cnote << "Testing Crypto..."; secp256k1_start(); KeyPair p(Secret(fromHex("3ecb44df2159c26e0f995712d4f39b6f6e499b40749b1cf1246c37f9516cb6a4"))); assert(p.pub() == Public(fromHex("97466f2b32bc3bb76d4741ae51cd1d8578b48d3f1e68da206d47321aec267ce78549b514e4453d74ef11b0cd5e4e4c364effddac8b51bcfc8de80682f952896f"))); assert(p.address() == Address(fromHex("8a40bfaa73256b60764c1bf40675a99083efb075"))); { eth::Transaction t; t.nonce = 0; t.receiveAddress = h160(fromHex("944400f4b88ac9589a0f17ed4671da26bddb668b")); t.value = 1000; auto rlp = t.rlp(false); cnote << RLP(rlp); cnote << toHex(rlp); cnote << t.sha3(false); t.sign(p.secret()); rlp = t.rlp(true); cnote << RLP(rlp); cnote << toHex(rlp); cnote << t.sha3(true); assert(t.sender() == p.address()); } #if 0 // Test transaction. bytes tx = fromHex("88005401010101010101010101010101010101010101011f0de0b6b3a76400001ce8d4a5100080181c373130a009ba1f10285d4e659568bfcfec85067855c5a3c150100815dad4ef98fd37cf0593828c89db94bd6c64e210a32ef8956eaa81ea9307194996a3b879441f5d"); cout << "TX: " << RLP(tx) << endl; Transaction t2(tx); cout << "SENDER: " << hex << t2.sender() << dec << endl; secp256k1_start(); Transaction t; t.nonce = 0; t.value = 1; // 1 wei. t.receiveAddress = toAddress(sha3("123")); bytes sig64 = toBigEndian(t.vrs.r) + toBigEndian(t.vrs.s); cout << "SIG: " << sig64.size() << " " << toHex(sig64) << " " << t.vrs.v << endl; auto msg = t.rlp(false); cout << "TX w/o SIG: " << RLP(msg) << endl; cout << "RLP(TX w/o SIG): " << toHex(t.rlpString(false)) << endl; std::string hmsg = sha3(t.rlpString(false), false); cout << "SHA256(RLP(TX w/o SIG)): 0x" << toHex(hmsg) << endl; bytes privkey = sha3Bytes("123"); { bytes pubkey(65); int pubkeylen = 65; int ret = secp256k1_ecdsa_seckey_verify(privkey.data()); cout << "SEC: " << dec << ret << " " << toHex(privkey) << endl; ret = secp256k1_ecdsa_pubkey_create(pubkey.data(), &pubkeylen, privkey.data(), 1); pubkey.resize(pubkeylen); int good = secp256k1_ecdsa_pubkey_verify(pubkey.data(), (int)pubkey.size()); cout << "PUB: " << dec << ret << " " << pubkeylen << " " << toHex(pubkey) << (good ? " GOOD" : " BAD") << endl; } // Test roundtrip... { bytes sig(64); u256 nonce = 0; int v = 0; cout << toHex(hmsg) << endl; cout << toHex(privkey) << endl; cout << hex << nonce << dec << endl; int ret = secp256k1_ecdsa_sign_compact((byte const*)hmsg.data(), (int)hmsg.size(), sig.data(), privkey.data(), (byte const*)&nonce, &v); cout << "MYSIG: " << dec << ret << " " << sig.size() << " " << toHex(sig) << " " << v << endl; bytes pubkey(65); int pubkeylen = 65; ret = secp256k1_ecdsa_recover_compact((byte const*)hmsg.data(), (int)hmsg.size(), (byte const*)sig.data(), pubkey.data(), &pubkeylen, 0, v); pubkey.resize(pubkeylen); cout << "MYREC: " << dec << ret << " " << pubkeylen << " " << toHex(pubkey) << endl; } { bytes pubkey(65); int pubkeylen = 65; int ret = secp256k1_ecdsa_recover_compact((byte const*)hmsg.data(), (int)hmsg.size(), (byte const*)sig64.data(), pubkey.data(), &pubkeylen, 0, (int)t.vrs.v - 27); pubkey.resize(pubkeylen); cout << "RECPUB: " << dec << ret << " " << pubkeylen << " " << toHex(pubkey) << endl; cout << "SENDER: " << hex << toAddress(dev::sha3(bytesConstRef(&pubkey).cropped(1))) << dec << endl; } #endif return 0; } BOOST_AUTO_TEST_SUITE_END()