/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ #include #include #include #include #include #include #include using namespace std; using namespace boost::unit_test::framework; using namespace boost::test_tools; using namespace solidity::util; namespace fs = boost::filesystem; namespace solidity::phaser::test { class CountingAlgorithm: public GeneticAlgorithm { public: using GeneticAlgorithm::GeneticAlgorithm; Population runNextRound(Population _population) override { ++m_currentRound; return _population; } size_t m_currentRound = 0; }; class RandomisingAlgorithm: public GeneticAlgorithm { public: using GeneticAlgorithm::GeneticAlgorithm; Population runNextRound(Population _population) override { return Population::makeRandom(_population.fitnessMetric(), _population.individuals().size(), 10, 20); } }; class AlgorithmRunnerFixture { protected: shared_ptr m_fitnessMetric = make_shared(); output_test_stream m_output; AlgorithmRunner::Options m_options; }; class AlgorithmRunnerAutosaveFixture: public AlgorithmRunnerFixture { public: static vector chromosomeStrings(Population const& _population) { vector lines; for (auto const& individual: _population.individuals()) lines.push_back(toString(individual.chromosome)); return lines; } protected: TemporaryDirectory m_tempDir; string const m_autosavePath = m_tempDir.memberPath("population-autosave.txt"); Population const m_population = Population::makeRandom(m_fitnessMetric, 5, 0, 20); RandomisingAlgorithm m_algorithm; }; BOOST_AUTO_TEST_SUITE(Phaser) BOOST_AUTO_TEST_SUITE(AlgorithmRunnerTest) BOOST_FIXTURE_TEST_CASE(run_should_call_runNextRound_once_per_round, AlgorithmRunnerFixture) { m_options.maxRounds = 5; AlgorithmRunner runner(Population(m_fitnessMetric), m_options, m_output); CountingAlgorithm algorithm; BOOST_TEST(algorithm.m_currentRound == 0); runner.run(algorithm); BOOST_TEST(algorithm.m_currentRound == 5); runner.run(algorithm); BOOST_TEST(algorithm.m_currentRound == 10); } BOOST_FIXTURE_TEST_CASE(run_should_print_the_top_chromosome, AlgorithmRunnerFixture) { // run() is allowed to print more but should at least print the first one m_options.maxRounds = 1; AlgorithmRunner runner( // NOTE: Chromosomes chosen so that they're not substrings of each other and are not // words likely to appear in the output in normal circumstances. Population(m_fitnessMetric, {Chromosome("fcCUnDve"), Chromosome("jsxIOo"), Chromosome("ighTLM")}), m_options, m_output ); CountingAlgorithm algorithm; BOOST_TEST(m_output.is_empty()); runner.run(algorithm); BOOST_TEST(countSubstringOccurrences(m_output.str(), toString(runner.population().individuals()[0].chromosome)) == 1); runner.run(algorithm); runner.run(algorithm); runner.run(algorithm); BOOST_TEST(countSubstringOccurrences(m_output.str(), toString(runner.population().individuals()[0].chromosome)) == 4); } BOOST_FIXTURE_TEST_CASE(run_should_save_initial_population_to_file_if_autosave_file_specified, AlgorithmRunnerAutosaveFixture) { m_options.maxRounds = 0; m_options.populationAutosaveFile = m_autosavePath; AlgorithmRunner runner(m_population, m_options, m_output); assert(!fs::exists(m_autosavePath)); runner.run(m_algorithm); assert(runner.population() == m_population); BOOST_TEST(fs::is_regular_file(m_autosavePath)); BOOST_TEST(readLinesFromFile(m_autosavePath) == chromosomeStrings(runner.population())); } BOOST_FIXTURE_TEST_CASE(run_should_save_population_to_file_if_autosave_file_specified, AlgorithmRunnerAutosaveFixture) { m_options.maxRounds = 1; m_options.populationAutosaveFile = m_autosavePath; AlgorithmRunner runner(m_population, m_options, m_output); assert(!fs::exists(m_autosavePath)); runner.run(m_algorithm); assert(runner.population() != m_population); BOOST_TEST(fs::is_regular_file(m_autosavePath)); BOOST_TEST(readLinesFromFile(m_autosavePath) == chromosomeStrings(runner.population())); } BOOST_FIXTURE_TEST_CASE(run_should_overwrite_existing_file_if_autosave_file_specified, AlgorithmRunnerAutosaveFixture) { m_options.maxRounds = 5; m_options.populationAutosaveFile = m_autosavePath; AlgorithmRunner runner(m_population, m_options, m_output); assert(!fs::exists(m_autosavePath)); vector originalContent = {"Original content"}; { ofstream tmpFile(m_autosavePath); tmpFile << originalContent[0] << endl; } assert(fs::exists(m_autosavePath)); assert(readLinesFromFile(m_autosavePath) == originalContent); runner.run(m_algorithm); BOOST_TEST(fs::is_regular_file(m_autosavePath)); BOOST_TEST(readLinesFromFile(m_autosavePath) != originalContent); } BOOST_FIXTURE_TEST_CASE(run_should_not_save_population_to_file_if_autosave_file_not_specified, AlgorithmRunnerAutosaveFixture) { m_options.maxRounds = 5; m_options.populationAutosaveFile = nullopt; AlgorithmRunner runner(m_population, m_options, m_output); assert(!fs::exists(m_autosavePath)); runner.run(m_algorithm); BOOST_TEST(!fs::exists(m_autosavePath)); } BOOST_FIXTURE_TEST_CASE(run_should_randomise_duplicate_chromosomes_if_requested, AlgorithmRunnerFixture) { Chromosome duplicate("afc"); Population population(m_fitnessMetric, {duplicate, duplicate, duplicate}); CountingAlgorithm algorithm; m_options.maxRounds = 1; m_options.randomiseDuplicates = true; m_options.minChromosomeLength = 50; m_options.maxChromosomeLength = 50; AlgorithmRunner runner(population, m_options, m_output); runner.run(algorithm); auto const& newIndividuals = runner.population().individuals(); BOOST_TEST(newIndividuals.size() == 3); BOOST_TEST(( newIndividuals[0].chromosome == duplicate || newIndividuals[1].chromosome == duplicate || newIndividuals[2].chromosome == duplicate )); BOOST_TEST(newIndividuals[0] != newIndividuals[1]); BOOST_TEST(newIndividuals[0] != newIndividuals[2]); BOOST_TEST(newIndividuals[1] != newIndividuals[2]); BOOST_TEST((newIndividuals[0].chromosome.length() == 50 || newIndividuals[0].chromosome == duplicate)); BOOST_TEST((newIndividuals[1].chromosome.length() == 50 || newIndividuals[1].chromosome == duplicate)); BOOST_TEST((newIndividuals[2].chromosome.length() == 50 || newIndividuals[2].chromosome == duplicate)); } BOOST_FIXTURE_TEST_CASE(run_should_not_randomise_duplicate_chromosomes_if_not_requested, AlgorithmRunnerFixture) { Chromosome duplicate("afc"); Population population(m_fitnessMetric, {duplicate, duplicate, duplicate}); CountingAlgorithm algorithm; m_options.maxRounds = 1; m_options.randomiseDuplicates = false; AlgorithmRunner runner(population, m_options, m_output); runner.run(algorithm); BOOST_TEST(runner.population().individuals().size() == 3); BOOST_TEST(runner.population().individuals()[0].chromosome == duplicate); BOOST_TEST(runner.population().individuals()[1].chromosome == duplicate); BOOST_TEST(runner.population().individuals()[2].chromosome == duplicate); } BOOST_AUTO_TEST_SUITE_END() BOOST_AUTO_TEST_SUITE_END() }