/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
// SPDX-License-Identifier: GPL-3.0
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace solidity;
using namespace solidity::util;
using namespace solidity::frontend;
using namespace solidity::frontend::experimental;
using namespace std::string_literals;
std::string IRGeneratorForStatements::generate(ASTNode const& _node)
{
_node.accept(*this);
return m_code.str();
}
namespace {
struct CopyTranslate: public yul::ASTCopier
{
CopyTranslate(
IRGenerationContext const& _context,
yul::Dialect const& _dialect,
map _references
): m_context(_context), m_dialect(_dialect), m_references(std::move(_references)) {}
using ASTCopier::operator();
yul::Expression operator()(yul::Identifier const& _identifier) override
{
// The operator() function is only called in lvalue context. In rvalue context,
// only translate(yul::Identifier) is called.
if (m_references.count(&_identifier))
return translateReference(_identifier);
else
return ASTCopier::operator()(_identifier);
}
yul::YulString translateIdentifier(yul::YulString _name) override
{
if (m_dialect.builtin(_name))
return _name;
else
return yul::YulString{"usr$" + _name.str()};
}
yul::Identifier translate(yul::Identifier const& _identifier) override
{
if (!m_references.count(&_identifier))
return ASTCopier::translate(_identifier);
yul::Expression translated = translateReference(_identifier);
solAssert(holds_alternative(translated));
return get(std::move(translated));
}
private:
/// Translates a reference to a local variable, potentially including
/// a suffix. Might return a literal, which causes this to be invalid in
/// lvalue-context.
yul::Expression translateReference(yul::Identifier const& _identifier)
{
auto const& reference = m_references.at(&_identifier);
auto const varDecl = dynamic_cast(reference.declaration);
solAssert(varDecl, "External reference in inline assembly to something that is not a variable declaration.");
auto type = m_context.analysis.annotation(*varDecl).type;
solAssert(type);
solAssert(m_context.env->typeEquals(*type, m_context.analysis.typeSystem().type(BuiltinType::Word, {})));
string value = IRNames::localVariable(*varDecl);
return yul::Identifier{_identifier.debugData, yul::YulString{value}};
}
IRGenerationContext const& m_context;
yul::Dialect const& m_dialect;
map m_references;
};
}
bool IRGeneratorForStatements::visit(InlineAssembly const& _assembly)
{
CopyTranslate bodyCopier{m_context, _assembly.dialect(), _assembly.annotation().externalReferences};
yul::Statement modified = bodyCopier(_assembly.operations());
solAssert(holds_alternative(modified));
m_code << yul::AsmPrinter()(std::get(modified)) << "\n";
return false;
}
bool IRGeneratorForStatements::visit(VariableDeclarationStatement const& _variableDeclarationStatement)
{
solAssert(_variableDeclarationStatement.declarations().size() == 1, "multi variable declarations not supported");
solAssert(!_variableDeclarationStatement.initialValue(), "initial values not yet supported");
VariableDeclaration const* variableDeclaration = _variableDeclarationStatement.declarations().front().get();
solAssert(variableDeclaration);
// TODO: check the type of the variable; register local variable; initialize
m_code << "let " << IRNames::localVariable(*variableDeclaration) << "\n";
return false;
}
bool IRGeneratorForStatements::visit(ExpressionStatement const&)
{
return true;
}
bool IRGeneratorForStatements::visit(Identifier const& _identifier)
{
auto const* rhsVar = dynamic_cast(_identifier.annotation().referencedDeclaration);
solAssert(rhsVar, "Can only reference identifiers referring to variables.");
m_code << "let " << IRNames::localVariable(_identifier) << " := " << IRNames::localVariable(*rhsVar) << "\n";
return false;
}
void IRGeneratorForStatements::endVisit(Return const& _return)
{
if (Expression const* value = _return.expression())
{
solAssert(_return.annotation().functionReturnParameters, "Invalid return parameters pointer.");
vector> const& returnParameters =
_return.annotation().functionReturnParameters->parameters();
solAssert(returnParameters.size() == 1, "Returning tuples not yet supported.");
m_code << IRNames::localVariable(*returnParameters.front()) << " := " << IRNames::localVariable(*value) << "\n";
}
m_code << "leave\n";
}
bool IRGeneratorForStatements::visit(FunctionCall const& _functionCall)
{
for(auto arg: _functionCall.arguments())
arg->accept(*this);
FunctionDefinition const* functionDefinition = nullptr;
if (auto const* identifier = dynamic_cast(&_functionCall.expression()))
{
functionDefinition = dynamic_cast(identifier->annotation().referencedDeclaration);
}
else if (auto const* memberAccess = dynamic_cast(&_functionCall.expression()))
{
auto const& expressionAnnotation = m_context.analysis.annotation(memberAccess->expression());
solAssert(expressionAnnotation.type);
auto typeConstructor = std::get<0>(TypeSystemHelpers{m_context.analysis.typeSystem()}.destTypeConstant(
m_context.env->resolve(*expressionAnnotation.type)
));
auto const* typeClass = dynamic_cast(&memberAccess->expression());
solAssert(typeClass, "Function call to member access only supported for type classes.");
auto const* typeClassDefinition = dynamic_cast(typeClass->annotation().referencedDeclaration);
solAssert(typeClassDefinition, "Function call to member access only supported for type classes.");
auto const& classAnnotation = m_context.analysis.annotation(*typeClassDefinition);
TypeClassInstantiation const* instantiation = classAnnotation.instantiations.at(typeConstructor);
for (auto const& node: instantiation->subNodes())
{
auto const* def = dynamic_cast(node.get());
solAssert(def);
if (def->name() == memberAccess->memberName())
{
functionDefinition = def;
break;
}
}
}
else
solAssert(false, "Complex function call expressions not supported.");
solAssert(functionDefinition);
auto functionType = m_context.analysis.annotation(_functionCall.expression()).type;
solAssert(functionType);
// TODO: get around resolveRecursive by passing the environment further down?
functionType = m_context.env->resolveRecursive(*functionType);
m_context.enqueueFunctionDefinition(functionDefinition, *functionType);
m_code << "let " << IRNames::localVariable(_functionCall) << " := " << IRNames::function(*m_context.env, *functionDefinition, *functionType) << "(";
auto const& arguments = _functionCall.arguments();
if (arguments.size() > 1)
for (auto arg: arguments | ranges::views::drop_last(1))
m_code << IRNames::localVariable(*arg) << ", ";
if (!arguments.empty())
m_code << IRNames::localVariable(*arguments.back());
m_code << ")\n";
return false;
}
bool IRGeneratorForStatements::visit(Assignment const& _assignment)
{
_assignment.rightHandSide().accept(*this);
auto const* lhs = dynamic_cast(&_assignment.leftHandSide());
solAssert(lhs, "Can only assign to identifiers.");
auto const* lhsVar = dynamic_cast(lhs->annotation().referencedDeclaration);
solAssert(lhsVar, "Can only assign to identifiers referring to variables.");
m_code << IRNames::localVariable(*lhsVar) << " := " << IRNames::localVariable(_assignment.rightHandSide()) << "\n";
m_code << "let " << IRNames::localVariable(_assignment) << " := " << IRNames::localVariable(*lhsVar) << "\n";
return false;
}
bool IRGeneratorForStatements::visitNode(ASTNode const&)
{
solAssert(false, "Unsupported AST node during statement code generation.");
}