/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ // SPDX-License-Identifier: GPL-3.0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace solidity; using namespace solidity::util; using namespace solidity::frontend; using namespace solidity::langutil; using namespace solidity::smtutil; CHCSmtLib2Interface::CHCSmtLib2Interface( std::map const& _queryResponses, ReadCallback::Callback _smtCallback, SMTSolverChoice _enabledSolvers, std::optional _queryTimeout ): CHCSolverInterface(_queryTimeout), m_smtlib2(std::make_unique(_queryResponses, _smtCallback, _enabledSolvers, m_queryTimeout)), m_queryResponses(std::move(_queryResponses)), m_smtCallback(_smtCallback), m_enabledSolvers(_enabledSolvers) { reset(); } void CHCSmtLib2Interface::reset() { m_accumulatedOutput.clear(); m_variables.clear(); m_unhandledQueries.clear(); } void CHCSmtLib2Interface::registerRelation(Expression const& _expr) { smtAssert(_expr.sort); smtAssert(_expr.sort->kind == Kind::Function); if (!m_variables.count(_expr.name)) { auto fSort = std::dynamic_pointer_cast(_expr.sort); std::string domain = toSmtLibSort(fSort->domain); // Relations are predicates which have implicit codomain Bool. m_variables.insert(_expr.name); write( "(declare-fun |" + _expr.name + "| " + domain + " Bool)" ); } } void CHCSmtLib2Interface::addRule(Expression const& _expr, std::string const& /*_name*/) { write( "(assert\n(forall " + forall() + "\n" + m_smtlib2->toSExpr(_expr) + "))\n\n" ); } std::tuple CHCSmtLib2Interface::query(Expression const& _block) { std::string query = dumpQuery(_block); std::string response = querySolver(query); CheckResult result; // TODO proper parsing if (boost::starts_with(response, "sat")) { result = CheckResult::UNSATISFIABLE; return {result, invariantsFromSMTLib(response), {}}; } else if (boost::starts_with(response, "unsat")) { result = CheckResult::SATISFIABLE; return {result, Expression(true), graphFromZ3Proof(response)}; } else if (boost::starts_with(response, "unknown")) result = CheckResult::UNKNOWN; else result = CheckResult::ERROR; return {result, Expression(true), {}}; } void CHCSmtLib2Interface::declareVariable(std::string const& _name, SortPointer const& _sort) { smtAssert(_sort); if (_sort->kind == Kind::Function) declareFunction(_name, _sort); else if (!m_variables.count(_name)) { m_variables.insert(_name); write("(declare-var |" + _name + "| " + toSmtLibSort(_sort) + ')'); } } std::string CHCSmtLib2Interface::toSmtLibSort(SortPointer _sort) { return m_smtlib2->toSmtLibSort(_sort); } std::string CHCSmtLib2Interface::toSmtLibSort(std::vector const& _sorts) { return m_smtlib2->toSmtLibSort(_sorts); } std::string CHCSmtLib2Interface::forall() { std::string vars("("); for (auto const& [name, sort]: m_smtlib2->variables()) { solAssert(sort, ""); if (sort->kind != Kind::Function) vars += " (" + name + " " + toSmtLibSort(sort) + ")"; } vars += ")"; return vars; } void CHCSmtLib2Interface::declareFunction(std::string const& _name, SortPointer const& _sort) { smtAssert(_sort); smtAssert(_sort->kind == Kind::Function); // TODO Use domain and codomain as key as well if (!m_variables.count(_name)) { auto fSort = std::dynamic_pointer_cast(_sort); smtAssert(fSort->codomain); std::string domain = toSmtLibSort(fSort->domain); std::string codomain = toSmtLibSort(fSort->codomain); m_variables.insert(_name); write( "(declare-fun |" + _name + "| " + domain + " " + codomain + ")" ); } } void CHCSmtLib2Interface::write(std::string _data) { m_accumulatedOutput += std::move(_data) + "\n"; } std::string CHCSmtLib2Interface::querySolver(std::string const& _input) { util::h256 inputHash = util::keccak256(_input); if (m_queryResponses.count(inputHash)) return m_queryResponses.at(inputHash); smtAssert(m_enabledSolvers.eld || m_enabledSolvers.z3); smtAssert(m_smtCallback, "Callback must be set!"); std::string solverBinary = [&](){ if (m_enabledSolvers.eld) return "eld"; if (m_enabledSolvers.z3) return "z3 rlimit=1000000 fp.spacer.q3.use_qgen=true fp.spacer.mbqi=false fp.spacer.ground_pobs=false"; return ""; }(); std::string z3Input = _input + "(get-model)\n"; auto const& query = boost::starts_with(solverBinary, "z3") ? z3Input : _input; auto result = m_smtCallback(ReadCallback::kindString(ReadCallback::Kind::SMTQuery) + " " + solverBinary, query); if (result.success) { if (m_enabledSolvers.z3 and boost::starts_with(result.responseOrErrorMessage, "unsat")) { solverBinary += " fp.xform.slice=false fp.xform.inline_linear=false fp.xform.inline_eager=false"; std::string extendedQuery = "(set-option :produce-proofs true)" + _input + "\n(get-proof)"; auto secondResult = m_smtCallback(ReadCallback::kindString(ReadCallback::Kind::SMTQuery) + " " + solverBinary, extendedQuery); if (secondResult.success and boost::starts_with(secondResult.responseOrErrorMessage, "unsat")) return secondResult.responseOrErrorMessage; } return result.responseOrErrorMessage; } m_unhandledQueries.push_back(_input); return "unknown\n"; } std::string CHCSmtLib2Interface::dumpQuery(Expression const& _expr) { std::stringstream s; s << createHeaderAndDeclarations() << m_accumulatedOutput << std::endl << createQueryAssertion(_expr.name) << std::endl << "(check-sat)" << std::endl; return s.str(); } std::string CHCSmtLib2Interface::createHeaderAndDeclarations() { std::stringstream s; if (m_queryTimeout) s << "(set-option :timeout " + std::to_string(*m_queryTimeout) + ")\n"; s << "(set-logic HORN)" << std::endl; for (auto const& decl: m_smtlib2->userSorts() | ranges::views::values) s << decl << std::endl; return s.str(); } std::string CHCSmtLib2Interface::createQueryAssertion(std::string name) { return "(assert\n(forall " + forall() + "\n" + "(=> " + name + " false)))"; } namespace { bool isNumber(std::string const& _expr) { for (char c: _expr) if (!isDigit(c) && c != '.') return false; return true; } class SMTLibTranslationContext { SMTLib2Interface const& m_smtlib2Interface; std::map knownVariables; public: SMTLibTranslationContext(SMTLib2Interface const& _smtlib2Interface) : m_smtlib2Interface(_smtlib2Interface) { // fill user defined sorts and constructors auto const& userSorts = _smtlib2Interface.userSorts(); // TODO: It would be better to remember userSorts as SortPointers for (auto const& [_, definition] : userSorts) { std::stringstream ss(definition); SMTLib2Parser parser(ss); auto expr = parser.parseExpression(); solAssert(parser.isEOF()); solAssert(!isAtom(expr)); auto const& args = asSubExpressions(expr); solAssert(args.size() == 3); solAssert(isAtom(args[0]) && asAtom(args[0]) == "declare-datatypes"); // args[1] is the name of the type // args[2] is the constructor with the members solAssert(!isAtom(args[2]) && asSubExpressions(args[2]).size() == 1 && !isAtom(asSubExpressions(args[2])[0])); auto const& constructors = asSubExpressions(asSubExpressions(args[2])[0]); solAssert(constructors.size() == 1); auto const& constructor = constructors[0]; // constructor is a list: name + members solAssert(!isAtom(constructor)); auto const& constructorArgs = asSubExpressions(constructor); for (unsigned i = 1u; i < constructorArgs.size(); ++i) { auto const& carg = constructorArgs[i]; solAssert(!isAtom(carg) && asSubExpressions(carg).size() == 2); auto const& nameSortPair = asSubExpressions(carg); solAssert(isAtom(nameSortPair[0])); knownVariables.insert({asAtom(nameSortPair[0]), toSort(nameSortPair[1])}); } } } void addVariableDeclaration(std::string name, SortPointer sort) { solAssert(knownVariables.find(name) == knownVariables.end()); knownVariables.insert({std::move(name), std::move(sort)}); } std::optional lookupKnownTupleSort(std::string const& name) { std::string quotedName = "|" + name + "|"; auto it = ranges::find_if(m_smtlib2Interface.sortNames(), [&](auto const& entry) { return entry.second == name || entry.second == quotedName; }); if (it != m_smtlib2Interface.sortNames().end() && it->first->kind == Kind::Tuple) { auto tupleSort = std::dynamic_pointer_cast(it->first); smtAssert(tupleSort); return tupleSort; } return {}; } SortPointer toSort(SMTLib2Expression const& expr) { if (isAtom(expr)) { auto const& name = asAtom(expr); if (name == "Int") return SortProvider::sintSort; if (name == "Bool") return SortProvider::boolSort; auto tupleSort = lookupKnownTupleSort(name); if (tupleSort) return tupleSort.value(); } else { auto const& args = asSubExpressions(expr); if (asAtom(args[0]) == "Array") { assert(args.size() == 3); auto domainSort = toSort(args[1]); auto codomainSort = toSort(args[2]); return std::make_shared(std::move(domainSort), std::move(codomainSort)); } if (args.size() == 3 && isAtom(args[0]) && asAtom(args[0]) == "_" && isAtom(args[1]) && asAtom(args[1]) == "int2bv") { solAssert(isAtom(args[2])); return std::make_shared(std::stoul(asAtom(args[2]))); } } smtAssert(false, "Unknown sort encountered"); } smtutil::Expression parseQuantifier( std::string const& quantifierName, std::vector const& varList, SMTLib2Expression const& coreExpression ) { std::vector> boundVariables; for (auto const& sortedVar: varList) { solAssert(!isAtom(sortedVar)); auto varSortPair = asSubExpressions(sortedVar); solAssert(varSortPair.size() == 2); solAssert(isAtom(varSortPair[0])); boundVariables.emplace_back(asAtom(varSortPair[0]), toSort(varSortPair[1])); } for (auto const& [var, sort] : boundVariables) { solAssert(knownVariables.find(var) == knownVariables.end()); // TODO: deal with shadowing? knownVariables.insert({var, sort}); } auto core = toSMTUtilExpression(coreExpression); for (auto const& [var, sort] : boundVariables) { solAssert(knownVariables.find(var) != knownVariables.end()); knownVariables.erase(var); } return Expression(quantifierName, {core}, SortProvider::boolSort); // TODO: what about the bound variables? } smtutil::Expression toSMTUtilExpression(SMTLib2Expression const& _expr) { return std::visit(GenericVisitor{ [&](std::string const& _atom) { if (_atom == "true" || _atom == "false") return smtutil::Expression(_atom == "true"); else if (isNumber(_atom)) return smtutil::Expression(_atom, {}, SortProvider::sintSort); else if (knownVariables.find(_atom) != knownVariables.end()) return smtutil::Expression(_atom, {}, knownVariables.at(_atom)); else // assume this is a predicate, so has sort bool; TODO: Context should be aware of the predicates! return smtutil::Expression(_atom, {}, SortProvider::boolSort); }, [&](std::vector const& _subExpr) { SortPointer sort; std::vector arguments; if (isAtom(_subExpr.front())) { std::string const& op = asAtom(_subExpr.front()); if (op == "!") { // named term, we ignore the name solAssert(_subExpr.size() > 2); return toSMTUtilExpression(_subExpr[1]); } if (op == "exists" || op == "forall") { solAssert(_subExpr.size() == 3); solAssert(!isAtom(_subExpr[1])); return parseQuantifier(op, asSubExpressions(_subExpr[1]), _subExpr[2]); } for (size_t i = 1; i < _subExpr.size(); i++) arguments.emplace_back(toSMTUtilExpression(_subExpr[i])); if (auto tupleSort = lookupKnownTupleSort(op); tupleSort) { auto sortSort = std::make_shared(tupleSort.value()); return Expression::tuple_constructor(Expression(sortSort), arguments); } if (knownVariables.find(op) != knownVariables.end()) { return smtutil::Expression(op, std::move(arguments), knownVariables.at(op)); } else { std::set boolOperators{"and", "or", "not", "=", "<", ">", "<=", ">=", "=>"}; sort = contains(boolOperators, op) ? SortProvider::boolSort : arguments.back().sort; return smtutil::Expression(op, std::move(arguments), std::move(sort)); } smtAssert(false, "Unhandled case in expression conversion"); } else { // check for const array if (_subExpr.size() == 2 and !isAtom(_subExpr[0])) { auto const& typeArgs = asSubExpressions(_subExpr.front()); if (typeArgs.size() == 3 && typeArgs[0].toString() == "as" && typeArgs[1].toString() == "const") { auto arraySort = toSort(typeArgs[2]); auto sortSort = std::make_shared(arraySort); return smtutil::Expression::const_array(Expression(sortSort), toSMTUtilExpression(_subExpr[1])); } if (typeArgs.size() == 3 && typeArgs[0].toString() == "_" && typeArgs[1].toString() == "int2bv") { auto bvSort = std::dynamic_pointer_cast(toSort(_subExpr[0])); solAssert(bvSort); return smtutil::Expression::int2bv(toSMTUtilExpression(_subExpr[1]), bvSort->size); } if (typeArgs.size() == 4 && typeArgs[0].toString() == "_") { if (typeArgs[1].toString() == "extract") { return smtutil::Expression( "extract", {toSMTUtilExpression(typeArgs[2]), toSMTUtilExpression(typeArgs[3])}, SortProvider::bitVectorSort // TODO: Compute bit size properly? ); } } } smtAssert(false, "Unhandled case in expression conversion"); } } }, _expr.data); } }; struct LetBindings { using BindingRecord = std::vector; std::unordered_map bindings; std::vector varNames; std::vector scopeBounds; bool has(std::string const& varName) { return bindings.find(varName) != bindings.end(); } SMTLib2Expression & operator[](std::string const& varName) { auto it = bindings.find(varName); solAssert(it != bindings.end()); solAssert(!it->second.empty()); return it->second.back(); } void pushScope() { scopeBounds.push_back(varNames.size()); } void popScope() { smtAssert(scopeBounds.size() > 0); auto bound = scopeBounds.back(); while (varNames.size() > bound) { auto const& varName = varNames.back(); auto it = bindings.find(varName); smtAssert(it != bindings.end()); auto & record = it->second; record.pop_back(); if (record.empty()) bindings.erase(it); varNames.pop_back(); } scopeBounds.pop_back(); } void addBinding(std::string name, SMTLib2Expression expression) { auto it = bindings.find(name); if (it == bindings.end()) bindings.insert({name, {std::move(expression)}}); else it->second.push_back(std::move(expression)); varNames.push_back(std::move(name)); } }; void inlineLetExpressions(SMTLib2Expression& expr, LetBindings & bindings) { if (isAtom(expr)) { auto const& atom = asAtom(expr); if (bindings.has(atom)) expr = bindings[atom]; return; } auto& subexprs = asSubExpressions(expr); solAssert(!subexprs.empty()); auto const& first = subexprs.at(0); if (isAtom(first) && asAtom(first) == "let") { solAssert(subexprs.size() >= 3); solAssert(!isAtom(subexprs[1])); auto& bindingExpressions = asSubExpressions(subexprs[1]); // process new bindings std::vector> newBindings; for (auto& binding: bindingExpressions) { solAssert(!isAtom(binding)); auto& bindingPair = asSubExpressions(binding); solAssert(bindingPair.size() == 2); solAssert(isAtom(bindingPair.at(0))); inlineLetExpressions(bindingPair.at(1), bindings); newBindings.emplace_back(asAtom(bindingPair.at(0)), bindingPair.at(1)); } bindings.pushScope(); for (auto&& [name, expr]: newBindings) bindings.addBinding(std::move(name), std::move(expr)); newBindings.clear(); // get new subexpression inlineLetExpressions(subexprs.at(2), bindings); // remove the new bindings bindings.popScope(); // update the expression auto tmp = std::move(subexprs.at(2)); expr = std::move(tmp); return; } // not a let expression, just process all arguments for (auto& subexpr: subexprs) { inlineLetExpressions(subexpr, bindings); } } void inlineLetExpressions(SMTLib2Expression& expr) { LetBindings bindings; inlineLetExpressions(expr, bindings); } SMTLib2Expression const& fact(SMTLib2Expression const& _node) { if (isAtom(_node)) return _node; solAssert(!asSubExpressions(_node).empty()); return asSubExpressions(_node).back(); } CHCSolverInterface::CexGraph graphFromSMTLib2Expression(SMTLib2Expression const& _proof, SMTLibTranslationContext & context) { assert(!isAtom(_proof)); auto const& args = asSubExpressions(_proof); smtAssert(args.size() == 2); smtAssert(isAtom(args.at(0)) && asAtom(args.at(0)) == "proof"); auto const& proofNode = args.at(1); auto derivedFact = fact(proofNode); if (isAtom(proofNode) || !isAtom(derivedFact) || asAtom(derivedFact) != "false") return {}; CHCSolverInterface::CexGraph graph; std::stack proofStack; proofStack.push(&asSubExpressions(proofNode).at(1)); std::map visitedIds; unsigned nextId = 0; auto const* root = proofStack.top(); auto const& derivedRootFact = fact(*root); visitedIds.insert({root, nextId++}); graph.nodes.emplace(visitedIds.at(root), context.toSMTUtilExpression(derivedRootFact)); auto isHyperRes = [](SMTLib2Expression const& expr) { if (isAtom(expr)) return false; auto const& subExprs = asSubExpressions(expr); solAssert(!subExprs.empty()); auto const& op = subExprs.at(0); if (isAtom(op)) return false; auto const& opExprs = asSubExpressions(op); if (opExprs.size() < 2) return false; auto const& ruleName = opExprs.at(1); return isAtom(ruleName) && asAtom(ruleName) == "hyper-res"; }; while (!proofStack.empty()) { auto const* proofNode = proofStack.top(); smtAssert(visitedIds.find(proofNode) != visitedIds.end(), ""); auto id = visitedIds.at(proofNode); smtAssert(graph.nodes.count(id), ""); proofStack.pop(); if (isHyperRes(*proofNode)) { auto const& args = asSubExpressions(*proofNode); smtAssert(args.size() > 1, ""); // args[0] is the name of the rule // args[1] is the clause used // last argument is the derived fact // the arguments in the middle are the facts where we need to recurse for (unsigned i = 2; i < args.size() - 1; ++i) { auto const* child = &args[i]; if (!visitedIds.count(child)) { visitedIds.insert({child, nextId++}); proofStack.push(child); } auto childId = visitedIds.at(child); if (!graph.nodes.count(childId)) { graph.nodes.emplace(childId, context.toSMTUtilExpression(fact(*child))); graph.edges[childId] = {}; } graph.edges[id].push_back(childId); } } } return graph; } } CHCSolverInterface::CexGraph CHCSmtLib2Interface::graphFromZ3Proof(std::string const& _proof) { std::stringstream ss(_proof); std::string answer; ss >> answer; solAssert(answer == "unsat"); SMTLib2Parser parser(ss); if (parser.isEOF()) // No proof from Z3 return {}; // For some reason Z3 outputs everything as a single s-expression SMTLib2Expression parsedOutput; try { parsedOutput = parser.parseExpression(); } catch (SMTLib2Parser::ParsingException&) { // TODO: What should we do in this case? smtAssert(false, "SMTLIb2Parser: Error parsing input"); } solAssert(parser.isEOF()); solAssert(!isAtom(parsedOutput)); auto& commands = asSubExpressions(parsedOutput); SMTLibTranslationContext context(*m_smtlib2); for (auto& command: commands) { if (isAtom(command)) continue; auto const& args = asSubExpressions(command); auto const& head = args[0]; if (!isAtom(head)) continue; if (asAtom(head) == "declare-fun") { solAssert(args.size() == 4); auto const& name = args[1]; auto const& domainSorts = args[2]; auto const& codomainSort = args[3]; solAssert(isAtom(name)); solAssert(!isAtom(domainSorts)); context.addVariableDeclaration(asAtom(name), context.toSort(codomainSort)); } else if (asAtom(head) == "proof") { // std::cout << "Proof expression!\n" << command.toString() << std::endl; inlineLetExpressions(command); // std::cout << "Cleaned Proof expression!\n" << command.toString() << std::endl; return graphFromSMTLib2Expression(command, context); } } return {}; } smtutil::Expression CHCSmtLib2Interface::invariantsFromSMTLib(std::string const& _invariants) { std::stringstream ss(_invariants); std::string answer; ss >> answer; solAssert(answer == "sat"); SMTLib2Parser parser(ss); if (parser.isEOF()) // No model return Expression(true); // For some reason Z3 outputs everything as a single s-expression SMTLib2Expression parsedOutput; try { parsedOutput = parser.parseExpression(); } catch(SMTLib2Parser::ParsingException&) { // TODO: What should we do in this case? smtAssert(false, "SMTLIb2Parser: Error parsing input"); } solAssert(parser.isEOF()); solAssert(!isAtom(parsedOutput)); auto& commands = asSubExpressions(parsedOutput); std::vector definitions; for (auto& command: commands) { solAssert(!isAtom(command)); auto& args = asSubExpressions(command); solAssert(args.size() == 5); // args[0] = "define-fun" // args[1] = predicate name // args[2] = formal arguments of the predicate // args[3] = return sort // args[4] = body of the predicate's interpretation solAssert(isAtom(args[0]) && asAtom(args[0]) == "define-fun"); solAssert(isAtom(args[1])); solAssert(!isAtom(args[2])); solAssert(isAtom(args[3]) && asAtom(args[3]) == "Bool"); auto& interpretation = args[4]; inlineLetExpressions(interpretation); SMTLibTranslationContext context(*m_smtlib2); auto const& formalArguments = asSubExpressions(args[2]); std::vector predicateArgs; for (auto const& formalArgument: formalArguments) { solAssert(!isAtom(formalArgument)); auto const& nameSortPair = asSubExpressions(formalArgument); solAssert(nameSortPair.size() == 2); solAssert(isAtom(nameSortPair[0])); SortPointer varSort = context.toSort(nameSortPair[1]); context.addVariableDeclaration(asAtom(nameSortPair[0]), varSort); Expression arg = context.toSMTUtilExpression(nameSortPair[0]); predicateArgs.push_back(arg); } auto parsedInterpretation = context.toSMTUtilExpression(interpretation); Expression predicate(asAtom(args[1]), predicateArgs, SortProvider::boolSort); definitions.push_back(predicate == parsedInterpretation); } return Expression::mkAnd(std::move(definitions)); }