/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** * @author Christian * @author Gav Wood * @date 2014 * Solidity AST to EVM bytecode compiler for expressions. */ #include #include #include #include #include #include namespace dev { namespace eth { class AssemblyItem; // forward } namespace solidity { // forward declarations class CompilerContext; class Type; class IntegerType; class ArrayType; class StaticStringType; /** * Compiler for expressions, i.e. converts an AST tree whose root is an Expression into a stream * of EVM instructions. It needs a compiler context that is the same for the whole compilation * unit. */ class ExpressionCompiler: private ASTConstVisitor { public: /// Compile the given @a _expression into the @a _context. static void compileExpression(CompilerContext& _context, Expression const& _expression, bool _optimize = false); /// Appends code to remove dirty higher order bits in case of an implicit promotion to a wider type. static void appendTypeConversion(CompilerContext& _context, Type const& _typeOnStack, Type const& _targetType, bool _cleanupNeeded = false); /// Appends code for a State Variable accessor function static void appendStateVariableAccessor(CompilerContext& _context, VariableDeclaration const& _varDecl, bool _optimize = false); /// Appends code for a State Variable Initialization function static void appendStateVariableInitialization(CompilerContext& _context, VariableDeclaration const& _varDecl, bool _optimize = false); private: explicit ExpressionCompiler(CompilerContext& _compilerContext, bool _optimize = false): m_optimize(_optimize), m_context(_compilerContext), m_currentLValue(m_context) {} virtual bool visit(Assignment const& _assignment) override; virtual bool visit(UnaryOperation const& _unaryOperation) override; virtual bool visit(BinaryOperation const& _binaryOperation) override; virtual bool visit(FunctionCall const& _functionCall) override; virtual bool visit(NewExpression const& _newExpression) override; virtual void endVisit(MemberAccess const& _memberAccess) override; virtual bool visit(IndexAccess const& _indexAccess) override; virtual void endVisit(Identifier const& _identifier) override; virtual void endVisit(Literal const& _literal) override; ///@{ ///@name Append code for various operator types void appendAndOrOperatorCode(BinaryOperation const& _binaryOperation); void appendCompareOperatorCode(Token::Value _operator, Type const& _type); void appendOrdinaryBinaryOperatorCode(Token::Value _operator, Type const& _type); void appendArithmeticOperatorCode(Token::Value _operator, Type const& _type); void appendBitOperatorCode(Token::Value _operator); void appendShiftOperatorCode(Token::Value _operator); /// @} /// Appends an implicit or explicit type conversion. For now this comprises only erasing /// higher-order bits (@see appendHighBitCleanup) when widening integer. /// If @a _cleanupNeeded, high order bits cleanup is also done if no type conversion would be /// necessary. void appendTypeConversion(Type const& _typeOnStack, Type const& _targetType, bool _cleanupNeeded = false); //// Appends code that cleans higher-order bits for integer types. void appendHighBitsCleanup(IntegerType const& _typeOnStack); /// Appends code to call a function of the given type with the given arguments. void appendExternalFunctionCall(FunctionType const& _functionType, std::vector> const& _arguments, bool bare = false); /// Appends code that evaluates the given arguments and moves the result to memory. The memory offset is /// expected to be on the stack and is updated by this call. void appendArgumentsCopyToMemory(std::vector> const& _arguments, TypePointers const& _types = {}, bool _padToWordBoundaries = true, bool _padExceptionIfFourBytes = false); /// Appends code that moves a stack element of the given type to memory. The memory offset is /// expected below the stack element and is updated by this call. void appendTypeMoveToMemory(Type const& _type, bool _padToWordBoundaries = true); /// Appends code that evaluates a single expression and moves the result to memory. The memory offset is /// expected to be on the stack and is updated by this call. void appendExpressionCopyToMemory(Type const& _expectedType, Expression const& _expression); /// Appends code for a State Variable accessor function void appendStateVariableAccessor(VariableDeclaration const& _varDecl); /// Appends code for a State Variable initialization void appendStateVariableInitialization(VariableDeclaration const& _varDecl); /** * Helper class to store and retrieve lvalues to and from various locations. * All types except STACK store a reference in a slot on the stack, STACK just * stores the base stack offset of the variable in @a m_baseStackOffset. */ class LValue { public: enum class LValueType { None, Stack, Memory, Storage }; explicit LValue(CompilerContext& _compilerContext): m_context(&_compilerContext) { reset(); } LValue(CompilerContext& _compilerContext, LValueType _type, std::shared_ptr const& _dataType, unsigned _baseStackOffset = 0); /// Set type according to the declaration and retrieve the reference. /// @a _location is the current location void fromDeclaration(Declaration const& _declaration, SourceLocation const& _location); void reset() { m_type = LValueType::None; m_dataType.reset(); m_baseStackOffset = 0; m_size = 0; } bool isValid() const { return m_type != LValueType::None; } bool isInOnStack() const { return m_type == LValueType::Stack; } bool isInMemory() const { return m_type == LValueType::Memory; } bool isInStorage() const { return m_type == LValueType::Storage; } /// @returns true if this lvalue reference type occupies a slot on the stack. bool storesReferenceOnStack() const { return m_type == LValueType::Storage || m_type == LValueType::Memory; } /// Copies the value of the current lvalue to the top of the stack and, if @a _remove is true, /// also removes the reference from the stack (note that is does not reset the type to @a NONE). /// @a _location source location of the current expression, used for error reporting. void retrieveValue(SourceLocation const& _location, bool _remove = false) const; /// Moves a value from the stack to the lvalue. Removes the value if @a _move is true. /// @a _location is the source location of the expression that caused this operation. /// Stack pre: value [lvalue_ref] /// Stack post if !_move: value_of(lvalue_ref) void storeValue(Type const& _sourceType, SourceLocation const& _location = SourceLocation(), bool _move = false) const; /// Stores zero in the lvalue. /// @a _location is the source location of the requested operation void setToZero(SourceLocation const& _location = SourceLocation()) const; /// Convenience function to convert the stored reference to a value and reset type to NONE if /// the reference was not requested by @a _expression. void retrieveValueIfLValueNotRequested(Expression const& _expression); private: /// Convenience function to retrieve Value from Storage. Specific version of @ref retrieveValue void retrieveValueFromStorage(bool _remove = false) const; /// Copies from a byte array to a byte array in storage, both references on the stack. void copyByteArrayToStorage(ArrayType const& _targetType, ArrayType const& _sourceType) const; CompilerContext* m_context; LValueType m_type = LValueType::None; std::shared_ptr m_dataType; /// If m_type is STACK, this is base stack offset (@see /// CompilerContext::getBaseStackOffsetOfVariable) of a local variable. unsigned m_baseStackOffset = 0; /// Size of the value of this lvalue on the stack or the storage. unsigned m_size = 0; }; bool m_optimize; CompilerContext& m_context; LValue m_currentLValue; }; } }