/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
// SPDX-License-Identifier: GPL-3.0
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace solidity;
using namespace solidity::util;
using namespace solidity::frontend;
using namespace solidity::langutil;
using namespace solidity::smtutil;
CHCSmtLib2Interface::CHCSmtLib2Interface(
std::map const& _queryResponses,
ReadCallback::Callback _smtCallback,
SMTSolverChoice _enabledSolvers,
std::optional _queryTimeout
):
CHCSolverInterface(_queryTimeout),
m_smtlib2(std::make_unique(_queryResponses, _smtCallback, _enabledSolvers, m_queryTimeout)),
m_queryResponses(std::move(_queryResponses)),
m_smtCallback(_smtCallback),
m_enabledSolvers(_enabledSolvers)
{
reset();
}
void CHCSmtLib2Interface::reset()
{
m_accumulatedOutput.clear();
m_variables.clear();
m_unhandledQueries.clear();
}
void CHCSmtLib2Interface::registerRelation(Expression const& _expr)
{
smtAssert(_expr.sort);
smtAssert(_expr.sort->kind == Kind::Function);
if (!m_variables.count(_expr.name))
{
auto fSort = std::dynamic_pointer_cast(_expr.sort);
std::string domain = toSmtLibSort(fSort->domain);
// Relations are predicates which have implicit codomain Bool.
m_variables.insert(_expr.name);
write(
"(declare-fun |" +
_expr.name +
"| " +
domain +
" Bool)"
);
}
}
void CHCSmtLib2Interface::addRule(Expression const& _expr, std::string const& /*_name*/)
{
write(
"(assert\n(forall " + forall() + "\n" +
m_smtlib2->toSExpr(_expr) +
"))\n\n"
);
}
std::tuple CHCSmtLib2Interface::query(Expression const& _block)
{
std::string query = dumpQuery(_block);
std::string response = querySolver(query);
CheckResult result;
// TODO proper parsing
if (boost::starts_with(response, "sat"))
result = CheckResult::UNSATISFIABLE;
else if (boost::starts_with(response, "unsat"))
{
result = CheckResult::SATISFIABLE;
return {result, Expression(true), graphFromZ3Proof(response)};
}
else if (boost::starts_with(response, "unknown"))
result = CheckResult::UNKNOWN;
else
result = CheckResult::ERROR;
return {result, Expression(true), {}};
}
void CHCSmtLib2Interface::declareVariable(std::string const& _name, SortPointer const& _sort)
{
smtAssert(_sort);
if (_sort->kind == Kind::Function)
declareFunction(_name, _sort);
else if (!m_variables.count(_name))
{
m_variables.insert(_name);
write("(declare-var |" + _name + "| " + toSmtLibSort(_sort) + ')');
}
}
std::string CHCSmtLib2Interface::toSmtLibSort(SortPointer _sort)
{
return m_smtlib2->toSmtLibSort(_sort);
}
std::string CHCSmtLib2Interface::toSmtLibSort(std::vector const& _sorts)
{
return m_smtlib2->toSmtLibSort(_sorts);
}
std::string CHCSmtLib2Interface::forall()
{
std::string vars("(");
for (auto const& [name, sort]: m_smtlib2->variables())
{
solAssert(sort, "");
if (sort->kind != Kind::Function)
vars += " (" + name + " " + toSmtLibSort(sort) + ")";
}
vars += ")";
return vars;
}
void CHCSmtLib2Interface::declareFunction(std::string const& _name, SortPointer const& _sort)
{
smtAssert(_sort);
smtAssert(_sort->kind == Kind::Function);
// TODO Use domain and codomain as key as well
if (!m_variables.count(_name))
{
auto fSort = std::dynamic_pointer_cast(_sort);
smtAssert(fSort->codomain);
std::string domain = toSmtLibSort(fSort->domain);
std::string codomain = toSmtLibSort(fSort->codomain);
m_variables.insert(_name);
write(
"(declare-fun |" +
_name +
"| " +
domain +
" " +
codomain +
")"
);
}
}
void CHCSmtLib2Interface::write(std::string _data)
{
m_accumulatedOutput += std::move(_data) + "\n";
}
std::string CHCSmtLib2Interface::querySolver(std::string const& _input)
{
util::h256 inputHash = util::keccak256(_input);
if (m_queryResponses.count(inputHash))
return m_queryResponses.at(inputHash);
smtAssert(m_enabledSolvers.eld || m_enabledSolvers.z3);
smtAssert(m_smtCallback, "Callback must be set!");
std::string solverBinary = [&](){
if (m_enabledSolvers.eld)
return "eld";
if (m_enabledSolvers.z3)
return "z3 rlimit=1000000 fp.spacer.q3.use_qgen=true fp.spacer.mbqi=false fp.spacer.ground_pobs=false";
return "";
}();
auto result = m_smtCallback(ReadCallback::kindString(ReadCallback::Kind::SMTQuery) + " " + solverBinary, _input);
if (result.success)
{
if (m_enabledSolvers.z3 and boost::starts_with(result.responseOrErrorMessage, "unsat"))
{
solverBinary += " fp.xform.slice=false fp.xform.inline_linear=false fp.xform.inline_eager=false";
std::string extendedQuery = "(set-option :produce-proofs true)" + _input + "\n(get-proof)";
auto secondResult = m_smtCallback(ReadCallback::kindString(ReadCallback::Kind::SMTQuery) + " " + solverBinary, extendedQuery);
if (secondResult.success)
return secondResult.responseOrErrorMessage;
}
return result.responseOrErrorMessage;
}
m_unhandledQueries.push_back(_input);
return "unknown\n";
}
std::string CHCSmtLib2Interface::dumpQuery(Expression const& _expr)
{
std::stringstream s;
s
<< createHeaderAndDeclarations()
<< m_accumulatedOutput << std::endl
<< createQueryAssertion(_expr.name) << std::endl
<< "(check-sat)" << std::endl;
return s.str();
}
std::string CHCSmtLib2Interface::createHeaderAndDeclarations() {
std::stringstream s;
if (m_queryTimeout)
s << "(set-option :timeout " + std::to_string(*m_queryTimeout) + ")\n";
s << "(set-logic HORN)" << std::endl;
for (auto const& decl: m_smtlib2->userSorts() | ranges::views::values)
s << decl << std::endl;
return s.str();
}
std::string CHCSmtLib2Interface::createQueryAssertion(std::string name) {
return "(assert\n(forall " + forall() + "\n" + "(=> " + name + " false)))";
}
std::string CHCSmtLib2Interface::SMTLib2Expression::toString() const
{
return std::visit(GenericVisitor{
[](std::string const& _sv) { return _sv; },
[](std::vector const& _subExpr) {
std::vector formatted;
for (auto const& item: _subExpr)
formatted.emplace_back(item.toString());
return "(" + joinHumanReadable(formatted, " ") + ")";
}
}, data);
}
namespace
{
using SMTLib2Expression = CHCSmtLib2Interface::SMTLib2Expression;
bool isNumber(std::string const& _expr)
{
for (char c: _expr)
if (!isDigit(c) && c != '.')
return false;
return true;
}
bool isAtom(SMTLib2Expression const & expr)
{
return std::holds_alternative(expr.data);
}
std::string const& asAtom(SMTLib2Expression const& expr)
{
assert(isAtom(expr));
return std::get(expr.data);
}
auto const& asSubExpressions(SMTLib2Expression const& expr)
{
assert(!isAtom(expr));
return std::get(expr.data);
}
class SMTLibTranslationContext
{
SMTLib2Interface const& m_smtlib2Interface;
public:
SMTLibTranslationContext(SMTLib2Interface const& _smtlib2Interface) : m_smtlib2Interface(_smtlib2Interface) {}
SortPointer toSort(SMTLib2Expression const& expr)
{
if (isAtom(expr))
{
auto const& name = asAtom(expr);
if (name == "Int")
return SortProvider::sintSort;
if (name == "Bool")
return SortProvider::boolSort;
std::string quotedName = "|" + name + "|";
auto it = ranges::find_if(m_smtlib2Interface.sortNames(), [&](auto const& entry) {
return entry.second == name || entry.second == quotedName;
});
if (it != m_smtlib2Interface.sortNames().end()) {
if (it->first->kind == Kind::Tuple) {
auto tupleSort = std::dynamic_pointer_cast(it->first);
smtAssert(tupleSort);
return tupleSort;
}
}
} else {
auto const& args = asSubExpressions(expr);
if (asAtom(args[0]) == "Array")
{
assert(args.size() == 3);
auto domainSort = toSort(args[1]);
auto codomainSort = toSort(args[2]);
return std::make_shared(std::move(domainSort), std::move(codomainSort));
}
}
smtAssert(false, "Unknown sort encountered");
}
smtutil::Expression toSMTUtilExpression(SMTLib2Expression const& _expr)
{
return std::visit(GenericVisitor{
[&](std::string const& _atom) {
if (_atom == "true" || _atom == "false")
return smtutil::Expression(_atom == "true");
else if (isNumber(_atom))
return smtutil::Expression(_atom, {}, SortProvider::sintSort);
else
return smtutil::Expression(_atom, {}, SortProvider::boolSort);
},
[&](std::vector const& _subExpr) {
SortPointer sort;
std::vector arguments;
if (isAtom(_subExpr.front()))
{
for (size_t i = 1; i < _subExpr.size(); i++)
arguments.emplace_back(toSMTUtilExpression(_subExpr[i]));
std::string const& op = asAtom(_subExpr.front());
if (boost::starts_with(op, "struct")) {
auto sort = toSort(_subExpr.front());
auto sortSort = std::make_shared(sort);
return Expression::tuple_constructor(Expression(sortSort), arguments);
} else if (op.find("array_tuple") != std::string::npos) {
auto sort = toSort(_subExpr.front());
auto sortSort = std::make_shared(sort);
return Expression::tuple_constructor(Expression(sortSort), arguments);
} else {
std::set boolOperators{"and", "or", "not", "=", "<", ">", "<=", ">=",
"=>"};
sort = contains(boolOperators, op) ? SortProvider::boolSort : arguments.back().sort;
return smtutil::Expression(op, std::move(arguments), std::move(sort));
}
smtAssert(false, "Unhandled case in expression conversion");
} else {
// check for const array
if (_subExpr.size() == 2 and !isAtom(_subExpr[0]))
{
auto const& typeArgs = asSubExpressions(_subExpr.front());
if (typeArgs.size() == 3 && typeArgs[0].toString() == "as" && typeArgs[1].toString() == "const")
{
auto arraySort = toSort(typeArgs[2]);
auto sortSort = std::make_shared(arraySort);
return smtutil::Expression::const_array(Expression(sortSort), toSMTUtilExpression(_subExpr[1]));
}
}
smtAssert(false, "Unhandled case in expression conversion");
}
}
}, _expr.data);
}
};
class SMTLib2Parser
{
public:
SMTLib2Parser(std::istream& _input):
m_input(_input),
m_token(static_cast(m_input.get()))
{}
SMTLib2Expression parseExpression()
{
skipWhitespace();
if (token() == '(')
{
advance();
skipWhitespace();
std::vector subExpressions;
while (token() != 0 && token() != ')')
{
subExpressions.emplace_back(parseExpression());
skipWhitespace();
}
solAssert(token() == ')');
// simulate whitespace because we do not want to read the next token
// since it might block.
m_token = ' ';
return {std::move(subExpressions)};
}
else
return {parseToken()};
}
bool isEOF()
{
skipWhitespace();
return m_input.eof();
}
private:
std::string parseToken()
{
std::string result;
skipWhitespace();
bool isPipe = token() == '|';
if (isPipe)
advance();
while (token() != 0)
{
char c = token();
if (isPipe && c == '|')
{
advance();
break;
}
else if (!isPipe && (isWhiteSpace(c) || c == '(' || c == ')'))
break;
result.push_back(c);
advance();
}
return result;
}
void skipWhitespace()
{
while (isWhiteSpace(token()))
advance();
}
char token() const
{
return m_token;
}
void advance()
{
m_token = static_cast(m_input.get());
if (token() == ';')
while (token() != '\n' && token() != 0)
m_token = static_cast(m_input.get());
}
std::istream& m_input;
char m_token = 0;
};
struct LetBindings {
using BindingRecord = std::vector;
std::unordered_map bindings;
std::vector varNames;
std::vector scopeBounds;
bool has(std::string const& varName)
{
return bindings.find(varName) != bindings.end();
}
SMTLib2Expression & operator[](std::string const& varName)
{
auto it = bindings.find(varName);
assert(it != bindings.end());
assert(!it->second.empty());
return it->second.back();
}
void pushScope()
{
scopeBounds.push_back(varNames.size());
}
void popScope()
{
assert(scopeBounds.size() > 0);
auto bound = scopeBounds.back();
while (varNames.size() > bound) {
auto const& varName = varNames.back();
auto it = bindings.find(varName);
assert(it != bindings.end());
auto & record = it->second;
record.pop_back();
if (record.empty()) {
bindings.erase(it);
}
varNames.pop_back();
}
scopeBounds.pop_back();
}
void addBinding(std::string name, SMTLib2Expression expression)
{
auto it = bindings.find(name);
if (it == bindings.end()) {
bindings.insert({name, {std::move(expression)}});
} else {
it->second.push_back(std::move(expression));
}
varNames.push_back(std::move(name));
}
};
void inlineLetExpressions(SMTLib2Expression& expr, LetBindings & bindings)
{
if (isAtom(expr))
{
auto const& atom = std::get(expr.data);
if (bindings.has(atom))
expr = bindings[atom];
}
else
{
auto& subexprs = std::get(expr.data);
auto const& first = subexprs[0];
if (isAtom(first) && std::get(first.data) == "let")
{
assert(!isAtom(subexprs[1]));
auto& bindingExpressions = std::get(subexprs[1].data);
// process new bindings
std::vector> newBindings;
for (auto& binding: bindingExpressions)
{
assert(!isAtom(binding));
auto& bindingPair = std::get(binding.data);
assert(bindingPair.size() == 2);
assert(isAtom(bindingPair.at(0)));
inlineLetExpressions(bindingPair.at(1), bindings);
newBindings.emplace_back(std::get(bindingPair.at(0).data), bindingPair.at(1));
}
bindings.pushScope();
for (auto&& [name, expr] : newBindings)
bindings.addBinding(std::move(name), std::move(expr));
newBindings.clear();
// get new subexpression
inlineLetExpressions(subexprs.at(2), bindings);
// remove the new bindings
bindings.popScope();
// update the expression
auto tmp = std::move(subexprs.at(2));
expr = std::move(tmp);
return;
}
// not a let expression, just process all arguments
for (auto& subexpr: subexprs)
{
inlineLetExpressions(subexpr, bindings);
}
}
}
void inlineLetExpressions(SMTLib2Expression& expr)
{
LetBindings bindings;
inlineLetExpressions(expr, bindings);
}
SMTLib2Expression const& fact(SMTLib2Expression const& _node)
{
if (isAtom(_node))
return _node;
return asSubExpressions(_node).back();
}
}
CHCSolverInterface::CexGraph CHCSmtLib2Interface::graphFromSMTLib2Expression(SMTLib2Expression const& _proof)
{
assert(!isAtom(_proof));
auto const& args = asSubExpressions(_proof);
smtAssert(args.size() == 2);
smtAssert(isAtom(args.at(0)) && asAtom(args.at(0)) == "proof");
auto const& proofNode = args.at(1);
auto derivedFact = fact(proofNode);
if (isAtom(proofNode) || !isAtom(derivedFact) || asAtom(derivedFact) != "false")
return {};
CHCSolverInterface::CexGraph graph;
SMTLibTranslationContext context(*m_smtlib2);
std::stack proofStack;
proofStack.push(&asSubExpressions(proofNode).at(1));
std::map visitedIds;
unsigned nextId = 0;
auto const* root = proofStack.top();
auto const& derivedRootFact = fact(*root);
visitedIds.insert({root, nextId++});
graph.nodes.emplace(visitedIds.at(root), context.toSMTUtilExpression(derivedRootFact));
auto isHyperRes = [](SMTLib2Expression const& expr) {
if (isAtom(expr)) return false;
auto const& subExprs = asSubExpressions(expr);
assert(!subExprs.empty());
auto const& op = subExprs.at(0);
if (isAtom(op)) return false;
auto const& opExprs = asSubExpressions(op);
if (opExprs.size() < 2) return false;
auto const& ruleName = opExprs.at(1);
return isAtom(ruleName) && asAtom(ruleName) == "hyper-res";
};
while (!proofStack.empty())
{
auto const* proofNode = proofStack.top();
smtAssert(visitedIds.find(proofNode) != visitedIds.end(), "");
auto id = visitedIds.at(proofNode);
smtAssert(graph.nodes.count(id), "");
proofStack.pop();
if (isHyperRes(*proofNode))
{
auto const& args = asSubExpressions(*proofNode);
smtAssert(args.size() > 1, "");
// args[0] is the name of the rule
// args[1] is the clause used
// last argument is the derived fact
// the arguments in the middle are the facts where we need to recurse
for (unsigned i = 2; i < args.size() - 1; ++i)
{
auto const* child = &args[i];
if (!visitedIds.count(child))
{
visitedIds.insert({child, nextId++});
proofStack.push(child);
}
auto childId = visitedIds.at(child);
if (!graph.nodes.count(childId))
{
graph.nodes.emplace(childId, context.toSMTUtilExpression(fact(*child)));
graph.edges[childId] = {};
}
graph.edges[id].push_back(childId);
}
}
}
return graph;
}
CHCSolverInterface::CexGraph CHCSmtLib2Interface::graphFromZ3Proof(std::string const& _proof)
{
std::stringstream ss(_proof);
std::string answer;
ss >> answer;
solAssert(answer == "unsat");
SMTLib2Parser parser(ss);
solAssert(!parser.isEOF());
// For some reason Z3 outputs everything as a single s-expression
auto all = parser.parseExpression();
solAssert(parser.isEOF());
solAssert(!isAtom(all));
auto& commands = std::get(all.data);
for (auto& command: commands) {
// std::cout << command.toString() << '\n' << std::endl;
if (!isAtom(command))
{
auto const& head = std::get(command.data)[0];
if (isAtom(head) && std::get(head.data) == "proof")
{
// std::cout << "Proof expression!\n" << command.toString() << std::endl;
inlineLetExpressions(command);
// std::cout << "Cleaned Proof expression!\n" << command.toString() << std::endl;
return graphFromSMTLib2Expression(command);
}
}
}
return {};
}