/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ // SPDX-License-Identifier: GPL-3.0 /** * @author Alex Beregszaszi * @date 2017 * Component that translates Solidity code into Yul. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace solidity; using namespace solidity::util; using namespace solidity::frontend; pair IRGenerator::run( ContractDefinition const& _contract, map const& _otherYulSources ) { string const ir = yul::reindent(generate(_contract, _otherYulSources)); yul::AssemblyStack asmStack(m_evmVersion, yul::AssemblyStack::Language::StrictAssembly, m_optimiserSettings); if (!asmStack.parseAndAnalyze("", ir)) { string errorMessage; for (auto const& error: asmStack.errors()) errorMessage += langutil::SourceReferenceFormatter::formatErrorInformation(*error); solAssert(false, ir + "\n\nInvalid IR generated:\n" + errorMessage + "\n"); } asmStack.optimize(); string warning = "/*******************************************************\n" " * WARNING *\n" " * Solidity to Yul compilation is still EXPERIMENTAL *\n" " * It can result in LOSS OF FUNDS or worse *\n" " * !USE AT YOUR OWN RISK! *\n" " *******************************************************/\n\n"; return {warning + ir, warning + asmStack.print()}; } string IRGenerator::generate( ContractDefinition const& _contract, map const& _otherYulSources ) { auto subObjectSources = [&_otherYulSources](std::set const& subObjects) -> string { std::string subObjectsSources; for (ContractDefinition const* subObject: subObjects) subObjectsSources += _otherYulSources.at(subObject); return subObjectsSources; }; Whiskers t(R"( object "" { code { let := () () } object "" { code { } } } )"); resetContext(_contract); for (VariableDeclaration const* var: ContractType(_contract).immutableVariables()) m_context.registerImmutableVariable(*var); t("CreationObject", IRNames::creationObject(_contract)); t("notLibrary", !_contract.isLibrary()); FunctionDefinition const* constructor = _contract.constructor(); t("callValueCheck", !constructor || !constructor->isPayable() ? callValueCheck() : ""); vector constructorParams; if (constructor && !constructor->parameters().empty()) { for (size_t i = 0; i < constructor->parameters().size(); ++i) constructorParams.emplace_back(m_context.newYulVariable()); t( "copyConstructorArguments", m_utils.copyConstructorArgumentsToMemoryFunction(_contract, IRNames::creationObject(_contract)) ); } t("constructorParams", joinHumanReadable(constructorParams)); t("constructorHasParams", !constructorParams.empty()); t("implicitConstructor", IRNames::implicitConstructor(_contract)); t("deploy", deployCode(_contract)); generateImplicitConstructors(_contract); generateQueuedFunctions(); InternalDispatchMap internalDispatchMap = generateInternalDispatchFunctions(); t("functions", m_context.functionCollector().requestedFunctions()); t("subObjects", subObjectSources(m_context.subObjectsCreated())); // This has to be called only after all other code generation for the creation object is complete. bool creationInvolvesAssembly = m_context.inlineAssemblySeen(); t("memoryInitCreation", memoryInit(!creationInvolvesAssembly)); resetContext(_contract); // NOTE: Function pointers can be passed from creation code via storage variables. We need to // get all the functions they could point to into the dispatch functions even if they're never // referenced by name in the runtime code. m_context.initializeInternalDispatch(move(internalDispatchMap)); // Do not register immutables to avoid assignment. t("RuntimeObject", IRNames::runtimeObject(_contract)); t("dispatch", dispatchRoutine(_contract)); generateQueuedFunctions(); generateInternalDispatchFunctions(); t("runtimeFunctions", m_context.functionCollector().requestedFunctions()); t("runtimeSubObjects", subObjectSources(m_context.subObjectsCreated())); // This has to be called only after all other code generation for the runtime object is complete. bool runtimeInvolvesAssembly = m_context.inlineAssemblySeen(); t("memoryInitRuntime", memoryInit(!runtimeInvolvesAssembly)); return t.render(); } string IRGenerator::generate(Block const& _block) { IRGeneratorForStatements generator(m_context, m_utils); generator.generate(_block); return generator.code(); } void IRGenerator::generateQueuedFunctions() { while (!m_context.functionGenerationQueueEmpty()) // NOTE: generateFunction() may modify function generation queue generateFunction(*m_context.dequeueFunctionForCodeGeneration()); } InternalDispatchMap IRGenerator::generateInternalDispatchFunctions() { solAssert( m_context.functionGenerationQueueEmpty(), "At this point all the enqueued functions should have been generated. " "Otherwise the dispatch may be incomplete." ); InternalDispatchMap internalDispatchMap = m_context.consumeInternalDispatchMap(); for (YulArity const& arity: internalDispatchMap | boost::adaptors::map_keys) { string funName = IRNames::internalDispatch(arity); m_context.functionCollector().createFunction(funName, [&]() { Whiskers templ(R"( function (fun, ) -> { switch fun <#cases> case { := () } default { () } } )"); templ("functionName", funName); templ("panic", m_utils.panicFunction()); templ("in", suffixedVariableNameList("in_", 0, arity.in)); templ("out", suffixedVariableNameList("out_", 0, arity.out)); vector> cases; for (FunctionDefinition const* function: internalDispatchMap.at(arity)) { solAssert(function, ""); solAssert( YulArity::fromType(*TypeProvider::function(*function, FunctionType::Kind::Internal)) == arity, "A single dispatch function can only handle functions of one arity" ); solAssert(!function->isConstructor(), ""); // 0 is reserved for uninitialized function pointers solAssert(function->id() != 0, "Unexpected function ID: 0"); solAssert(m_context.functionCollector().contains(IRNames::function(*function)), ""); cases.emplace_back(map{ {"funID", to_string(function->id())}, {"name", IRNames::function(*function)} }); } templ("cases", move(cases)); return templ.render(); }); } solAssert(m_context.internalDispatchClean(), ""); solAssert( m_context.functionGenerationQueueEmpty(), "Internal dispatch generation must not add new functions to generation queue because they won't be proeessed." ); return internalDispatchMap; } string IRGenerator::generateFunction(FunctionDefinition const& _function) { string functionName = IRNames::function(_function); return m_context.functionCollector().createFunction(functionName, [&]() { Whiskers t(R"( function () -> { } )"); t("functionName", functionName); vector params; for (auto const& varDecl: _function.parameters()) params += m_context.addLocalVariable(*varDecl).stackSlots(); t("params", joinHumanReadable(params)); vector retParams; string retInit; for (auto const& varDecl: _function.returnParameters()) { retParams += m_context.addLocalVariable(*varDecl).stackSlots(); retInit += generateInitialAssignment(*varDecl); } t("retParams", joinHumanReadable(retParams)); t("initReturnVariables", retInit); t("body", generate(_function.body())); return t.render(); }); } string IRGenerator::generateGetter(VariableDeclaration const& _varDecl) { string functionName = IRNames::function(_varDecl); return m_context.functionCollector().createFunction(functionName, [&]() { Type const* type = _varDecl.annotation().type; solAssert(_varDecl.isStateVariable(), ""); FunctionType accessorType(_varDecl); TypePointers paramTypes = accessorType.parameterTypes(); if (_varDecl.immutable()) { solAssert(paramTypes.empty(), ""); solUnimplementedAssert(type->sizeOnStack() == 1, ""); return Whiskers(R"( function () -> rval { rval := loadimmutable("") } )") ("functionName", functionName) ("id", to_string(_varDecl.id())) .render(); } else if (_varDecl.isConstant()) { solAssert(paramTypes.empty(), ""); return Whiskers(R"( function () -> { := () } )") ("functionName", functionName) ("constantValueFunction", IRGeneratorForStatements(m_context, m_utils).constantValueFunction(_varDecl)) ("ret", suffixedVariableNameList("ret_", 0, _varDecl.type()->sizeOnStack())) .render(); } string code; auto const& location = m_context.storageLocationOfStateVariable(_varDecl); code += Whiskers(R"( let slot := let offset := )") ("slot", location.first.str()) ("offset", to_string(location.second)) .render(); if (!paramTypes.empty()) solAssert( location.second == 0, "If there are parameters, we are dealing with structs or mappings and thus should have offset zero." ); // The code of an accessor is of the form `x[a][b][c]` (it is slightly more complicated // if the final type is a struct). // In each iteration of the loop below, we consume one parameter, perform an // index access, reassign the yul variable `slot` and move @a currentType further "down". // The initial value of @a currentType is only used if we skip the loop completely. TypePointer currentType = _varDecl.annotation().type; vector parameters; vector returnVariables; for (size_t i = 0; i < paramTypes.size(); ++i) { MappingType const* mappingType = dynamic_cast(currentType); ArrayType const* arrayType = dynamic_cast(currentType); solAssert(mappingType || arrayType, ""); vector keys = IRVariable("key_" + to_string(i), mappingType ? *mappingType->keyType() : *TypeProvider::uint256() ).stackSlots(); parameters += keys; Whiskers templ(R"( if iszero(lt(, (slot))) { revert(0, 0) } slot, offset := (slot, ) )"); templ( "indexAccess", mappingType ? m_utils.mappingIndexAccessFunction(*mappingType, *mappingType->keyType()) : m_utils.storageArrayIndexAccessFunction(*arrayType) ) ("array", arrayType != nullptr) ("keys", joinHumanReadable(keys)); if (arrayType) templ("length", m_utils.arrayLengthFunction(*arrayType)); code += templ.render(); currentType = mappingType ? mappingType->valueType() : arrayType->baseType(); } auto returnTypes = accessorType.returnParameterTypes(); solAssert(returnTypes.size() >= 1, ""); if (StructType const* structType = dynamic_cast(currentType)) { solAssert(location.second == 0, ""); auto const& names = accessorType.returnParameterNames(); for (size_t i = 0; i < names.size(); ++i) { if (returnTypes[i]->category() == Type::Category::Mapping) continue; if (auto arrayType = dynamic_cast(returnTypes[i])) if (!arrayType->isByteArray()) continue; // TODO conversion from storage byte arrays is not yet implemented. pair const& offsets = structType->storageOffsetsOfMember(names[i]); vector retVars = IRVariable("ret_" + to_string(returnVariables.size()), *returnTypes[i]).stackSlots(); returnVariables += retVars; code += Whiskers(R"( := (add(slot, )) )") ("ret", joinHumanReadable(retVars)) ("readStorage", m_utils.readFromStorage(*returnTypes[i], offsets.second, true)) ("slotOffset", offsets.first.str()) .render(); } } else { solAssert(returnTypes.size() == 1, ""); vector retVars = IRVariable("ret", *returnTypes.front()).stackSlots(); returnVariables += retVars; // TODO conversion from storage byte arrays is not yet implemented. code += Whiskers(R"( := (slot, offset) )") ("ret", joinHumanReadable(retVars)) ("readStorage", m_utils.readFromStorageDynamic(*returnTypes.front(), true)) .render(); } return Whiskers(R"( function () -> { } )") ("functionName", functionName) ("params", joinHumanReadable(parameters)) ("retVariables", joinHumanReadable(returnVariables)) ("code", std::move(code)) .render(); }); } string IRGenerator::generateInitialAssignment(VariableDeclaration const& _varDecl) { IRGeneratorForStatements generator(m_context, m_utils); generator.initializeLocalVar(_varDecl); return generator.code(); } pair>> IRGenerator::evaluateConstructorArguments( ContractDefinition const& _contract ) { map> constructorParams; vector>const *>> baseConstructorArguments; for (ASTPointer const& base: _contract.baseContracts()) if (FunctionDefinition const* baseConstructor = dynamic_cast( base->name().annotation().referencedDeclaration )->constructor(); baseConstructor && base->arguments()) baseConstructorArguments.emplace_back( dynamic_cast(baseConstructor->scope()), base->arguments() ); if (FunctionDefinition const* constructor = _contract.constructor()) for (ASTPointer const& modifier: constructor->modifiers()) if (auto const* baseContract = dynamic_cast( modifier->name().annotation().referencedDeclaration )) if ( FunctionDefinition const* baseConstructor = baseContract->constructor(); baseConstructor && modifier->arguments() ) baseConstructorArguments.emplace_back( dynamic_cast(baseConstructor->scope()), modifier->arguments() ); IRGeneratorForStatements generator{m_context, m_utils}; for (auto&& [baseContract, arguments]: baseConstructorArguments) { solAssert(baseContract && arguments, ""); if (baseContract->constructor() && !arguments->empty()) { vector params; for (size_t i = 0; i < arguments->size(); ++i) params += generator.evaluateExpression( *(arguments->at(i)), *(baseContract->constructor()->parameters()[i]->type()) ).stackSlots(); constructorParams[baseContract] = std::move(params); } } return {generator.code(), constructorParams}; } string IRGenerator::initStateVariables(ContractDefinition const& _contract) { IRGeneratorForStatements generator{m_context, m_utils}; for (VariableDeclaration const* variable: _contract.stateVariables()) if (!variable->isConstant()) generator.initializeStateVar(*variable); return generator.code(); } void IRGenerator::generateImplicitConstructors(ContractDefinition const& _contract) { auto listAllParams = [&]( map> const& baseParams) -> vector { vector params; for (ContractDefinition const* contract: _contract.annotation().linearizedBaseContracts) if (baseParams.count(contract)) params += baseParams.at(contract); return params; }; map> baseConstructorParams; for (size_t i = 0; i < _contract.annotation().linearizedBaseContracts.size(); ++i) { ContractDefinition const* contract = _contract.annotation().linearizedBaseContracts[i]; baseConstructorParams.erase(contract); m_context.functionCollector().createFunction(IRNames::implicitConstructor(*contract), [&]() { Whiskers t(R"( function () { () } )"); vector params; if (contract->constructor()) for (ASTPointer const& varDecl: contract->constructor()->parameters()) params += m_context.addLocalVariable(*varDecl).stackSlots(); t("params", joinHumanReadable(params)); vector baseParams = listAllParams(baseConstructorParams); t("baseParams", joinHumanReadable(baseParams)); t("comma", !params.empty() && !baseParams.empty() ? ", " : ""); t("functionName", IRNames::implicitConstructor(*contract)); pair>> evaluatedArgs = evaluateConstructorArguments(*contract); baseConstructorParams.insert(evaluatedArgs.second.begin(), evaluatedArgs.second.end()); t("evalBaseArguments", evaluatedArgs.first); if (i < _contract.annotation().linearizedBaseContracts.size() - 1) { t("hasNextConstructor", true); ContractDefinition const* nextContract = _contract.annotation().linearizedBaseContracts[i + 1]; t("nextConstructor", IRNames::implicitConstructor(*nextContract)); t("nextParams", joinHumanReadable(listAllParams(baseConstructorParams))); } else t("hasNextConstructor", false); t("initStateVariables", initStateVariables(*contract)); t("userDefinedConstructorBody", contract->constructor() ? generate(contract->constructor()->body()) : ""); return t.render(); }); } } string IRGenerator::deployCode(ContractDefinition const& _contract) { Whiskers t(R"X( <#loadImmutables> let := mload() codecopy(0, dataoffset(""), datasize("")) <#storeImmutables> setimmutable(0, "", ) return(0, datasize("")) )X"); t("object", IRNames::runtimeObject(_contract)); vector> loadImmutables; vector> storeImmutables; for (VariableDeclaration const* immutable: ContractType(_contract).immutableVariables()) { solUnimplementedAssert(immutable->type()->isValueType(), ""); solUnimplementedAssert(immutable->type()->sizeOnStack() == 1, ""); string yulVar = m_context.newYulVariable(); loadImmutables.emplace_back(map{ {"var"s, yulVar}, {"memoryOffset"s, to_string(m_context.immutableMemoryOffset(*immutable))} }); storeImmutables.emplace_back(map{ {"var"s, yulVar}, {"immutableName"s, to_string(immutable->id())} }); } t("loadImmutables", std::move(loadImmutables)); // reverse order to ease stack strain reverse(storeImmutables.begin(), storeImmutables.end()); t("storeImmutables", std::move(storeImmutables)); return t.render(); } string IRGenerator::callValueCheck() { return "if callvalue() { revert(0, 0) }"; } string IRGenerator::dispatchRoutine(ContractDefinition const& _contract) { Whiskers t(R"X( if iszero(lt(calldatasize(), 4)) { let selector := (calldataload(0)) switch selector <#cases> case { // let := (4, calldatasize()) let := () let memPos := (0) let memEnd := (memPos , ) return(memPos, sub(memEnd, memPos)) } default {} } if iszero(calldatasize()) { } )X"); t("shr224", m_utils.shiftRightFunction(224)); vector> functions; for (auto const& function: _contract.interfaceFunctions()) { functions.emplace_back(); map& templ = functions.back(); templ["functionSelector"] = "0x" + function.first.hex(); FunctionTypePointer const& type = function.second; templ["functionName"] = type->externalSignature(); templ["callValueCheck"] = type->isPayable() ? "" : callValueCheck(); unsigned paramVars = make_shared(type->parameterTypes())->sizeOnStack(); unsigned retVars = make_shared(type->returnParameterTypes())->sizeOnStack(); ABIFunctions abiFunctions(m_evmVersion, m_context.revertStrings(), m_context.functionCollector()); templ["abiDecode"] = abiFunctions.tupleDecoder(type->parameterTypes()); templ["params"] = suffixedVariableNameList("param_", 0, paramVars); templ["retParams"] = suffixedVariableNameList("ret_", 0, retVars); if (FunctionDefinition const* funDef = dynamic_cast(&type->declaration())) templ["function"] = m_context.enqueueFunctionForCodeGeneration(*funDef); else if (VariableDeclaration const* varDecl = dynamic_cast(&type->declaration())) templ["function"] = generateGetter(*varDecl); else solAssert(false, "Unexpected declaration for function!"); templ["allocate"] = m_utils.allocationFunction(); templ["abiEncode"] = abiFunctions.tupleEncoder(type->returnParameterTypes(), type->returnParameterTypes(), false); } t("cases", functions); if (FunctionDefinition const* fallback = _contract.fallbackFunction()) { string fallbackCode; if (!fallback->isPayable()) fallbackCode += callValueCheck(); fallbackCode += m_context.enqueueFunctionForCodeGeneration(*fallback) + "() stop()"; t("fallback", fallbackCode); } else t("fallback", "revert(0, 0)"); if (FunctionDefinition const* etherReceiver = _contract.receiveFunction()) t("receiveEther", m_context.enqueueFunctionForCodeGeneration(*etherReceiver) + "() stop()"); else t("receiveEther", ""); return t.render(); } string IRGenerator::memoryInit(bool _useMemoryGuard) { // This function should be called at the beginning of the EVM call frame // and thus can assume all memory to be zero, including the contents of // the "zero memory area" (the position CompilerUtils::zeroPointer points to). return Whiskers{ _useMemoryGuard ? "mstore(, memoryguard())" : "mstore(, )" } ("memPtr", to_string(CompilerUtils::freeMemoryPointer)) ( "freeMemoryStart", to_string(CompilerUtils::generalPurposeMemoryStart + m_context.reservedMemory()) ).render(); } void IRGenerator::resetContext(ContractDefinition const& _contract) { solAssert( m_context.functionGenerationQueueEmpty(), "Reset function generation queue while it still had functions." ); solAssert( m_context.functionCollector().requestedFunctions().empty(), "Reset context while it still had functions." ); solAssert( m_context.internalDispatchClean(), "Reset internal dispatch map without consuming it." ); m_context = IRGenerationContext(m_evmVersion, m_context.revertStrings(), m_optimiserSettings); m_context.setMostDerivedContract(_contract); for (auto const& var: ContractType(_contract).stateVariables()) m_context.addStateVariable(*get<0>(var), get<1>(var), get<2>(var)); }