/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * @author Christian * @date 2014 * Solidity data types */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace dev; using namespace dev::solidity; namespace { unsigned int mostSignificantBit(bigint const& _number) { #if BOOST_VERSION < 105500 solAssert(_number > 0, ""); bigint number = _number; unsigned int result = 0; while (number != 0) { number >>= 1; ++result; } return --result; #else return boost::multiprecision::msb(_number); #endif } /// Check whether (_base ** _exp) fits into 4096 bits. bool fitsPrecisionExp(bigint const& _base, bigint const& _exp) { if (_base == 0) return true; solAssert(_base > 0, ""); size_t const bitsMax = 4096; unsigned mostSignificantBaseBit = mostSignificantBit(_base); if (mostSignificantBaseBit == 0) // _base == 1 return true; if (mostSignificantBaseBit > bitsMax) // _base >= 2 ^ 4096 return false; bigint bitsNeeded = _exp * (mostSignificantBaseBit + 1); return bitsNeeded <= bitsMax; } /// Checks whether _mantissa * (X ** _exp) fits into 4096 bits, /// where X is given indirectly via _log2OfBase = log2(X). bool fitsPrecisionBaseX( bigint const& _mantissa, double _log2OfBase, uint32_t _exp ) { if (_mantissa == 0) return true; solAssert(_mantissa > 0, ""); size_t const bitsMax = 4096; unsigned mostSignificantMantissaBit = mostSignificantBit(_mantissa); if (mostSignificantMantissaBit > bitsMax) // _mantissa >= 2 ^ 4096 return false; bigint bitsNeeded = mostSignificantMantissaBit + bigint(floor(double(_exp) * _log2OfBase)) + 1; return bitsNeeded <= bitsMax; } /// Checks whether _mantissa * (10 ** _expBase10) fits into 4096 bits. bool fitsPrecisionBase10(bigint const& _mantissa, uint32_t _expBase10) { double const log2Of10AwayFromZero = 3.3219280948873624; return fitsPrecisionBaseX(_mantissa, log2Of10AwayFromZero, _expBase10); } /// Checks whether _mantissa * (2 ** _expBase10) fits into 4096 bits. bool fitsPrecisionBase2(bigint const& _mantissa, uint32_t _expBase2) { return fitsPrecisionBaseX(_mantissa, 1.0, _expBase2); } } void StorageOffsets::computeOffsets(TypePointers const& _types) { bigint slotOffset = 0; unsigned byteOffset = 0; map> offsets; for (size_t i = 0; i < _types.size(); ++i) { TypePointer const& type = _types[i]; if (!type->canBeStored()) continue; if (byteOffset + type->storageBytes() > 32) { // would overflow, go to next slot ++slotOffset; byteOffset = 0; } if (slotOffset >= bigint(1) << 256) BOOST_THROW_EXCEPTION(Error(Error::Type::TypeError) << errinfo_comment("Object too large for storage.")); offsets[i] = make_pair(u256(slotOffset), byteOffset); solAssert(type->storageSize() >= 1, "Invalid storage size."); if (type->storageSize() == 1 && byteOffset + type->storageBytes() <= 32) byteOffset += type->storageBytes(); else { slotOffset += type->storageSize(); byteOffset = 0; } } if (byteOffset > 0) ++slotOffset; if (slotOffset >= bigint(1) << 256) BOOST_THROW_EXCEPTION(Error(Error::Type::TypeError) << errinfo_comment("Object too large for storage.")); m_storageSize = u256(slotOffset); swap(m_offsets, offsets); } pair const* StorageOffsets::offset(size_t _index) const { if (m_offsets.count(_index)) return &m_offsets.at(_index); else return nullptr; } void MemberList::combine(MemberList const & _other) { m_memberTypes += _other.m_memberTypes; } pair const* MemberList::memberStorageOffset(string const& _name) const { if (!m_storageOffsets) { TypePointers memberTypes; memberTypes.reserve(m_memberTypes.size()); for (auto const& member: m_memberTypes) memberTypes.push_back(member.type); m_storageOffsets.reset(new StorageOffsets()); m_storageOffsets->computeOffsets(memberTypes); } for (size_t index = 0; index < m_memberTypes.size(); ++index) if (m_memberTypes[index].name == _name) return m_storageOffsets->offset(index); return nullptr; } u256 const& MemberList::storageSize() const { // trigger lazy computation memberStorageOffset(""); return m_storageOffsets->storageSize(); } /// Helper functions for type identifier namespace { string parenthesizeIdentifier(string const& _internal) { return "(" + _internal + ")"; } template string identifierList(Range const&& _list) { return parenthesizeIdentifier(boost::algorithm::join(_list, ",")); } string richIdentifier(TypePointer const& _type) { return _type ? _type->richIdentifier() : ""; } string identifierList(vector const& _list) { return identifierList(_list | boost::adaptors::transformed(richIdentifier)); } string identifierList(TypePointer const& _type) { return parenthesizeIdentifier(richIdentifier(_type)); } string identifierList(TypePointer const& _type1, TypePointer const& _type2) { TypePointers list; list.push_back(_type1); list.push_back(_type2); return identifierList(list); } string parenthesizeUserIdentifier(string const& _internal) { return parenthesizeIdentifier(_internal); } } string Type::escapeIdentifier(string const& _identifier) { string ret = _identifier; // FIXME: should be _$$$_ boost::algorithm::replace_all(ret, "$", "$$$"); boost::algorithm::replace_all(ret, ",", "_$_"); boost::algorithm::replace_all(ret, "(", "$_"); boost::algorithm::replace_all(ret, ")", "_$"); return ret; } string Type::identifier() const { string ret = escapeIdentifier(richIdentifier()); solAssert(ret.find_first_of("0123456789") != 0, "Identifier cannot start with a number."); solAssert( ret.find_first_not_of("0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMONPQRSTUVWXYZ_$") == string::npos, "Identifier contains invalid characters." ); return ret; } TypePointer Type::fromElementaryTypeName(ElementaryTypeNameToken const& _type) { solAssert(Token::isElementaryTypeName(_type.token()), "Expected an elementary type name but got " + _type.toString() ); Token::Value token = _type.token(); unsigned m = _type.firstNumber(); unsigned n = _type.secondNumber(); switch (token) { case Token::IntM: return make_shared(m, IntegerType::Modifier::Signed); case Token::UIntM: return make_shared(m, IntegerType::Modifier::Unsigned); case Token::BytesM: return make_shared(m); case Token::FixedMxN: return make_shared(m, n, FixedPointType::Modifier::Signed); case Token::UFixedMxN: return make_shared(m, n, FixedPointType::Modifier::Unsigned); case Token::Int: return make_shared(256, IntegerType::Modifier::Signed); case Token::UInt: return make_shared(256, IntegerType::Modifier::Unsigned); case Token::Fixed: return make_shared(128, 18, FixedPointType::Modifier::Signed); case Token::UFixed: return make_shared(128, 18, FixedPointType::Modifier::Unsigned); case Token::Byte: return make_shared(1); case Token::Address: return make_shared(StateMutability::NonPayable); case Token::Bool: return make_shared(); case Token::Bytes: return make_shared(DataLocation::Storage); case Token::String: return make_shared(DataLocation::Storage, true); //no types found default: solAssert( false, "Unable to convert elementary typename " + _type.toString() + " to type." ); } } TypePointer Type::fromElementaryTypeName(string const& _name) { vector nameParts; boost::split(nameParts, _name, boost::is_any_of(" ")); solAssert(nameParts.size() == 1 || nameParts.size() == 2, "Cannot parse elementary type: " + _name); Token::Value token; unsigned short firstNum, secondNum; tie(token, firstNum, secondNum) = Token::fromIdentifierOrKeyword(nameParts[0]); auto t = fromElementaryTypeName(ElementaryTypeNameToken(token, firstNum, secondNum)); if (auto* ref = dynamic_cast(t.get())) { DataLocation location = DataLocation::Storage; if (nameParts.size() == 2) { if (nameParts[1] == "storage") location = DataLocation::Storage; else if (nameParts[1] == "calldata") location = DataLocation::CallData; else if (nameParts[1] == "memory") location = DataLocation::Memory; else solAssert(false, "Unknown data location: " + nameParts[1]); } return ref->copyForLocation(location, true); } else if (t->category() == Type::Category::Address) { if (nameParts.size() == 2) { if (nameParts[1] == "payable") return make_shared(StateMutability::Payable); else solAssert(false, "Invalid state mutability for address type: " + nameParts[1]); } return make_shared(StateMutability::NonPayable); } else { solAssert(nameParts.size() == 1, "Storage location suffix only allowed for reference types"); return t; } } TypePointer Type::forLiteral(Literal const& _literal) { switch (_literal.token()) { case Token::TrueLiteral: case Token::FalseLiteral: return make_shared(); case Token::Number: return RationalNumberType::forLiteral(_literal); case Token::StringLiteral: return make_shared(_literal); default: return TypePointer(); } } TypePointer Type::commonType(TypePointer const& _a, TypePointer const& _b) { if (!_a || !_b) return TypePointer(); else if (_a->mobileType() && _b->isImplicitlyConvertibleTo(*_a->mobileType())) return _a->mobileType(); else if (_b->mobileType() && _a->isImplicitlyConvertibleTo(*_b->mobileType())) return _b->mobileType(); else return TypePointer(); } MemberList const& Type::members(ContractDefinition const* _currentScope) const { if (!m_members[_currentScope]) { MemberList::MemberMap members = nativeMembers(_currentScope); if (_currentScope) members += boundFunctions(*this, *_currentScope); m_members[_currentScope] = unique_ptr(new MemberList(move(members))); } return *m_members[_currentScope]; } TypePointer Type::fullEncodingType(bool _inLibraryCall, bool _encoderV2, bool _packed) const { TypePointer encodingType = mobileType(); if (encodingType) encodingType = encodingType->interfaceType(_inLibraryCall); if (encodingType) encodingType = encodingType->encodingType(); // Structs are fine in the following circumstances: // - ABIv2 without packed encoding or, // - storage struct for a library if (_inLibraryCall && encodingType->dataStoredIn(DataLocation::Storage)) return encodingType; TypePointer baseType = encodingType; while (auto const* arrayType = dynamic_cast(baseType.get())) baseType = arrayType->baseType(); if (dynamic_cast(baseType.get())) if (!_encoderV2 || _packed) return TypePointer(); return encodingType; } MemberList::MemberMap Type::boundFunctions(Type const& _type, ContractDefinition const& _scope) { // Normalise data location of type. TypePointer type = ReferenceType::copyForLocationIfReference(DataLocation::Storage, _type.shared_from_this()); set seenFunctions; MemberList::MemberMap members; for (ContractDefinition const* contract: _scope.annotation().linearizedBaseContracts) for (UsingForDirective const* ufd: contract->usingForDirectives()) { if (ufd->typeName() && *type != *ReferenceType::copyForLocationIfReference( DataLocation::Storage, ufd->typeName()->annotation().type )) continue; auto const& library = dynamic_cast( *ufd->libraryName().annotation().referencedDeclaration ); for (FunctionDefinition const* function: library.definedFunctions()) { if (!function->isVisibleAsLibraryMember() || seenFunctions.count(function)) continue; seenFunctions.insert(function); FunctionType funType(*function, false); if (auto fun = funType.asMemberFunction(true, true)) if (_type.isImplicitlyConvertibleTo(*fun->selfType())) members.push_back(MemberList::Member(function->name(), fun, function)); } } return members; } AddressType::AddressType(StateMutability _stateMutability): m_stateMutability(_stateMutability) { solAssert(m_stateMutability == StateMutability::Payable || m_stateMutability == StateMutability::NonPayable, ""); } string AddressType::richIdentifier() const { if (m_stateMutability == StateMutability::Payable) return "t_address_payable"; else return "t_address"; } bool AddressType::isImplicitlyConvertibleTo(Type const& _other) const { if (_other.category() != category()) return false; AddressType const& other = dynamic_cast(_other); return other.m_stateMutability <= m_stateMutability; } bool AddressType::isExplicitlyConvertibleTo(Type const& _convertTo) const { if (auto const* contractType = dynamic_cast(&_convertTo)) return (m_stateMutability >= StateMutability::Payable) || !contractType->isPayable(); return isImplicitlyConvertibleTo(_convertTo) || _convertTo.category() == Category::Integer || (_convertTo.category() == Category::FixedBytes && 160 == dynamic_cast(_convertTo).numBytes() * 8); } string AddressType::toString(bool) const { if (m_stateMutability == StateMutability::Payable) return "address payable"; else return "address"; } string AddressType::canonicalName() const { return "address"; } u256 AddressType::literalValue(Literal const* _literal) const { solAssert(_literal, ""); solAssert(_literal->value().substr(0, 2) == "0x", ""); return u256(_literal->valueWithoutUnderscores()); } TypePointer AddressType::unaryOperatorResult(Token::Value _operator) const { return _operator == Token::Delete ? make_shared() : TypePointer(); } TypePointer AddressType::binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const { // Addresses can only be compared. if (!Token::isCompareOp(_operator)) return TypePointer(); return Type::commonType(shared_from_this(), _other); } bool AddressType::operator==(Type const& _other) const { if (_other.category() != category()) return false; AddressType const& other = dynamic_cast(_other); return other.m_stateMutability == m_stateMutability; } MemberList::MemberMap AddressType::nativeMembers(ContractDefinition const*) const { MemberList::MemberMap members = { {"balance", make_shared(256)}, {"call", make_shared(strings{"bytes memory"}, strings{"bool", "bytes memory"}, FunctionType::Kind::BareCall, false, StateMutability::Payable)}, {"callcode", make_shared(strings{"bytes memory"}, strings{"bool", "bytes memory"}, FunctionType::Kind::BareCallCode, false, StateMutability::Payable)}, {"delegatecall", make_shared(strings{"bytes memory"}, strings{"bool", "bytes memory"}, FunctionType::Kind::BareDelegateCall, false)}, {"staticcall", make_shared(strings{"bytes memory"}, strings{"bool", "bytes memory"}, FunctionType::Kind::BareStaticCall, false, StateMutability::View)} }; if (m_stateMutability == StateMutability::Payable) { members.emplace_back(MemberList::Member{"send", make_shared(strings{"uint"}, strings{"bool"}, FunctionType::Kind::Send)}); members.emplace_back(MemberList::Member{"transfer", make_shared(strings{"uint"}, strings(), FunctionType::Kind::Transfer)}); } return members; } namespace { bool isValidShiftAndAmountType(Token::Value _operator, Type const& _shiftAmountType) { // Disable >>> here. if (_operator == Token::SHR) return false; else if (IntegerType const* otherInt = dynamic_cast(&_shiftAmountType)) return true; else if (RationalNumberType const* otherRat = dynamic_cast(&_shiftAmountType)) return !otherRat->isFractional() && otherRat->integerType() && !otherRat->integerType()->isSigned(); else return false; } } IntegerType::IntegerType(unsigned _bits, IntegerType::Modifier _modifier): m_bits(_bits), m_modifier(_modifier) { solAssert( m_bits > 0 && m_bits <= 256 && m_bits % 8 == 0, "Invalid bit number for integer type: " + dev::toString(m_bits) ); } string IntegerType::richIdentifier() const { return "t_" + string(isSigned() ? "" : "u") + "int" + to_string(numBits()); } bool IntegerType::isImplicitlyConvertibleTo(Type const& _convertTo) const { if (_convertTo.category() == category()) { IntegerType const& convertTo = dynamic_cast(_convertTo); if (convertTo.m_bits < m_bits) return false; else if (isSigned()) return convertTo.isSigned(); else return !convertTo.isSigned() || convertTo.m_bits > m_bits; } else if (_convertTo.category() == Category::FixedPoint) { FixedPointType const& convertTo = dynamic_cast(_convertTo); return maxValue() <= convertTo.maxIntegerValue() && minValue() >= convertTo.minIntegerValue(); } else return false; } bool IntegerType::isExplicitlyConvertibleTo(Type const& _convertTo) const { return _convertTo.category() == category() || _convertTo.category() == Category::Address || _convertTo.category() == Category::Contract || _convertTo.category() == Category::Enum || (_convertTo.category() == Category::FixedBytes && numBits() == dynamic_cast(_convertTo).numBytes() * 8) || _convertTo.category() == Category::FixedPoint; } TypePointer IntegerType::unaryOperatorResult(Token::Value _operator) const { // "delete" is ok for all integer types if (_operator == Token::Delete) return make_shared(); // we allow +, -, ++ and -- else if (_operator == Token::Add || _operator == Token::Sub || _operator == Token::Inc || _operator == Token::Dec || _operator == Token::BitNot) return shared_from_this(); else return TypePointer(); } bool IntegerType::operator==(Type const& _other) const { if (_other.category() != category()) return false; IntegerType const& other = dynamic_cast(_other); return other.m_bits == m_bits && other.m_modifier == m_modifier; } string IntegerType::toString(bool) const { string prefix = isSigned() ? "int" : "uint"; return prefix + dev::toString(m_bits); } bigint IntegerType::minValue() const { if (isSigned()) return -(bigint(1) << (m_bits - 1)); else return bigint(0); } bigint IntegerType::maxValue() const { if (isSigned()) return (bigint(1) << (m_bits - 1)) - 1; else return (bigint(1) << m_bits) - 1; } TypePointer IntegerType::binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const { if ( _other->category() != Category::RationalNumber && _other->category() != Category::FixedPoint && _other->category() != category() ) return TypePointer(); if (Token::isShiftOp(_operator)) { // Shifts are not symmetric with respect to the type if (isValidShiftAndAmountType(_operator, *_other)) return shared_from_this(); else return TypePointer(); } auto commonType = Type::commonType(shared_from_this(), _other); //might be an integer or fixed point if (!commonType) return TypePointer(); // All integer types can be compared if (Token::isCompareOp(_operator)) return commonType; if (Token::isBooleanOp(_operator)) return TypePointer(); if (auto intType = dynamic_pointer_cast(commonType)) { // Signed EXP is not allowed if (Token::Exp == _operator && intType->isSigned()) return TypePointer(); } else if (auto fixType = dynamic_pointer_cast(commonType)) if (Token::Exp == _operator) return TypePointer(); return commonType; } FixedPointType::FixedPointType(unsigned _totalBits, unsigned _fractionalDigits, FixedPointType::Modifier _modifier): m_totalBits(_totalBits), m_fractionalDigits(_fractionalDigits), m_modifier(_modifier) { solAssert( 8 <= m_totalBits && m_totalBits <= 256 && m_totalBits % 8 == 0 && m_fractionalDigits <= 80, "Invalid bit number(s) for fixed type: " + dev::toString(_totalBits) + "x" + dev::toString(_fractionalDigits) ); } string FixedPointType::richIdentifier() const { return "t_" + string(isSigned() ? "" : "u") + "fixed" + to_string(m_totalBits) + "x" + to_string(m_fractionalDigits); } bool FixedPointType::isImplicitlyConvertibleTo(Type const& _convertTo) const { if (_convertTo.category() == category()) { FixedPointType const& convertTo = dynamic_cast(_convertTo); if (convertTo.numBits() < m_totalBits || convertTo.fractionalDigits() < m_fractionalDigits) return false; else return convertTo.maxIntegerValue() >= maxIntegerValue() && convertTo.minIntegerValue() <= minIntegerValue(); } return false; } bool FixedPointType::isExplicitlyConvertibleTo(Type const& _convertTo) const { return _convertTo.category() == category() || _convertTo.category() == Category::Integer; } TypePointer FixedPointType::unaryOperatorResult(Token::Value _operator) const { switch(_operator) { case Token::Delete: // "delete" is ok for all fixed types return make_shared(); case Token::Add: case Token::Sub: case Token::Inc: case Token::Dec: // for fixed, we allow +, -, ++ and -- return shared_from_this(); default: return TypePointer(); } } bool FixedPointType::operator==(Type const& _other) const { if (_other.category() != category()) return false; FixedPointType const& other = dynamic_cast(_other); return other.m_totalBits == m_totalBits && other.m_fractionalDigits == m_fractionalDigits && other.m_modifier == m_modifier; } string FixedPointType::toString(bool) const { string prefix = isSigned() ? "fixed" : "ufixed"; return prefix + dev::toString(m_totalBits) + "x" + dev::toString(m_fractionalDigits); } bigint FixedPointType::maxIntegerValue() const { bigint maxValue = (bigint(1) << (m_totalBits - (isSigned() ? 1 : 0))) - 1; return maxValue / boost::multiprecision::pow(bigint(10), m_fractionalDigits); } bigint FixedPointType::minIntegerValue() const { if (isSigned()) { bigint minValue = -(bigint(1) << (m_totalBits - (isSigned() ? 1 : 0))); return minValue / boost::multiprecision::pow(bigint(10), m_fractionalDigits); } else return bigint(0); } TypePointer FixedPointType::binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const { auto commonType = Type::commonType(shared_from_this(), _other); if (!commonType) return TypePointer(); // All fixed types can be compared if (Token::isCompareOp(_operator)) return commonType; if (Token::isBitOp(_operator) || Token::isBooleanOp(_operator) || _operator == Token::Exp) return TypePointer(); return commonType; } std::shared_ptr FixedPointType::asIntegerType() const { return make_shared(numBits(), isSigned() ? IntegerType::Modifier::Signed : IntegerType::Modifier::Unsigned); } tuple RationalNumberType::parseRational(string const& _value) { rational value; try { auto radixPoint = find(_value.begin(), _value.end(), '.'); if (radixPoint != _value.end()) { if ( !all_of(radixPoint + 1, _value.end(), ::isdigit) || !all_of(_value.begin(), radixPoint, ::isdigit) ) return make_tuple(false, rational(0)); // Only decimal notation allowed here, leading zeros would switch to octal. auto fractionalBegin = find_if_not( radixPoint + 1, _value.end(), [](char const& a) { return a == '0'; } ); rational numerator; rational denominator(1); denominator = bigint(string(fractionalBegin, _value.end())); denominator /= boost::multiprecision::pow( bigint(10), distance(radixPoint + 1, _value.end()) ); numerator = bigint(string(_value.begin(), radixPoint)); value = numerator + denominator; } else value = bigint(_value); return make_tuple(true, value); } catch (...) { return make_tuple(false, rational(0)); } } TypePointer RationalNumberType::forLiteral(Literal const& _literal) { solAssert(_literal.token() == Token::Number, ""); tuple validLiteral = isValidLiteral(_literal); if (get<0>(validLiteral)) { TypePointer compatibleBytesType; if (_literal.isHexNumber()) { size_t const digitCount = _literal.valueWithoutUnderscores().length() - 2; if (digitCount % 2 == 0 && (digitCount / 2) <= 32) compatibleBytesType = make_shared(digitCount / 2); } return make_shared(get<1>(validLiteral), compatibleBytesType); } return TypePointer(); } tuple RationalNumberType::isValidLiteral(Literal const& _literal) { rational value; try { ASTString valueString = _literal.valueWithoutUnderscores(); auto expPoint = find(valueString.begin(), valueString.end(), 'e'); if (expPoint == valueString.end()) expPoint = find(valueString.begin(), valueString.end(), 'E'); if (boost::starts_with(valueString, "0x")) { // process as hex value = bigint(valueString); } else if (expPoint != valueString.end()) { // Parse mantissa and exponent. Checks numeric limit. tuple mantissa = parseRational(string(valueString.begin(), expPoint)); if (!get<0>(mantissa)) return make_tuple(false, rational(0)); value = get<1>(mantissa); // 0E... is always zero. if (value == 0) return make_tuple(true, rational(0)); bigint exp = bigint(string(expPoint + 1, valueString.end())); if (exp > numeric_limits::max() || exp < numeric_limits::min()) return make_tuple(false, rational(0)); uint32_t expAbs = bigint(abs(exp)).convert_to(); if (exp < 0) { if (!fitsPrecisionBase10(abs(value.denominator()), expAbs)) return make_tuple(false, rational(0)); value /= boost::multiprecision::pow( bigint(10), expAbs ); } else if (exp > 0) { if (!fitsPrecisionBase10(abs(value.numerator()), expAbs)) return make_tuple(false, rational(0)); value *= boost::multiprecision::pow( bigint(10), expAbs ); } } else { // parse as rational number tuple tmp = parseRational(valueString); if (!get<0>(tmp)) return tmp; value = get<1>(tmp); } } catch (...) { return make_tuple(false, rational(0)); } switch (_literal.subDenomination()) { case Literal::SubDenomination::None: case Literal::SubDenomination::Wei: case Literal::SubDenomination::Second: break; case Literal::SubDenomination::Szabo: value *= bigint("1000000000000"); break; case Literal::SubDenomination::Finney: value *= bigint("1000000000000000"); break; case Literal::SubDenomination::Ether: value *= bigint("1000000000000000000"); break; case Literal::SubDenomination::Minute: value *= bigint("60"); break; case Literal::SubDenomination::Hour: value *= bigint("3600"); break; case Literal::SubDenomination::Day: value *= bigint("86400"); break; case Literal::SubDenomination::Week: value *= bigint("604800"); break; case Literal::SubDenomination::Year: value *= bigint("31536000"); break; } return make_tuple(true, value); } bool RationalNumberType::isImplicitlyConvertibleTo(Type const& _convertTo) const { switch (_convertTo.category()) { case Category::Integer: { if (isFractional()) return false; IntegerType const& targetType = dynamic_cast(_convertTo); if (m_value == rational(0)) return true; unsigned forSignBit = (targetType.isSigned() ? 1 : 0); if (m_value > rational(0)) { if (m_value.numerator() <= (u256(-1) >> (256 - targetType.numBits() + forSignBit))) return true; return false; } if (targetType.isSigned()) { if (-m_value.numerator() <= (u256(1) << (targetType.numBits() - forSignBit))) return true; } return false; } case Category::FixedPoint: { if (auto fixed = fixedPointType()) return fixed->isImplicitlyConvertibleTo(_convertTo); return false; } case Category::FixedBytes: return (m_value == rational(0)) || (m_compatibleBytesType && *m_compatibleBytesType == _convertTo); default: return false; } } bool RationalNumberType::isExplicitlyConvertibleTo(Type const& _convertTo) const { if (isImplicitlyConvertibleTo(_convertTo)) return true; else if (_convertTo.category() != Category::FixedBytes) { TypePointer mobType = mobileType(); return (mobType && mobType->isExplicitlyConvertibleTo(_convertTo)); } else return false; } TypePointer RationalNumberType::unaryOperatorResult(Token::Value _operator) const { rational value; switch (_operator) { case Token::BitNot: if (isFractional()) return TypePointer(); value = ~m_value.numerator(); break; case Token::Add: value = +(m_value); break; case Token::Sub: value = -(m_value); break; case Token::After: return shared_from_this(); default: return TypePointer(); } return make_shared(value); } TypePointer RationalNumberType::binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const { if (_other->category() == Category::Integer || _other->category() == Category::FixedPoint) { auto commonType = Type::commonType(shared_from_this(), _other); if (!commonType) return TypePointer(); return commonType->binaryOperatorResult(_operator, _other); } else if (_other->category() != category()) return TypePointer(); RationalNumberType const& other = dynamic_cast(*_other); if (Token::isCompareOp(_operator)) { // Since we do not have a "BoolConstantType", we have to do the actual comparison // at runtime and convert to mobile typse first. Such a comparison is not a very common // use-case and will be optimized away. TypePointer thisMobile = mobileType(); TypePointer otherMobile = other.mobileType(); if (!thisMobile || !otherMobile) return TypePointer(); return thisMobile->binaryOperatorResult(_operator, otherMobile); } else { rational value; bool fractional = isFractional() || other.isFractional(); switch (_operator) { //bit operations will only be enabled for integers and fixed types that resemble integers case Token::BitOr: if (fractional) return TypePointer(); value = m_value.numerator() | other.m_value.numerator(); break; case Token::BitXor: if (fractional) return TypePointer(); value = m_value.numerator() ^ other.m_value.numerator(); break; case Token::BitAnd: if (fractional) return TypePointer(); value = m_value.numerator() & other.m_value.numerator(); break; case Token::Add: value = m_value + other.m_value; break; case Token::Sub: value = m_value - other.m_value; break; case Token::Mul: value = m_value * other.m_value; break; case Token::Div: if (other.m_value == rational(0)) return TypePointer(); else value = m_value / other.m_value; break; case Token::Mod: if (other.m_value == rational(0)) return TypePointer(); else if (fractional) { rational tempValue = m_value / other.m_value; value = m_value - (tempValue.numerator() / tempValue.denominator()) * other.m_value; } else value = m_value.numerator() % other.m_value.numerator(); break; case Token::Exp: { if (other.isFractional()) return TypePointer(); solAssert(other.m_value.denominator() == 1, ""); bigint const& exp = other.m_value.numerator(); // x ** 0 = 1 // for 0, 1 and -1 the size of the exponent doesn't have to be restricted if (exp == 0) value = 1; else if (m_value.numerator() == 0 || m_value == 1) value = m_value; else if (m_value == -1) { bigint isOdd = abs(exp) & bigint(1); value = 1 - 2 * isOdd.convert_to(); } else { if (abs(exp) > numeric_limits::max()) return TypePointer(); // This will need too much memory to represent. uint32_t absExp = bigint(abs(exp)).convert_to(); // Limit size to 4096 bits if (!fitsPrecisionExp(abs(m_value.numerator()), absExp) || !fitsPrecisionExp(abs(m_value.denominator()), absExp)) return TypePointer(); static auto const optimizedPow = [](bigint const& _base, uint32_t _exponent) -> bigint { if (_base == 1) return 1; else if (_base == -1) return 1 - 2 * int(_exponent & 1); else return boost::multiprecision::pow(_base, _exponent); }; bigint numerator = optimizedPow(m_value.numerator(), absExp); bigint denominator = optimizedPow(m_value.denominator(), absExp); if (exp >= 0) value = rational(numerator, denominator); else // invert value = rational(denominator, numerator); } break; } case Token::SHL: { if (fractional) return TypePointer(); else if (other.m_value < 0) return TypePointer(); else if (other.m_value > numeric_limits::max()) return TypePointer(); if (m_value.numerator() == 0) value = 0; else { uint32_t exponent = other.m_value.numerator().convert_to(); if (!fitsPrecisionBase2(abs(m_value.numerator()), exponent)) return TypePointer(); value = m_value.numerator() * boost::multiprecision::pow(bigint(2), exponent); } break; } // NOTE: we're using >> (SAR) to denote right shifting. The type of the LValue // determines the resulting type and the type of shift (SAR or SHR). case Token::SAR: { if (fractional) return TypePointer(); else if (other.m_value < 0) return TypePointer(); else if (other.m_value > numeric_limits::max()) return TypePointer(); if (m_value.numerator() == 0) value = 0; else { uint32_t exponent = other.m_value.numerator().convert_to(); if (exponent > mostSignificantBit(boost::multiprecision::abs(m_value.numerator()))) value = m_value.numerator() < 0 ? -1 : 0; else { if (m_value.numerator() < 0) // Add 1 to the negative value before dividing to get a result that is strictly too large, // then subtract 1 afterwards to round towards negative infinity. // This is the same algorithm as used in ExpressionCompiler::appendShiftOperatorCode(...). // To see this note that for negative x, xor(x,all_ones) = (-x-1) and // therefore xor(div(xor(x,all_ones), exp(2, shift_amount)), all_ones) is // -(-x - 1) / 2^shift_amount - 1, which is the same as // (x + 1) / 2^shift_amount - 1. value = rational((m_value.numerator() + 1) / boost::multiprecision::pow(bigint(2), exponent) - bigint(1), 1); else value = rational(m_value.numerator() / boost::multiprecision::pow(bigint(2), exponent), 1); } } break; } default: return TypePointer(); } // verify that numerator and denominator fit into 4096 bit after every operation if (value.numerator() != 0 && max(mostSignificantBit(abs(value.numerator())), mostSignificantBit(abs(value.denominator()))) > 4096) return TypePointer(); return make_shared(value); } } string RationalNumberType::richIdentifier() const { // rational seemingly will put the sign always on the numerator, // but let just make it deterministic here. bigint numerator = abs(m_value.numerator()); bigint denominator = abs(m_value.denominator()); if (m_value < 0) return "t_rational_minus_" + numerator.str() + "_by_" + denominator.str(); else return "t_rational_" + numerator.str() + "_by_" + denominator.str(); } bool RationalNumberType::operator==(Type const& _other) const { if (_other.category() != category()) return false; RationalNumberType const& other = dynamic_cast(_other); return m_value == other.m_value; } string RationalNumberType::bigintToReadableString(dev::bigint const& _num) { string str = _num.str(); if (str.size() > 32) { int omitted = str.size() - 8; str = str.substr(0, 4) + "...(" + to_string(omitted) + " digits omitted)..." + str.substr(str.size() - 4, 4); } return str; } string RationalNumberType::toString(bool) const { if (!isFractional()) return "int_const " + bigintToReadableString(m_value.numerator()); string numerator = bigintToReadableString(m_value.numerator()); string denominator = bigintToReadableString(m_value.denominator()); return "rational_const " + numerator + " / " + denominator; } u256 RationalNumberType::literalValue(Literal const*) const { // We ignore the literal and hope that the type was correctly determined to represent // its value. u256 value; bigint shiftedValue; if (!isFractional()) shiftedValue = m_value.numerator(); else { auto fixed = fixedPointType(); solAssert(fixed, "Rational number cannot be represented as fixed point type."); int fractionalDigits = fixed->fractionalDigits(); shiftedValue = m_value.numerator() * boost::multiprecision::pow(bigint(10), fractionalDigits) / m_value.denominator(); } // we ignore the literal and hope that the type was correctly determined solAssert(shiftedValue <= u256(-1), "Number constant too large."); solAssert(shiftedValue >= -(bigint(1) << 255), "Number constant too small."); if (m_value >= rational(0)) value = u256(shiftedValue); else value = s2u(s256(shiftedValue)); return value; } TypePointer RationalNumberType::mobileType() const { if (!isFractional()) return integerType(); else return fixedPointType(); } shared_ptr RationalNumberType::integerType() const { solAssert(!isFractional(), "integerType() called for fractional number."); bigint value = m_value.numerator(); bool negative = (value < 0); if (negative) // convert to positive number of same bit requirements value = ((0 - value) - 1) << 1; if (value > u256(-1)) return shared_ptr(); else return make_shared( max(bytesRequired(value), 1u) * 8, negative ? IntegerType::Modifier::Signed : IntegerType::Modifier::Unsigned ); } shared_ptr RationalNumberType::fixedPointType() const { bool negative = (m_value < 0); unsigned fractionalDigits = 0; rational value = abs(m_value); // We care about the sign later. rational maxValue = negative ? rational(bigint(1) << 255, 1): rational((bigint(1) << 256) - 1, 1); while (value * 10 <= maxValue && value.denominator() != 1 && fractionalDigits < 80) { value *= 10; fractionalDigits++; } if (value > maxValue) return shared_ptr(); // This means we round towards zero for positive and negative values. bigint v = value.numerator() / value.denominator(); if (negative && v != 0) // modify value to satisfy bit requirements for negative numbers: // add one bit for sign and decrement because negative numbers can be larger v = (v - 1) << 1; if (v > u256(-1)) return shared_ptr(); unsigned totalBits = max(bytesRequired(v), 1u) * 8; solAssert(totalBits <= 256, ""); return make_shared( totalBits, fractionalDigits, negative ? FixedPointType::Modifier::Signed : FixedPointType::Modifier::Unsigned ); } StringLiteralType::StringLiteralType(Literal const& _literal): m_value(_literal.value()) { } bool StringLiteralType::isImplicitlyConvertibleTo(Type const& _convertTo) const { if (auto fixedBytes = dynamic_cast(&_convertTo)) return size_t(fixedBytes->numBytes()) >= m_value.size(); else if (auto arrayType = dynamic_cast(&_convertTo)) return arrayType->isByteArray() && !(arrayType->dataStoredIn(DataLocation::Storage) && arrayType->isPointer()) && !(arrayType->isString() && !isValidUTF8()); else return false; } string StringLiteralType::richIdentifier() const { // Since we have to return a valid identifier and the string itself may contain // anything, we hash it. return "t_stringliteral_" + toHex(keccak256(m_value).asBytes()); } bool StringLiteralType::operator==(const Type& _other) const { if (_other.category() != category()) return false; return m_value == dynamic_cast(_other).m_value; } std::string StringLiteralType::toString(bool) const { size_t invalidSequence; if (!dev::validateUTF8(m_value, invalidSequence)) return "literal_string (contains invalid UTF-8 sequence at position " + dev::toString(invalidSequence) + ")"; return "literal_string \"" + m_value + "\""; } TypePointer StringLiteralType::mobileType() const { return make_shared(DataLocation::Memory, true); } bool StringLiteralType::isValidUTF8() const { return dev::validateUTF8(m_value); } FixedBytesType::FixedBytesType(unsigned _bytes): m_bytes(_bytes) { solAssert( m_bytes > 0 && m_bytes <= 32, "Invalid byte number for fixed bytes type: " + dev::toString(m_bytes) ); } bool FixedBytesType::isImplicitlyConvertibleTo(Type const& _convertTo) const { if (_convertTo.category() != category()) return false; FixedBytesType const& convertTo = dynamic_cast(_convertTo); return convertTo.m_bytes >= m_bytes; } bool FixedBytesType::isExplicitlyConvertibleTo(Type const& _convertTo) const { return (_convertTo.category() == Category::Integer && numBytes() * 8 == dynamic_cast(_convertTo).numBits()) || (_convertTo.category() == Category::Address && numBytes() == 20) || _convertTo.category() == Category::FixedPoint || _convertTo.category() == category(); } TypePointer FixedBytesType::unaryOperatorResult(Token::Value _operator) const { // "delete" and "~" is okay for FixedBytesType if (_operator == Token::Delete) return make_shared(); else if (_operator == Token::BitNot) return shared_from_this(); return TypePointer(); } TypePointer FixedBytesType::binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const { if (Token::isShiftOp(_operator)) { if (isValidShiftAndAmountType(_operator, *_other)) return shared_from_this(); else return TypePointer(); } auto commonType = dynamic_pointer_cast(Type::commonType(shared_from_this(), _other)); if (!commonType) return TypePointer(); // FixedBytes can be compared and have bitwise operators applied to them if (Token::isCompareOp(_operator) || Token::isBitOp(_operator)) return commonType; return TypePointer(); } MemberList::MemberMap FixedBytesType::nativeMembers(const ContractDefinition*) const { return MemberList::MemberMap{MemberList::Member{"length", make_shared(8)}}; } string FixedBytesType::richIdentifier() const { return "t_bytes" + to_string(m_bytes); } bool FixedBytesType::operator==(Type const& _other) const { if (_other.category() != category()) return false; FixedBytesType const& other = dynamic_cast(_other); return other.m_bytes == m_bytes; } u256 BoolType::literalValue(Literal const* _literal) const { solAssert(_literal, ""); if (_literal->token() == Token::TrueLiteral) return u256(1); else if (_literal->token() == Token::FalseLiteral) return u256(0); else solAssert(false, "Bool type constructed from non-boolean literal."); } TypePointer BoolType::unaryOperatorResult(Token::Value _operator) const { if (_operator == Token::Delete) return make_shared(); return (_operator == Token::Not) ? shared_from_this() : TypePointer(); } TypePointer BoolType::binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const { if (category() != _other->category()) return TypePointer(); if (_operator == Token::Equal || _operator == Token::NotEqual || _operator == Token::And || _operator == Token::Or) return _other; else return TypePointer(); } bool ContractType::isImplicitlyConvertibleTo(Type const& _convertTo) const { if (*this == _convertTo) return true; if (_convertTo.category() == Category::Contract) { auto const& bases = contractDefinition().annotation().linearizedBaseContracts; if (m_super && bases.size() <= 1) return false; return find( m_super ? ++bases.begin() : bases.begin(), bases.end(), &dynamic_cast(_convertTo).contractDefinition() ) != bases.end(); } return false; } bool ContractType::isExplicitlyConvertibleTo(Type const& _convertTo) const { if (auto const* addressType = dynamic_cast(&_convertTo)) return isPayable() || (addressType->stateMutability() < StateMutability::Payable); return isImplicitlyConvertibleTo(_convertTo); } bool ContractType::isPayable() const { auto fallbackFunction = m_contract.fallbackFunction(); return fallbackFunction && fallbackFunction->isPayable(); } TypePointer ContractType::unaryOperatorResult(Token::Value _operator) const { if (isSuper()) return TypePointer{}; return _operator == Token::Delete ? make_shared() : TypePointer(); } TypePointer ReferenceType::unaryOperatorResult(Token::Value _operator) const { if (_operator != Token::Delete) return TypePointer(); // delete can be used on everything except calldata references or storage pointers // (storage references are ok) switch (location()) { case DataLocation::CallData: return TypePointer(); case DataLocation::Memory: return make_shared(); case DataLocation::Storage: return m_isPointer ? TypePointer() : make_shared(); } return TypePointer(); } TypePointer ReferenceType::copyForLocationIfReference(DataLocation _location, TypePointer const& _type) { if (auto type = dynamic_cast(_type.get())) return type->copyForLocation(_location, false); return _type; } TypePointer ReferenceType::copyForLocationIfReference(TypePointer const& _type) const { return copyForLocationIfReference(m_location, _type); } string ReferenceType::stringForReferencePart() const { switch (m_location) { case DataLocation::Storage: return string("storage ") + (m_isPointer ? "pointer" : "ref"); case DataLocation::CallData: return "calldata"; case DataLocation::Memory: return "memory"; } solAssert(false, ""); return ""; } string ReferenceType::identifierLocationSuffix() const { string id; switch (location()) { case DataLocation::Storage: id += "_storage"; break; case DataLocation::Memory: id += "_memory"; break; case DataLocation::CallData: id += "_calldata"; break; } if (isPointer()) id += "_ptr"; return id; } bool ArrayType::isImplicitlyConvertibleTo(const Type& _convertTo) const { if (_convertTo.category() != category()) return false; auto& convertTo = dynamic_cast(_convertTo); if (convertTo.isByteArray() != isByteArray() || convertTo.isString() != isString()) return false; // memory/calldata to storage can be converted, but only to a direct storage reference if (convertTo.location() == DataLocation::Storage && location() != DataLocation::Storage && convertTo.isPointer()) return false; if (convertTo.location() == DataLocation::CallData && location() != convertTo.location()) return false; if (convertTo.location() == DataLocation::Storage && !convertTo.isPointer()) { // Less restrictive conversion, since we need to copy anyway. if (!baseType()->isImplicitlyConvertibleTo(*convertTo.baseType())) return false; if (convertTo.isDynamicallySized()) return true; return !isDynamicallySized() && convertTo.length() >= length(); } else { // Conversion to storage pointer or to memory, we de not copy element-for-element here, so // require that the base type is the same, not only convertible. // This disallows assignment of nested dynamic arrays from storage to memory for now. if ( *copyForLocationIfReference(location(), baseType()) != *copyForLocationIfReference(location(), convertTo.baseType()) ) return false; if (isDynamicallySized() != convertTo.isDynamicallySized()) return false; // We also require that the size is the same. if (!isDynamicallySized() && length() != convertTo.length()) return false; return true; } } bool ArrayType::isExplicitlyConvertibleTo(const Type& _convertTo) const { if (isImplicitlyConvertibleTo(_convertTo)) return true; // allow conversion bytes <-> string if (_convertTo.category() != category()) return false; auto& convertTo = dynamic_cast(_convertTo); if (convertTo.location() != location()) return false; if (!isByteArray() || !convertTo.isByteArray()) return false; return true; } string ArrayType::richIdentifier() const { string id; if (isString()) id = "t_string"; else if (isByteArray()) id = "t_bytes"; else { id = "t_array"; id += identifierList(baseType()); if (isDynamicallySized()) id += "dyn"; else id += length().str(); } id += identifierLocationSuffix(); return id; } bool ArrayType::operator==(Type const& _other) const { if (_other.category() != category()) return false; ArrayType const& other = dynamic_cast(_other); if ( !ReferenceType::operator==(other) || other.isByteArray() != isByteArray() || other.isString() != isString() || other.isDynamicallySized() != isDynamicallySized() ) return false; if (*other.baseType() != *baseType()) return false; return isDynamicallySized() || length() == other.length(); } bool ArrayType::validForCalldata() const { return unlimitedCalldataEncodedSize(true) <= numeric_limits::max(); } bigint ArrayType::unlimitedCalldataEncodedSize(bool _padded) const { if (isDynamicallySized()) return 32; bigint size = bigint(length()) * (isByteArray() ? 1 : baseType()->calldataEncodedSize(_padded)); size = ((size + 31) / 32) * 32; return size; } unsigned ArrayType::calldataEncodedSize(bool _padded) const { bigint size = unlimitedCalldataEncodedSize(_padded); solAssert(size <= numeric_limits::max(), "Array size does not fit unsigned."); return unsigned(size); } bool ArrayType::isDynamicallyEncoded() const { return isDynamicallySized() || baseType()->isDynamicallyEncoded(); } u256 ArrayType::storageSize() const { if (isDynamicallySized()) return 1; bigint size; unsigned baseBytes = baseType()->storageBytes(); if (baseBytes == 0) size = 1; else if (baseBytes < 32) { unsigned itemsPerSlot = 32 / baseBytes; size = (bigint(length()) + (itemsPerSlot - 1)) / itemsPerSlot; } else size = bigint(length()) * baseType()->storageSize(); if (size >= bigint(1) << 256) BOOST_THROW_EXCEPTION(Error(Error::Type::TypeError) << errinfo_comment("Array too large for storage.")); return max(1, u256(size)); } unsigned ArrayType::sizeOnStack() const { if (m_location == DataLocation::CallData) // offset [length] (stack top) return 1 + (isDynamicallySized() ? 1 : 0); else // storage slot or memory offset // byte offset inside storage value is omitted return 1; } string ArrayType::toString(bool _short) const { string ret; if (isString()) ret = "string"; else if (isByteArray()) ret = "bytes"; else { ret = baseType()->toString(_short) + "["; if (!isDynamicallySized()) ret += length().str(); ret += "]"; } if (!_short) ret += " " + stringForReferencePart(); return ret; } string ArrayType::canonicalName() const { string ret; if (isString()) ret = "string"; else if (isByteArray()) ret = "bytes"; else { ret = baseType()->canonicalName() + "["; if (!isDynamicallySized()) ret += length().str(); ret += "]"; } return ret; } string ArrayType::signatureInExternalFunction(bool _structsByName) const { if (isByteArray()) return canonicalName(); else { solAssert(baseType(), ""); return baseType()->signatureInExternalFunction(_structsByName) + "[" + (isDynamicallySized() ? "" : length().str()) + "]"; } } MemberList::MemberMap ArrayType::nativeMembers(ContractDefinition const*) const { MemberList::MemberMap members; if (!isString()) { members.push_back({"length", make_shared(256)}); if (isDynamicallySized() && location() == DataLocation::Storage) { members.push_back({"push", make_shared( TypePointers{baseType()}, TypePointers{make_shared(256)}, strings{string()}, strings{string()}, isByteArray() ? FunctionType::Kind::ByteArrayPush : FunctionType::Kind::ArrayPush )}); members.push_back({"pop", make_shared( TypePointers{}, TypePointers{}, strings{string()}, strings{string()}, FunctionType::Kind::ArrayPop )}); } } return members; } TypePointer ArrayType::encodingType() const { if (location() == DataLocation::Storage) return make_shared(256); else return this->copyForLocation(DataLocation::Memory, true); } TypePointer ArrayType::decodingType() const { if (location() == DataLocation::Storage) return make_shared(256); else return shared_from_this(); } TypePointer ArrayType::interfaceType(bool _inLibrary) const { // Note: This has to fulfill canBeUsedExternally(_inLibrary) == !!interfaceType(_inLibrary) if (_inLibrary && location() == DataLocation::Storage) return shared_from_this(); if (m_arrayKind != ArrayKind::Ordinary) return this->copyForLocation(DataLocation::Memory, true); TypePointer baseExt = m_baseType->interfaceType(_inLibrary); if (!baseExt) return TypePointer(); if (isDynamicallySized()) return make_shared(DataLocation::Memory, baseExt); else return make_shared(DataLocation::Memory, baseExt, m_length); } bool ArrayType::canBeUsedExternally(bool _inLibrary) const { // Note: This has to fulfill canBeUsedExternally(_inLibrary) == !!interfaceType(_inLibrary) if (_inLibrary && location() == DataLocation::Storage) return true; else if (m_arrayKind != ArrayKind::Ordinary) return true; else if (!m_baseType->canBeUsedExternally(_inLibrary)) return false; else return true; } u256 ArrayType::memorySize() const { solAssert(!isDynamicallySized(), ""); solAssert(m_location == DataLocation::Memory, ""); bigint size = bigint(m_length) * m_baseType->memoryHeadSize(); solAssert(size <= numeric_limits::max(), "Array size does not fit u256."); return u256(size); } TypePointer ArrayType::copyForLocation(DataLocation _location, bool _isPointer) const { auto copy = make_shared(_location); copy->m_isPointer = _isPointer; copy->m_arrayKind = m_arrayKind; copy->m_baseType = copy->copyForLocationIfReference(m_baseType); copy->m_hasDynamicLength = m_hasDynamicLength; copy->m_length = m_length; return copy; } string ContractType::richIdentifier() const { return (m_super ? "t_super" : "t_contract") + parenthesizeUserIdentifier(m_contract.name()) + to_string(m_contract.id()); } bool ContractType::operator==(Type const& _other) const { if (_other.category() != category()) return false; ContractType const& other = dynamic_cast(_other); return other.m_contract == m_contract && other.m_super == m_super; } string ContractType::toString(bool) const { return string(m_contract.isLibrary() ? "library " : "contract ") + string(m_super ? "super " : "") + m_contract.name(); } string ContractType::canonicalName() const { return m_contract.annotation().canonicalName; } MemberList::MemberMap ContractType::nativeMembers(ContractDefinition const* _contract) const { MemberList::MemberMap members; solAssert(_contract, ""); if (m_super) { // add the most derived of all functions which are visible in derived contracts auto bases = m_contract.annotation().linearizedBaseContracts; solAssert(bases.size() >= 1, "linearizedBaseContracts should at least contain the most derived contract."); // `sliced(1, ...)` ignores the most derived contract, which should not be searchable from `super`. for (ContractDefinition const* base: bases | boost::adaptors::sliced(1, bases.size())) for (FunctionDefinition const* function: base->definedFunctions()) { if (!function->isVisibleInDerivedContracts()) continue; auto functionType = make_shared(*function, true); bool functionWithEqualArgumentsFound = false; for (auto const& member: members) { if (member.name != function->name()) continue; auto memberType = dynamic_cast(member.type.get()); solAssert(!!memberType, "Override changes type."); if (!memberType->hasEqualParameterTypes(*functionType)) continue; functionWithEqualArgumentsFound = true; break; } if (!functionWithEqualArgumentsFound) members.push_back(MemberList::Member( function->name(), functionType, function )); } } else if (!m_contract.isLibrary()) { for (auto const& it: m_contract.interfaceFunctions()) members.push_back(MemberList::Member( it.second->declaration().name(), it.second->asMemberFunction(m_contract.isLibrary()), &it.second->declaration() )); } return members; } shared_ptr const& ContractType::newExpressionType() const { if (!m_constructorType) m_constructorType = FunctionType::newExpressionType(m_contract); return m_constructorType; } vector> ContractType::stateVariables() const { vector variables; for (ContractDefinition const* contract: boost::adaptors::reverse(m_contract.annotation().linearizedBaseContracts)) for (VariableDeclaration const* variable: contract->stateVariables()) if (!variable->isConstant()) variables.push_back(variable); TypePointers types; for (auto variable: variables) types.push_back(variable->annotation().type); StorageOffsets offsets; offsets.computeOffsets(types); vector> variablesAndOffsets; for (size_t index = 0; index < variables.size(); ++index) if (auto const* offset = offsets.offset(index)) variablesAndOffsets.push_back(make_tuple(variables[index], offset->first, offset->second)); return variablesAndOffsets; } bool StructType::isImplicitlyConvertibleTo(const Type& _convertTo) const { if (_convertTo.category() != category()) return false; auto& convertTo = dynamic_cast(_convertTo); // memory/calldata to storage can be converted, but only to a direct storage reference if (convertTo.location() == DataLocation::Storage && location() != DataLocation::Storage && convertTo.isPointer()) return false; if (convertTo.location() == DataLocation::CallData && location() != convertTo.location()) return false; return this->m_struct == convertTo.m_struct; } string StructType::richIdentifier() const { return "t_struct" + parenthesizeUserIdentifier(m_struct.name()) + to_string(m_struct.id()) + identifierLocationSuffix(); } bool StructType::operator==(Type const& _other) const { if (_other.category() != category()) return false; StructType const& other = dynamic_cast(_other); return ReferenceType::operator==(other) && other.m_struct == m_struct; } unsigned StructType::calldataEncodedSize(bool _padded) const { unsigned size = 0; for (auto const& member: members(nullptr)) if (!member.type->canLiveOutsideStorage()) return 0; else { unsigned memberSize = member.type->calldataEncodedSize(_padded); if (memberSize == 0) return 0; size += memberSize; } return size; } bool StructType::isDynamicallyEncoded() const { solAssert(!recursive(), ""); for (auto t: memoryMemberTypes()) { solAssert(t, "Parameter should have external type."); t = t->interfaceType(false); if (t->isDynamicallyEncoded()) return true; } return false; } u256 StructType::memorySize() const { u256 size; for (auto const& t: memoryMemberTypes()) size += t->memoryHeadSize(); return size; } u256 StructType::storageSize() const { return max(1, members(nullptr).storageSize()); } string StructType::toString(bool _short) const { string ret = "struct " + m_struct.annotation().canonicalName; if (!_short) ret += " " + stringForReferencePart(); return ret; } MemberList::MemberMap StructType::nativeMembers(ContractDefinition const*) const { MemberList::MemberMap members; for (ASTPointer const& variable: m_struct.members()) { TypePointer type = variable->annotation().type; solAssert(type, ""); // Skip all mapping members if we are not in storage. if (location() != DataLocation::Storage && !type->canLiveOutsideStorage()) continue; members.push_back(MemberList::Member( variable->name(), copyForLocationIfReference(type), variable.get()) ); } return members; } TypePointer StructType::interfaceType(bool _inLibrary) const { if (!canBeUsedExternally(_inLibrary)) return TypePointer(); // Has to fulfill canBeUsedExternally(_inLibrary) == !!interfaceType(_inLibrary) if (_inLibrary && location() == DataLocation::Storage) return shared_from_this(); else return copyForLocation(DataLocation::Memory, true); } bool StructType::canBeUsedExternally(bool _inLibrary) const { if (_inLibrary && location() == DataLocation::Storage) return true; else if (recursive()) return false; else { // Check that all members have interface types. // We pass "false" to canBeUsedExternally (_inLibrary), because this struct will be // passed by value and thus the encoding does not differ, but it will disallow // mappings. for (auto const& var: m_struct.members()) { solAssert(var->annotation().type, ""); if (!var->annotation().type->canBeUsedExternally(false)) return false; } } return true; } TypePointer StructType::copyForLocation(DataLocation _location, bool _isPointer) const { auto copy = make_shared(m_struct, _location); copy->m_isPointer = _isPointer; return copy; } string StructType::signatureInExternalFunction(bool _structsByName) const { if (_structsByName) return canonicalName(); else { TypePointers memberTypes = memoryMemberTypes(); auto memberTypeStrings = memberTypes | boost::adaptors::transformed([&](TypePointer _t) -> string { solAssert(_t, "Parameter should have external type."); auto t = _t->interfaceType(_structsByName); solAssert(t, ""); return t->signatureInExternalFunction(_structsByName); }); return "(" + boost::algorithm::join(memberTypeStrings, ",") + ")"; } } string StructType::canonicalName() const { return m_struct.annotation().canonicalName; } FunctionTypePointer StructType::constructorType() const { TypePointers paramTypes; strings paramNames; for (auto const& member: members(nullptr)) { if (!member.type->canLiveOutsideStorage()) continue; paramNames.push_back(member.name); paramTypes.push_back(copyForLocationIfReference(DataLocation::Memory, member.type)); } return make_shared( paramTypes, TypePointers{copyForLocation(DataLocation::Memory, false)}, paramNames, strings(), FunctionType::Kind::Internal ); } pair const& StructType::storageOffsetsOfMember(string const& _name) const { auto const* offsets = members(nullptr).memberStorageOffset(_name); solAssert(offsets, "Storage offset of non-existing member requested."); return *offsets; } u256 StructType::memoryOffsetOfMember(string const& _name) const { u256 offset; for (auto const& member: members(nullptr)) if (member.name == _name) return offset; else offset += member.type->memoryHeadSize(); solAssert(false, "Member not found in struct."); return 0; } TypePointers StructType::memoryMemberTypes() const { TypePointers types; for (ASTPointer const& variable: m_struct.members()) if (variable->annotation().type->canLiveOutsideStorage()) types.push_back(variable->annotation().type); return types; } set StructType::membersMissingInMemory() const { set missing; for (ASTPointer const& variable: m_struct.members()) if (!variable->annotation().type->canLiveOutsideStorage()) missing.insert(variable->name()); return missing; } bool StructType::recursive() const { if (!m_recursive.is_initialized()) { auto visitor = [&](StructDefinition const& _struct, CycleDetector& _cycleDetector, size_t /*_depth*/) { for (ASTPointer const& variable: _struct.members()) { Type const* memberType = variable->annotation().type.get(); while (dynamic_cast(memberType)) memberType = dynamic_cast(memberType)->baseType().get(); if (StructType const* innerStruct = dynamic_cast(memberType)) if (_cycleDetector.run(innerStruct->structDefinition())) return; } }; m_recursive = (CycleDetector(visitor).run(structDefinition()) != nullptr); } return *m_recursive; } TypePointer EnumType::unaryOperatorResult(Token::Value _operator) const { return _operator == Token::Delete ? make_shared() : TypePointer(); } string EnumType::richIdentifier() const { return "t_enum" + parenthesizeUserIdentifier(m_enum.name()) + to_string(m_enum.id()); } bool EnumType::operator==(Type const& _other) const { if (_other.category() != category()) return false; EnumType const& other = dynamic_cast(_other); return other.m_enum == m_enum; } unsigned EnumType::storageBytes() const { size_t elements = numberOfMembers(); if (elements <= 1) return 1; else return dev::bytesRequired(elements - 1); } string EnumType::toString(bool) const { return string("enum ") + m_enum.annotation().canonicalName; } string EnumType::canonicalName() const { return m_enum.annotation().canonicalName; } size_t EnumType::numberOfMembers() const { return m_enum.members().size(); }; bool EnumType::isExplicitlyConvertibleTo(Type const& _convertTo) const { return _convertTo == *this || _convertTo.category() == Category::Integer; } unsigned EnumType::memberValue(ASTString const& _member) const { unsigned index = 0; for (ASTPointer const& decl: m_enum.members()) { if (decl->name() == _member) return index; ++index; } solAssert(false, "Requested unknown enum value " + _member); } bool TupleType::isImplicitlyConvertibleTo(Type const& _other) const { if (auto tupleType = dynamic_cast(&_other)) { TypePointers const& targets = tupleType->components(); if (targets.empty()) return components().empty(); if (components().size() != targets.size()) return false; for (size_t i = 0; i < targets.size(); ++i) if (!components()[i] && targets[i]) return false; else if (components()[i] && targets[i] && !components()[i]->isImplicitlyConvertibleTo(*targets[i])) return false; return true; } else return false; } string TupleType::richIdentifier() const { return "t_tuple" + identifierList(components()); } bool TupleType::operator==(Type const& _other) const { if (auto tupleType = dynamic_cast(&_other)) return components() == tupleType->components(); else return false; } string TupleType::toString(bool _short) const { if (components().empty()) return "tuple()"; string str = "tuple("; for (auto const& t: components()) str += (t ? t->toString(_short) : "") + ","; str.pop_back(); return str + ")"; } u256 TupleType::storageSize() const { solAssert(false, "Storage size of non-storable tuple type requested."); } unsigned TupleType::sizeOnStack() const { unsigned size = 0; for (auto const& t: components()) size += t ? t->sizeOnStack() : 0; return size; } TypePointer TupleType::mobileType() const { TypePointers mobiles; for (auto const& c: components()) { if (c) { auto mt = c->mobileType(); if (!mt) return TypePointer(); mobiles.push_back(mt); } else mobiles.push_back(TypePointer()); } return make_shared(mobiles); } TypePointer TupleType::closestTemporaryType(TypePointer const& _targetType) const { solAssert(!!_targetType, ""); TypePointers const& targetComponents = dynamic_cast(*_targetType).components(); solAssert(components().size() == targetComponents.size(), ""); TypePointers tempComponents(targetComponents.size()); for (size_t i = 0; i < targetComponents.size(); ++i) { if (components()[i] && targetComponents[i]) { tempComponents[i] = components()[i]->closestTemporaryType(targetComponents[i]); solAssert(tempComponents[i], ""); } } return make_shared(tempComponents); } FunctionType::FunctionType(FunctionDefinition const& _function, bool _isInternal): m_kind(_isInternal ? Kind::Internal : Kind::External), m_stateMutability(_function.stateMutability()), m_declaration(&_function) { if (_isInternal && m_stateMutability == StateMutability::Payable) m_stateMutability = StateMutability::NonPayable; for (ASTPointer const& var: _function.parameters()) { m_parameterNames.push_back(var->name()); m_parameterTypes.push_back(var->annotation().type); } for (ASTPointer const& var: _function.returnParameters()) { m_returnParameterNames.push_back(var->name()); m_returnParameterTypes.push_back(var->annotation().type); } } FunctionType::FunctionType(VariableDeclaration const& _varDecl): m_kind(Kind::External), m_stateMutability(StateMutability::View), m_declaration(&_varDecl) { auto returnType = _varDecl.annotation().type; while (true) { if (auto mappingType = dynamic_cast(returnType.get())) { m_parameterTypes.push_back(mappingType->keyType()); m_parameterNames.push_back(""); returnType = mappingType->valueType(); } else if (auto arrayType = dynamic_cast(returnType.get())) { if (arrayType->isByteArray()) // Return byte arrays as whole. break; returnType = arrayType->baseType(); m_parameterNames.push_back(""); m_parameterTypes.push_back(make_shared(256)); } else break; } if (auto structType = dynamic_cast(returnType.get())) { for (auto const& member: structType->members(nullptr)) { solAssert(member.type, ""); if (member.type->category() != Category::Mapping) { if (auto arrayType = dynamic_cast(member.type.get())) if (!arrayType->isByteArray()) continue; m_returnParameterTypes.push_back(ReferenceType::copyForLocationIfReference( DataLocation::Memory, member.type )); m_returnParameterNames.push_back(member.name); } } } else { m_returnParameterTypes.push_back(ReferenceType::copyForLocationIfReference( DataLocation::Memory, returnType )); m_returnParameterNames.push_back(""); } } FunctionType::FunctionType(EventDefinition const& _event): m_kind(Kind::Event), m_stateMutability(StateMutability::NonPayable), m_declaration(&_event) { for (ASTPointer const& var: _event.parameters()) { m_parameterNames.push_back(var->name()); m_parameterTypes.push_back(var->annotation().type); } } FunctionType::FunctionType(FunctionTypeName const& _typeName): m_kind(_typeName.visibility() == VariableDeclaration::Visibility::External ? Kind::External : Kind::Internal), m_stateMutability(_typeName.stateMutability()) { if (_typeName.isPayable()) solAssert(m_kind == Kind::External, "Internal payable function type used."); for (auto const& t: _typeName.parameterTypes()) { solAssert(t->annotation().type, "Type not set for parameter."); if (m_kind == Kind::External) solAssert( t->annotation().type->canBeUsedExternally(false), "Internal type used as parameter for external function." ); m_parameterTypes.push_back(t->annotation().type); } for (auto const& t: _typeName.returnParameterTypes()) { solAssert(t->annotation().type, "Type not set for return parameter."); if (m_kind == Kind::External) solAssert( t->annotation().type->canBeUsedExternally(false), "Internal type used as return parameter for external function." ); m_returnParameterTypes.push_back(t->annotation().type); } } FunctionTypePointer FunctionType::newExpressionType(ContractDefinition const& _contract) { FunctionDefinition const* constructor = _contract.constructor(); TypePointers parameters; strings parameterNames; StateMutability stateMutability = StateMutability::NonPayable; solAssert(_contract.contractKind() != ContractDefinition::ContractKind::Interface, ""); if (constructor) { for (ASTPointer const& var: constructor->parameters()) { parameterNames.push_back(var->name()); parameters.push_back(var->annotation().type); } if (constructor->isPayable()) stateMutability = StateMutability::Payable; } return make_shared( parameters, TypePointers{make_shared(_contract)}, parameterNames, strings{""}, Kind::Creation, false, stateMutability ); } vector FunctionType::parameterNames() const { if (!bound()) return m_parameterNames; return vector(m_parameterNames.cbegin() + 1, m_parameterNames.cend()); } TypePointers FunctionType::returnParameterTypesWithoutDynamicTypes() const { TypePointers returnParameterTypes = m_returnParameterTypes; if ( m_kind == Kind::External || m_kind == Kind::DelegateCall || m_kind == Kind::BareCall || m_kind == Kind::BareCallCode || m_kind == Kind::BareDelegateCall || m_kind == Kind::BareStaticCall ) for (auto& param: returnParameterTypes) if (param->isDynamicallySized() && !param->dataStoredIn(DataLocation::Storage)) param = make_shared(); return returnParameterTypes; } TypePointers FunctionType::parameterTypes() const { if (!bound()) return m_parameterTypes; return TypePointers(m_parameterTypes.cbegin() + 1, m_parameterTypes.cend()); } string FunctionType::richIdentifier() const { string id = "t_function_"; switch (m_kind) { case Kind::Internal: id += "internal"; break; case Kind::External: id += "external"; break; case Kind::DelegateCall: id += "delegatecall"; break; case Kind::BareCall: id += "barecall"; break; case Kind::BareCallCode: id += "barecallcode"; break; case Kind::BareDelegateCall: id += "baredelegatecall"; break; case Kind::BareStaticCall: id += "barestaticcall"; break; case Kind::Creation: id += "creation"; break; case Kind::Send: id += "send"; break; case Kind::Transfer: id += "transfer"; break; case Kind::KECCAK256: id += "keccak256"; break; case Kind::Selfdestruct: id += "selfdestruct"; break; case Kind::Revert: id += "revert"; break; case Kind::ECRecover: id += "ecrecover"; break; case Kind::SHA256: id += "sha256"; break; case Kind::RIPEMD160: id += "ripemd160"; break; case Kind::Log0: id += "log0"; break; case Kind::Log1: id += "log1"; break; case Kind::Log2: id += "log2"; break; case Kind::Log3: id += "log3"; break; case Kind::Log4: id += "log4"; break; case Kind::GasLeft: id += "gasleft"; break; case Kind::Event: id += "event"; break; case Kind::SetGas: id += "setgas"; break; case Kind::SetValue: id += "setvalue"; break; case Kind::BlockHash: id += "blockhash"; break; case Kind::AddMod: id += "addmod"; break; case Kind::MulMod: id += "mulmod"; break; case Kind::ArrayPush: id += "arraypush"; break; case Kind::ArrayPop: id += "arraypop"; break; case Kind::ByteArrayPush: id += "bytearraypush"; break; case Kind::ObjectCreation: id += "objectcreation"; break; case Kind::Assert: id += "assert"; break; case Kind::Require: id += "require"; break; case Kind::ABIEncode: id += "abiencode"; break; case Kind::ABIEncodePacked: id += "abiencodepacked"; break; case Kind::ABIEncodeWithSelector: id += "abiencodewithselector"; break; case Kind::ABIEncodeWithSignature: id += "abiencodewithsignature"; break; case Kind::ABIDecode: id += "abidecode"; break; } id += "_" + stateMutabilityToString(m_stateMutability); id += identifierList(m_parameterTypes) + "returns" + identifierList(m_returnParameterTypes); if (m_gasSet) id += "gas"; if (m_valueSet) id += "value"; if (bound()) id += "bound_to" + identifierList(selfType()); return id; } bool FunctionType::operator==(Type const& _other) const { if (_other.category() != category()) return false; FunctionType const& other = dynamic_cast(_other); if (!equalExcludingStateMutability(other)) return false; if (m_stateMutability != other.stateMutability()) return false; return true; } bool FunctionType::isExplicitlyConvertibleTo(Type const& _convertTo) const { if (m_kind == Kind::External && _convertTo == AddressType::address()) return true; return _convertTo.category() == category(); } bool FunctionType::isImplicitlyConvertibleTo(Type const& _convertTo) const { if (_convertTo.category() != category()) return false; FunctionType const& convertTo = dynamic_cast(_convertTo); if (!equalExcludingStateMutability(convertTo)) return false; // non-payable should not be convertible to payable if (m_stateMutability != StateMutability::Payable && convertTo.stateMutability() == StateMutability::Payable) return false; // payable should be convertible to non-payable, because you are free to pay 0 ether if (m_stateMutability == StateMutability::Payable && convertTo.stateMutability() == StateMutability::NonPayable) return true; // e.g. pure should be convertible to view, but not the other way around. if (m_stateMutability > convertTo.stateMutability()) return false; return true; } TypePointer FunctionType::unaryOperatorResult(Token::Value _operator) const { if (_operator == Token::Value::Delete) return make_shared(); return TypePointer(); } TypePointer FunctionType::binaryOperatorResult(Token::Value _operator, TypePointer const& _other) const { if (_other->category() != category() || !(_operator == Token::Equal || _operator == Token::NotEqual)) return TypePointer(); FunctionType const& other = dynamic_cast(*_other); if (kind() == Kind::Internal && other.kind() == Kind::Internal && sizeOnStack() == 1 && other.sizeOnStack() == 1) return commonType(shared_from_this(), _other); return TypePointer(); } string FunctionType::canonicalName() const { solAssert(m_kind == Kind::External, ""); return "function"; } string FunctionType::toString(bool _short) const { string name = "function ("; for (auto it = m_parameterTypes.begin(); it != m_parameterTypes.end(); ++it) name += (*it)->toString(_short) + (it + 1 == m_parameterTypes.end() ? "" : ","); name += ")"; if (m_stateMutability != StateMutability::NonPayable) name += " " + stateMutabilityToString(m_stateMutability); if (m_kind == Kind::External) name += " external"; if (!m_returnParameterTypes.empty()) { name += " returns ("; for (auto it = m_returnParameterTypes.begin(); it != m_returnParameterTypes.end(); ++it) name += (*it)->toString(_short) + (it + 1 == m_returnParameterTypes.end() ? "" : ","); name += ")"; } return name; } unsigned FunctionType::calldataEncodedSize(bool _padded) const { unsigned size = storageBytes(); if (_padded) size = ((size + 31) / 32) * 32; return size; } u256 FunctionType::storageSize() const { if (m_kind == Kind::External || m_kind == Kind::Internal) return 1; else solAssert(false, "Storage size of non-storable function type requested."); } unsigned FunctionType::storageBytes() const { if (m_kind == Kind::External) return 20 + 4; else if (m_kind == Kind::Internal) return 8; // it should really not be possible to create larger programs else solAssert(false, "Storage size of non-storable function type requested."); } unsigned FunctionType::sizeOnStack() const { Kind kind = m_kind; if (m_kind == Kind::SetGas || m_kind == Kind::SetValue) { solAssert(m_returnParameterTypes.size() == 1, ""); kind = dynamic_cast(*m_returnParameterTypes.front()).m_kind; } unsigned size = 0; switch(kind) { case Kind::External: case Kind::DelegateCall: size = 2; break; case Kind::BareCall: case Kind::BareCallCode: case Kind::BareDelegateCall: case Kind::BareStaticCall: case Kind::Internal: case Kind::ArrayPush: case Kind::ArrayPop: case Kind::ByteArrayPush: size = 1; break; default: break; } if (m_gasSet) size++; if (m_valueSet) size++; if (bound()) size += m_parameterTypes.front()->sizeOnStack(); return size; } FunctionTypePointer FunctionType::interfaceFunctionType() const { // Note that m_declaration might also be a state variable! solAssert(m_declaration, "Declaration needed to determine interface function type."); bool isLibraryFunction = dynamic_cast(*m_declaration->scope()).isLibrary(); TypePointers paramTypes; TypePointers retParamTypes; for (auto type: m_parameterTypes) { if (auto ext = type->interfaceType(isLibraryFunction)) paramTypes.push_back(ext); else return FunctionTypePointer(); } for (auto type: m_returnParameterTypes) { if (auto ext = type->interfaceType(isLibraryFunction)) retParamTypes.push_back(ext); else return FunctionTypePointer(); } auto variable = dynamic_cast(m_declaration); if (variable && retParamTypes.empty()) return FunctionTypePointer(); return make_shared( paramTypes, retParamTypes, m_parameterNames, m_returnParameterNames, m_kind, m_arbitraryParameters, m_stateMutability, m_declaration ); } MemberList::MemberMap FunctionType::nativeMembers(ContractDefinition const*) const { switch (m_kind) { case Kind::External: case Kind::Creation: case Kind::BareCall: case Kind::BareCallCode: case Kind::BareDelegateCall: case Kind::BareStaticCall: { MemberList::MemberMap members; if (m_kind == Kind::External) members.push_back(MemberList::Member( "selector", make_shared(4) )); if (m_kind != Kind::BareDelegateCall) { if (isPayable()) members.push_back(MemberList::Member( "value", make_shared( parseElementaryTypeVector({"uint"}), TypePointers{copyAndSetGasOrValue(false, true)}, strings(), strings(), Kind::SetValue, false, StateMutability::NonPayable, nullptr, m_gasSet, m_valueSet ) )); } if (m_kind != Kind::Creation) members.push_back(MemberList::Member( "gas", make_shared( parseElementaryTypeVector({"uint"}), TypePointers{copyAndSetGasOrValue(true, false)}, strings(), strings(), Kind::SetGas, false, StateMutability::NonPayable, nullptr, m_gasSet, m_valueSet ) )); return members; } default: return MemberList::MemberMap(); } } TypePointer FunctionType::encodingType() const { // Only external functions can be encoded, internal functions cannot leave code boundaries. if (m_kind == Kind::External) return shared_from_this(); else return TypePointer(); } TypePointer FunctionType::interfaceType(bool /*_inLibrary*/) const { if (m_kind == Kind::External) return shared_from_this(); else return TypePointer(); } bool FunctionType::canTakeArguments(TypePointers const& _argumentTypes, TypePointer const& _selfType) const { solAssert(!bound() || _selfType, ""); if (bound() && !_selfType->isImplicitlyConvertibleTo(*selfType())) return false; TypePointers paramTypes = parameterTypes(); if (takesArbitraryParameters()) return true; else if (_argumentTypes.size() != paramTypes.size()) return false; else return equal( _argumentTypes.cbegin(), _argumentTypes.cend(), paramTypes.cbegin(), [](TypePointer const& argumentType, TypePointer const& parameterType) { return argumentType->isImplicitlyConvertibleTo(*parameterType); } ); } bool FunctionType::hasEqualParameterTypes(FunctionType const& _other) const { if (m_parameterTypes.size() != _other.m_parameterTypes.size()) return false; return equal( m_parameterTypes.cbegin(), m_parameterTypes.cend(), _other.m_parameterTypes.cbegin(), [](TypePointer const& _a, TypePointer const& _b) -> bool { return *_a == *_b; } ); } bool FunctionType::hasEqualReturnTypes(FunctionType const& _other) const { if (m_returnParameterTypes.size() != _other.m_returnParameterTypes.size()) return false; return equal( m_returnParameterTypes.cbegin(), m_returnParameterTypes.cend(), _other.m_returnParameterTypes.cbegin(), [](TypePointer const& _a, TypePointer const& _b) -> bool { return *_a == *_b; } ); } bool FunctionType::equalExcludingStateMutability(FunctionType const& _other) const { if (m_kind != _other.m_kind) return false; if (!hasEqualParameterTypes(_other) || !hasEqualReturnTypes(_other)) return false; //@todo this is ugly, but cannot be prevented right now if (m_gasSet != _other.m_gasSet || m_valueSet != _other.m_valueSet) return false; if (bound() != _other.bound()) return false; solAssert(!bound() || *selfType() == *_other.selfType(), ""); return true; } bool FunctionType::isBareCall() const { switch (m_kind) { case Kind::BareCall: case Kind::BareCallCode: case Kind::BareDelegateCall: case Kind::BareStaticCall: case Kind::ECRecover: case Kind::SHA256: case Kind::RIPEMD160: return true; default: return false; } } string FunctionType::externalSignature() const { solAssert(m_declaration != nullptr, "External signature of function needs declaration"); solAssert(!m_declaration->name().empty(), "Fallback function has no signature."); switch (kind()) { case Kind::Internal: case Kind::External: case Kind::DelegateCall: case Kind::Event: break; default: solAssert(false, "Invalid function type for requesting external signature."); } bool const inLibrary = dynamic_cast(*m_declaration->scope()).isLibrary(); FunctionTypePointer external = interfaceFunctionType(); solAssert(!!external, "External function type requested."); auto parameterTypes = external->parameterTypes(); auto typeStrings = parameterTypes | boost::adaptors::transformed([&](TypePointer _t) -> string { solAssert(_t, "Parameter should have external type."); string typeName = _t->signatureInExternalFunction(inLibrary); if (inLibrary && _t->dataStoredIn(DataLocation::Storage)) typeName += " storage"; return typeName; }); return m_declaration->name() + "(" + boost::algorithm::join(typeStrings, ",") + ")"; } u256 FunctionType::externalIdentifier() const { return FixedHash<4>::Arith(FixedHash<4>(dev::keccak256(externalSignature()))); } bool FunctionType::isPure() const { // FIXME: replace this with m_stateMutability == StateMutability::Pure once // the callgraph analyzer is in place return m_kind == Kind::KECCAK256 || m_kind == Kind::ECRecover || m_kind == Kind::SHA256 || m_kind == Kind::RIPEMD160 || m_kind == Kind::AddMod || m_kind == Kind::MulMod || m_kind == Kind::ObjectCreation || m_kind == Kind::ABIEncode || m_kind == Kind::ABIEncodePacked || m_kind == Kind::ABIEncodeWithSelector || m_kind == Kind::ABIEncodeWithSignature || m_kind == Kind::ABIDecode; } TypePointers FunctionType::parseElementaryTypeVector(strings const& _types) { TypePointers pointers; pointers.reserve(_types.size()); for (string const& type: _types) pointers.push_back(Type::fromElementaryTypeName(type)); return pointers; } TypePointer FunctionType::copyAndSetGasOrValue(bool _setGas, bool _setValue) const { return make_shared( m_parameterTypes, m_returnParameterTypes, m_parameterNames, m_returnParameterNames, m_kind, m_arbitraryParameters, m_stateMutability, m_declaration, m_gasSet || _setGas, m_valueSet || _setValue, m_bound ); } FunctionTypePointer FunctionType::asMemberFunction(bool _inLibrary, bool _bound) const { if (_bound && m_parameterTypes.empty()) return FunctionTypePointer(); TypePointers parameterTypes; for (auto const& t: m_parameterTypes) { auto refType = dynamic_cast(t.get()); if (refType && refType->location() == DataLocation::CallData) parameterTypes.push_back(refType->copyForLocation(DataLocation::Memory, true)); else parameterTypes.push_back(t); } Kind kind = m_kind; if (_inLibrary) { solAssert(!!m_declaration, "Declaration has to be available."); if (!m_declaration->isPublic()) kind = Kind::Internal; // will be inlined else kind = Kind::DelegateCall; } return make_shared( parameterTypes, m_returnParameterTypes, m_parameterNames, m_returnParameterNames, kind, m_arbitraryParameters, m_stateMutability, m_declaration, m_gasSet, m_valueSet, _bound ); } TypePointer const& FunctionType::selfType() const { solAssert(bound(), "Function is not bound."); solAssert(m_parameterTypes.size() > 0, "Function has no self type."); return m_parameterTypes.at(0); } ASTPointer FunctionType::documentation() const { auto function = dynamic_cast(m_declaration); if (function) return function->documentation(); return ASTPointer(); } bool FunctionType::padArguments() const { // No padding only for hash functions, low-level calls and the packed encoding function. switch (m_kind) { case Kind::BareCall: case Kind::BareCallCode: case Kind::BareDelegateCall: case Kind::BareStaticCall: case Kind::SHA256: case Kind::RIPEMD160: case Kind::KECCAK256: case Kind::ABIEncodePacked: return false; default: return true; } return true; } string MappingType::richIdentifier() const { return "t_mapping" + identifierList(m_keyType, m_valueType); } bool MappingType::operator==(Type const& _other) const { if (_other.category() != category()) return false; MappingType const& other = dynamic_cast(_other); return *other.m_keyType == *m_keyType && *other.m_valueType == *m_valueType; } string MappingType::toString(bool _short) const { return "mapping(" + keyType()->toString(_short) + " => " + valueType()->toString(_short) + ")"; } string MappingType::canonicalName() const { return "mapping(" + keyType()->canonicalName() + " => " + valueType()->canonicalName() + ")"; } string TypeType::richIdentifier() const { return "t_type" + identifierList(actualType()); } bool TypeType::operator==(Type const& _other) const { if (_other.category() != category()) return false; TypeType const& other = dynamic_cast(_other); return *actualType() == *other.actualType(); } u256 TypeType::storageSize() const { solAssert(false, "Storage size of non-storable type type requested."); } unsigned TypeType::sizeOnStack() const { if (auto contractType = dynamic_cast(m_actualType.get())) if (contractType->contractDefinition().isLibrary()) return 1; return 0; } MemberList::MemberMap TypeType::nativeMembers(ContractDefinition const* _currentScope) const { MemberList::MemberMap members; if (m_actualType->category() == Category::Contract) { ContractDefinition const& contract = dynamic_cast(*m_actualType).contractDefinition(); bool isBase = false; if (_currentScope != nullptr) { auto const& currentBases = _currentScope->annotation().linearizedBaseContracts; isBase = (find(currentBases.begin(), currentBases.end(), &contract) != currentBases.end()); } if (contract.isLibrary()) for (FunctionDefinition const* function: contract.definedFunctions()) if (function->isVisibleAsLibraryMember()) members.push_back(MemberList::Member( function->name(), FunctionType(*function).asMemberFunction(true), function )); if (isBase) { // We are accessing the type of a base contract, so add all public and protected // members. Note that this does not add inherited functions on purpose. for (Declaration const* decl: contract.inheritableMembers()) members.push_back(MemberList::Member(decl->name(), decl->type(), decl)); } else { for (auto const& stru: contract.definedStructs()) members.push_back(MemberList::Member(stru->name(), stru->type(), stru)); for (auto const& enu: contract.definedEnums()) members.push_back(MemberList::Member(enu->name(), enu->type(), enu)); } } else if (m_actualType->category() == Category::Enum) { EnumDefinition const& enumDef = dynamic_cast(*m_actualType).enumDefinition(); auto enumType = make_shared(enumDef); for (ASTPointer const& enumValue: enumDef.members()) members.push_back(MemberList::Member(enumValue->name(), enumType)); } return members; } ModifierType::ModifierType(const ModifierDefinition& _modifier) { TypePointers params; params.reserve(_modifier.parameters().size()); for (ASTPointer const& var: _modifier.parameters()) params.push_back(var->annotation().type); swap(params, m_parameterTypes); } u256 ModifierType::storageSize() const { solAssert(false, "Storage size of non-storable type type requested."); } string ModifierType::richIdentifier() const { return "t_modifier" + identifierList(m_parameterTypes); } bool ModifierType::operator==(Type const& _other) const { if (_other.category() != category()) return false; ModifierType const& other = dynamic_cast(_other); if (m_parameterTypes.size() != other.m_parameterTypes.size()) return false; auto typeCompare = [](TypePointer const& _a, TypePointer const& _b) -> bool { return *_a == *_b; }; if (!equal(m_parameterTypes.cbegin(), m_parameterTypes.cend(), other.m_parameterTypes.cbegin(), typeCompare)) return false; return true; } string ModifierType::toString(bool _short) const { string name = "modifier ("; for (auto it = m_parameterTypes.begin(); it != m_parameterTypes.end(); ++it) name += (*it)->toString(_short) + (it + 1 == m_parameterTypes.end() ? "" : ","); return name + ")"; } string ModuleType::richIdentifier() const { return "t_module_" + to_string(m_sourceUnit.id()); } bool ModuleType::operator==(Type const& _other) const { if (_other.category() != category()) return false; return &m_sourceUnit == &dynamic_cast(_other).m_sourceUnit; } MemberList::MemberMap ModuleType::nativeMembers(ContractDefinition const*) const { MemberList::MemberMap symbols; for (auto const& symbolName: m_sourceUnit.annotation().exportedSymbols) for (Declaration const* symbol: symbolName.second) symbols.push_back(MemberList::Member(symbolName.first, symbol->type(), symbol)); return symbols; } string ModuleType::toString(bool) const { return string("module \"") + m_sourceUnit.annotation().path + string("\""); } string MagicType::richIdentifier() const { switch (m_kind) { case Kind::Block: return "t_magic_block"; case Kind::Message: return "t_magic_message"; case Kind::Transaction: return "t_magic_transaction"; case Kind::ABI: return "t_magic_abi"; } return ""; } bool MagicType::operator==(Type const& _other) const { if (_other.category() != category()) return false; MagicType const& other = dynamic_cast(_other); return other.m_kind == m_kind; } MemberList::MemberMap MagicType::nativeMembers(ContractDefinition const*) const { switch (m_kind) { case Kind::Block: return MemberList::MemberMap({ {"coinbase", make_shared(StateMutability::Payable)}, {"timestamp", make_shared(256)}, {"blockhash", make_shared(strings{"uint"}, strings{"bytes32"}, FunctionType::Kind::BlockHash, false, StateMutability::View)}, {"difficulty", make_shared(256)}, {"number", make_shared(256)}, {"gaslimit", make_shared(256)} }); case Kind::Message: return MemberList::MemberMap({ {"sender", make_shared(StateMutability::Payable)}, {"gas", make_shared(256)}, {"value", make_shared(256)}, {"data", make_shared(DataLocation::CallData)}, {"sig", make_shared(4)} }); case Kind::Transaction: return MemberList::MemberMap({ {"origin", make_shared(StateMutability::Payable)}, {"gasprice", make_shared(256)} }); case Kind::ABI: return MemberList::MemberMap({ {"encode", make_shared( TypePointers(), TypePointers{make_shared(DataLocation::Memory)}, strings{}, strings{}, FunctionType::Kind::ABIEncode, true, StateMutability::Pure )}, {"encodePacked", make_shared( TypePointers(), TypePointers{make_shared(DataLocation::Memory)}, strings{}, strings{}, FunctionType::Kind::ABIEncodePacked, true, StateMutability::Pure )}, {"encodeWithSelector", make_shared( TypePointers{make_shared(4)}, TypePointers{make_shared(DataLocation::Memory)}, strings{}, strings{}, FunctionType::Kind::ABIEncodeWithSelector, true, StateMutability::Pure )}, {"encodeWithSignature", make_shared( TypePointers{make_shared(DataLocation::Memory, true)}, TypePointers{make_shared(DataLocation::Memory)}, strings{}, strings{}, FunctionType::Kind::ABIEncodeWithSignature, true, StateMutability::Pure )}, {"decode", make_shared( TypePointers(), TypePointers(), strings{}, strings{}, FunctionType::Kind::ABIDecode, true, StateMutability::Pure )} }); default: solAssert(false, "Unknown kind of magic."); } } string MagicType::toString(bool) const { switch (m_kind) { case Kind::Block: return "block"; case Kind::Message: return "msg"; case Kind::Transaction: return "tx"; case Kind::ABI: return "abi"; default: solAssert(false, "Unknown kind of magic."); } }