/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace solidity::langutil; using namespace solidity::yul; using namespace boost::unit_test::framework; namespace solidity::phaser::test { class PopulationFixture { protected: static ChromosomePair twoStepSwap(Chromosome const& _chromosome1, Chromosome const& _chromosome2) { return ChromosomePair{ Chromosome(vector{_chromosome1.optimisationSteps()[0], _chromosome2.optimisationSteps()[1]}), Chromosome(vector{_chromosome2.optimisationSteps()[0], _chromosome1.optimisationSteps()[1]}), }; } shared_ptr m_fitnessMetric = make_shared(); }; BOOST_AUTO_TEST_SUITE(Phaser) BOOST_AUTO_TEST_SUITE(PopulationTest) BOOST_AUTO_TEST_CASE(isFitter_should_use_fitness_as_the_main_criterion) { BOOST_TEST(isFitter(Individual(Chromosome("a"), 5), Individual(Chromosome("a"), 10))); BOOST_TEST(!isFitter(Individual(Chromosome("a"), 10), Individual(Chromosome("a"), 5))); BOOST_TEST(isFitter(Individual(Chromosome("aaa"), 5), Individual(Chromosome("aaaaa"), 10))); BOOST_TEST(!isFitter(Individual(Chromosome("aaaaa"), 10), Individual(Chromosome("aaa"), 5))); BOOST_TEST(isFitter(Individual(Chromosome("aaaaa"), 5), Individual(Chromosome("aaa"), 10))); BOOST_TEST(!isFitter(Individual(Chromosome("aaa"), 10), Individual(Chromosome("aaaaa"), 5))); } BOOST_AUTO_TEST_CASE(isFitter_should_use_alphabetical_order_when_fitness_is_the_same) { BOOST_TEST(isFitter(Individual(Chromosome("a"), 3), Individual(Chromosome("c"), 3))); BOOST_TEST(!isFitter(Individual(Chromosome("c"), 3), Individual(Chromosome("a"), 3))); BOOST_TEST(isFitter(Individual(Chromosome("a"), 3), Individual(Chromosome("aa"), 3))); BOOST_TEST(!isFitter(Individual(Chromosome("aa"), 3), Individual(Chromosome("a"), 3))); BOOST_TEST(isFitter(Individual(Chromosome("T"), 3), Individual(Chromosome("a"), 3))); BOOST_TEST(!isFitter(Individual(Chromosome("a"), 3), Individual(Chromosome("T"), 3))); } BOOST_AUTO_TEST_CASE(isFitter_should_return_false_for_identical_individuals) { BOOST_TEST(!isFitter(Individual(Chromosome("a"), 3), Individual(Chromosome("a"), 3))); BOOST_TEST(!isFitter(Individual(Chromosome("acT"), 0), Individual(Chromosome("acT"), 0))); } BOOST_FIXTURE_TEST_CASE(constructor_should_copy_chromosomes_compute_fitness_and_sort_chromosomes, PopulationFixture) { vector chromosomes = { Chromosome::makeRandom(5), Chromosome::makeRandom(15), Chromosome::makeRandom(10), }; Population population(m_fitnessMetric, chromosomes); vector const& individuals = population.individuals(); BOOST_TEST(individuals.size() == 3); BOOST_TEST(individuals[0].fitness == 5); BOOST_TEST(individuals[1].fitness == 10); BOOST_TEST(individuals[2].fitness == 15); BOOST_TEST(individuals[0].chromosome == chromosomes[0]); BOOST_TEST(individuals[1].chromosome == chromosomes[2]); BOOST_TEST(individuals[2].chromosome == chromosomes[1]); } BOOST_FIXTURE_TEST_CASE(constructor_should_accept_individuals_without_recalculating_fitness, PopulationFixture) { vector customIndividuals = { Individual(Chromosome("aaaccc"), 20), Individual(Chromosome("aaa"), 10), Individual(Chromosome("aaaf"), 30), }; assert(customIndividuals[0].fitness != m_fitnessMetric->evaluate(customIndividuals[0].chromosome)); assert(customIndividuals[1].fitness != m_fitnessMetric->evaluate(customIndividuals[1].chromosome)); assert(customIndividuals[2].fitness != m_fitnessMetric->evaluate(customIndividuals[2].chromosome)); Population population(m_fitnessMetric, customIndividuals); vector expectedIndividuals{customIndividuals[1], customIndividuals[0], customIndividuals[2]}; BOOST_TEST(population.individuals() == expectedIndividuals); } BOOST_FIXTURE_TEST_CASE(makeRandom_should_get_chromosome_lengths_from_specified_generator, PopulationFixture) { size_t chromosomeCount = 30; size_t maxLength = 5; assert(chromosomeCount % maxLength == 0); auto nextLength = [counter = 0ul, maxLength]() mutable { return counter++ % maxLength; }; auto population = Population::makeRandom(m_fitnessMetric, chromosomeCount, nextLength); // We can't rely on the order since the population sorts its chromosomes immediately but // we can check the number of occurrences of each length. for (size_t length = 0; length < maxLength; ++length) BOOST_TEST( count_if( population.individuals().begin(), population.individuals().end(), [&length](auto const& individual) { return individual.chromosome.length() == length; } ) == chromosomeCount / maxLength ); } BOOST_FIXTURE_TEST_CASE(makeRandom_should_get_chromosome_lengths_from_specified_range, PopulationFixture) { auto population = Population::makeRandom(m_fitnessMetric, 100, 5, 10); BOOST_TEST(all_of( population.individuals().begin(), population.individuals().end(), [](auto const& individual){ return 5 <= individual.chromosome.length() && individual.chromosome.length() <= 10; } )); } BOOST_FIXTURE_TEST_CASE(makeRandom_should_use_random_chromosome_length, PopulationFixture) { SimulationRNG::reset(1); constexpr int populationSize = 200; constexpr int minLength = 5; constexpr int maxLength = 10; constexpr double relativeTolerance = 0.05; auto population = Population::makeRandom(m_fitnessMetric, populationSize, minLength, maxLength); vector samples = chromosomeLengths(population); const double expectedValue = (maxLength + minLength) / 2.0; const double variance = ((maxLength - minLength + 1) * (maxLength - minLength + 1) - 1) / 12.0; BOOST_TEST(abs(mean(samples) - expectedValue) < expectedValue * relativeTolerance); BOOST_TEST(abs(meanSquaredError(samples, expectedValue) - variance) < variance * relativeTolerance); } BOOST_FIXTURE_TEST_CASE(makeRandom_should_return_population_with_random_chromosomes, PopulationFixture) { SimulationRNG::reset(1); constexpr int populationSize = 100; constexpr int chromosomeLength = 30; constexpr double relativeTolerance = 0.01; map stepIndices = enumerateOptmisationSteps(); auto population = Population::makeRandom(m_fitnessMetric, populationSize, chromosomeLength, chromosomeLength); vector samples; for (auto& individual: population.individuals()) for (auto& step: individual.chromosome.optimisationSteps()) samples.push_back(stepIndices.at(step)); const double expectedValue = (stepIndices.size() - 1) / 2.0; const double variance = (stepIndices.size() * stepIndices.size() - 1) / 12.0; BOOST_TEST(abs(mean(samples) - expectedValue) < expectedValue * relativeTolerance); BOOST_TEST(abs(meanSquaredError(samples, expectedValue) - variance) < variance * relativeTolerance); } BOOST_FIXTURE_TEST_CASE(makeRandom_should_compute_fitness, PopulationFixture) { auto population = Population::makeRandom(m_fitnessMetric, 3, 5, 10); BOOST_TEST(population.individuals()[0].fitness == m_fitnessMetric->evaluate(population.individuals()[0].chromosome)); BOOST_TEST(population.individuals()[1].fitness == m_fitnessMetric->evaluate(population.individuals()[1].chromosome)); BOOST_TEST(population.individuals()[2].fitness == m_fitnessMetric->evaluate(population.individuals()[2].chromosome)); } BOOST_FIXTURE_TEST_CASE(plus_operator_should_add_two_populations, PopulationFixture) { BOOST_CHECK_EQUAL( Population(m_fitnessMetric, {Chromosome("ac"), Chromosome("cx")}) + Population(m_fitnessMetric, {Chromosome("g"), Chromosome("h"), Chromosome("iI")}), Population(m_fitnessMetric, {Chromosome("ac"), Chromosome("cx"), Chromosome("g"), Chromosome("h"), Chromosome("iI")}) ); } BOOST_FIXTURE_TEST_CASE(select_should_return_population_containing_individuals_indicated_by_selection, PopulationFixture) { Population population(m_fitnessMetric, {Chromosome("a"), Chromosome("c"), Chromosome("g"), Chromosome("h")}); RangeSelection selection(0.25, 0.75); assert(selection.materialise(population.individuals().size()) == (vector{1, 2})); BOOST_TEST( population.select(selection) == Population(m_fitnessMetric, {population.individuals()[1].chromosome, population.individuals()[2].chromosome}) ); } BOOST_FIXTURE_TEST_CASE(select_should_include_duplicates_if_selection_contains_duplicates, PopulationFixture) { Population population(m_fitnessMetric, {Chromosome("a"), Chromosome("c")}); MosaicSelection selection({0, 1}, 2.0); assert(selection.materialise(population.individuals().size()) == (vector{0, 1, 0, 1})); BOOST_TEST(population.select(selection) == Population(m_fitnessMetric, { population.individuals()[0].chromosome, population.individuals()[1].chromosome, population.individuals()[0].chromosome, population.individuals()[1].chromosome, })); } BOOST_FIXTURE_TEST_CASE(select_should_return_empty_population_if_selection_is_empty, PopulationFixture) { Population population(m_fitnessMetric, {Chromosome("a"), Chromosome("c")}); RangeSelection selection(0.0, 0.0); assert(selection.materialise(population.individuals().size()).empty()); BOOST_TEST(population.select(selection).individuals().empty()); } BOOST_FIXTURE_TEST_CASE(mutate_should_return_population_containing_individuals_indicated_by_selection_with_mutation_applied, PopulationFixture) { Population population(m_fitnessMetric, {Chromosome("aa"), Chromosome("cc"), Chromosome("gg"), Chromosome("hh")}); RangeSelection selection(0.25, 0.75); assert(selection.materialise(population.individuals().size()) == (vector{1, 2})); Population expectedPopulation(m_fitnessMetric, {Chromosome("fc"), Chromosome("fg")}); BOOST_TEST(population.mutate(selection, geneSubstitution(0, BlockFlattener::name)) == expectedPopulation); } BOOST_FIXTURE_TEST_CASE(mutate_should_include_duplicates_if_selection_contains_duplicates, PopulationFixture) { Population population(m_fitnessMetric, {Chromosome("aa"), Chromosome("aa")}); RangeSelection selection(0.0, 1.0); assert(selection.materialise(population.individuals().size()) == (vector{0, 1})); BOOST_TEST( population.mutate(selection, geneSubstitution(0, BlockFlattener::name)) == Population(m_fitnessMetric, {Chromosome("fa"), Chromosome("fa")}) ); } BOOST_FIXTURE_TEST_CASE(mutate_should_return_empty_population_if_selection_is_empty, PopulationFixture) { Population population(m_fitnessMetric, {Chromosome("aa"), Chromosome("cc")}); RangeSelection selection(0.0, 0.0); assert(selection.materialise(population.individuals().size()).empty()); BOOST_TEST(population.mutate(selection, geneSubstitution(0, BlockFlattener::name)).individuals().empty()); } BOOST_FIXTURE_TEST_CASE(crossover_should_return_population_containing_individuals_indicated_by_selection_with_crossover_applied, PopulationFixture) { Population population(m_fitnessMetric, {Chromosome("aa"), Chromosome("cc"), Chromosome("gg"), Chromosome("hh")}); PairMosaicSelection selection({{0, 1}, {2, 1}}, 1.0); assert(selection.materialise(population.individuals().size()) == (vector>{{0, 1}, {2, 1}, {0, 1}, {2, 1}})); Population expectedPopulation(m_fitnessMetric, {Chromosome("ac"), Chromosome("ac"), Chromosome("gc"), Chromosome("gc")}); BOOST_TEST(population.crossover(selection, fixedPointCrossover(0.5)) == expectedPopulation); } BOOST_FIXTURE_TEST_CASE(crossover_should_include_duplicates_if_selection_contains_duplicates, PopulationFixture) { Population population(m_fitnessMetric, {Chromosome("aa"), Chromosome("aa")}); PairMosaicSelection selection({{0, 0}, {1, 1}}, 2.0); assert(selection.materialise(population.individuals().size()) == (vector>{{0, 0}, {1, 1}, {0, 0}, {1, 1}})); BOOST_TEST( population.crossover(selection, fixedPointCrossover(0.5)) == Population(m_fitnessMetric, {Chromosome("aa"), Chromosome("aa"), Chromosome("aa"), Chromosome("aa")}) ); } BOOST_FIXTURE_TEST_CASE(crossover_should_return_empty_population_if_selection_is_empty, PopulationFixture) { Population population(m_fitnessMetric, {Chromosome("aa"), Chromosome("cc")}); PairMosaicSelection selection({}, 0.0); assert(selection.materialise(population.individuals().size()).empty()); BOOST_TEST(population.crossover(selection, fixedPointCrossover(0.5)).individuals().empty()); } BOOST_FIXTURE_TEST_CASE(symmetricCrossoverWithRemainder_should_return_crossed_population_and_remainder, PopulationFixture) { Population population(m_fitnessMetric, {Chromosome("aa"), Chromosome("cc"), Chromosome("gg"), Chromosome("hh")}); PairMosaicSelection selection({{2, 1}}, 0.25); assert(selection.materialise(population.individuals().size()) == (vector>{{2, 1}})); Population expectedCrossedPopulation(m_fitnessMetric, {Chromosome("gc"), Chromosome("cg")}); Population expectedRemainder(m_fitnessMetric, {Chromosome("aa"), Chromosome("hh")}); BOOST_TEST( population.symmetricCrossoverWithRemainder(selection, twoStepSwap) == (tuple{expectedCrossedPopulation, expectedRemainder}) ); } BOOST_FIXTURE_TEST_CASE(symmetricCrossoverWithRemainder_should_allow_crossing_the_same_individual_multiple_times, PopulationFixture) { Population population(m_fitnessMetric, {Chromosome("aa"), Chromosome("cc"), Chromosome("gg"), Chromosome("hh")}); PairMosaicSelection selection({{0, 0}, {2, 1}}, 1.0); assert(selection.materialise(population.individuals().size()) == (vector>{{0, 0}, {2, 1}, {0, 0}, {2, 1}})); Population expectedCrossedPopulation(m_fitnessMetric, { Chromosome("aa"), Chromosome("aa"), Chromosome("aa"), Chromosome("aa"), Chromosome("gc"), Chromosome("cg"), Chromosome("gc"), Chromosome("cg"), }); Population expectedRemainder(m_fitnessMetric, {Chromosome("hh")}); BOOST_TEST( population.symmetricCrossoverWithRemainder(selection, twoStepSwap) == (tuple{expectedCrossedPopulation, expectedRemainder}) ); } BOOST_FIXTURE_TEST_CASE(symmetricCrossoverWithRemainder_should_return_empty_population_if_selection_is_empty, PopulationFixture) { Population population(m_fitnessMetric, {Chromosome("aa"), Chromosome("cc")}); PairMosaicSelection selection({}, 0.0); assert(selection.materialise(population.individuals().size()).empty()); BOOST_TEST( population.symmetricCrossoverWithRemainder(selection, twoStepSwap) == (tuple{Population(m_fitnessMetric), population}) ); } BOOST_FIXTURE_TEST_CASE(combine_should_add_two_populations_from_a_pair, PopulationFixture) { Population population1(m_fitnessMetric, {Chromosome("aa"), Chromosome("hh")}); Population population2(m_fitnessMetric, {Chromosome("gg"), Chromosome("cc")}); BOOST_TEST(Population::combine({population1, population2}) == population1 + population2); } BOOST_AUTO_TEST_SUITE_END() BOOST_AUTO_TEST_SUITE_END() }