/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
// SPDX-License-Identifier: GPL-3.0
#include
#include
// TODO remove before merge
#include
#include
using namespace std;
using namespace solidity;
using namespace solidity::util;
CDCL::CDCL(
vector _variables,
vector const& _clauses,
std::function(std::map const&)> _theorySolver
):
m_theorySolver(_theorySolver),
m_variables(move(_variables)),
order(VarOrderLt(activity))
{
for (Clause const& clause: _clauses)
addClause(clause);
// TODO some sanity checks like no empty clauses, no duplicate literals?
}
optional CDCL::solve()
{
CDCL::Model model;
int solution;
uint32_t max_conflicts = 100;
bool solved = false;
while(!solved) {
solution = 3;
solved = solve_loop(max_conflicts, model, solution);
max_conflicts = uint32_t((double)max_conflicts * 1.2);
}
assert(solution != 3);
if (solution) return model;
else return nullopt;
}
bool CDCL::solve_loop(const uint32_t max_conflicts, CDCL::Model& model, int& solution)
{
assert (max_conflicts > 0);
uint32_t conflicts = 0;
while (conflicts < max_conflicts)
{
optional conflictClause = propagate();
if (!conflictClause && m_theorySolver)
{
conflictClause = m_theorySolver(m_assignments);
// if (conflictClause)
// cout << "Theory gave us conflict: " << toString(*conflictClause) << endl;
}
if (conflictClause)
{
conflicts++;
m_sumConflicts++;
if (m_sumConflicts % 1000 == 999) {
cout << "c confl: " << m_sumConflicts << std::endl;
}
if (currentDecisionLevel() == 0)
{
// cout << "Unsatisfiable" << endl;
solution = 0;
return true;
}
auto&& [learntClause, backtrackLevel] = analyze(move(*conflictClause));
cancelUntil(backtrackLevel);
solAssert(!learntClause.empty());
solAssert(!isAssigned(learntClause.front()));
// for (size_t i = 1; i < learntClause.size(); i++)
// solAssert(value(learntClause[i]) == TriState{false});
addClause(move(learntClause));
enqueue(m_clauses.back()->front(), &(*m_clauses.back()));
}
else
{
if (auto variable = nextDecisionVariable())
{
// cout << "c Level " << currentDecisionLevel() << " - ";
// cout << ((m_assignments.size() * 100) / m_variables.size()) << "% of variables assigned." << endl;
m_decisionPoints.emplace_back(m_assignmentTrail.size());
// cout << "Deciding on " << m_variables.at(*variable) << " @" << currentDecisionLevel() << endl;
// Polarity caching below
bool positive = false;
auto const& found = m_assignments_cache.find(*variable);
if (found != m_assignments_cache.end()) positive = found->second;
enqueue(Literal{positive, *variable}, nullptr);
}
else
{
//cout << "satisfiable." << endl;
//for (auto&& [i, value]: m_assignments | ranges::view::enumerate())
// cout << " " << m_variables.at(i) << ": " << value.toString() << endl;
solution = 1;
model = m_assignments;
return true;
}
}
}
return false;
}
void CDCL::setupWatches(Clause& _clause)
{
for (size_t i = 0; i < min(2, _clause.size()); i++)
m_watches[_clause.at(i)].push_back(&_clause);
}
optional CDCL::propagate()
{
//cout << "Propagating." << endl;
for (; m_assignmentQueuePointer < m_assignmentTrail.size(); m_assignmentQueuePointer++)
{
Literal toPropagate = m_assignmentTrail.at(m_assignmentQueuePointer);
Literal falseLiteral = ~toPropagate;
//cout << "Propagating " << toString(toPropagate) << endl;
// Go through all watched clauses where this assignment makes the literal false.
vector watchReplacement;
auto it = m_watches[falseLiteral].begin();
auto end = m_watches[falseLiteral].end();
for (; it != end; ++it)
{
Clause& clause = **it;
//cout << " watch clause: " << toString(clause) << endl;
solAssert(!clause.empty());
if (clause.front() != falseLiteral)
swap(clause[0], clause[1]);
solAssert(clause.front() == falseLiteral);
if (clause.size() >= 2 && isAssignedTrue(clause[1]))
{
// Clause is already satisfied, keezp the watch.
//cout << " -> already satisfied by " << toString(clause[1]) << endl;
watchReplacement.emplace_back(&clause);
continue;
}
// find a new watch to swap
for (size_t i = 2; i < clause.size(); i++)
if (isUnknownOrAssignedTrue(clause[i]))
{
//cout << " -> swapping " << toString(clause.front()) << " with " << toString(clause[i]) << endl;
swap(clause.front(), clause[i]);
m_watches[clause.front()].emplace_back(&clause);
break;
}
if (clause.front() != falseLiteral)
continue; // we found a new watch
// We did not find a new watch, i.e. all literals starting from index 2
// are false, thus clause[1] has to be true (if it exists)
if (clause.size() == 1 || isAssignedFalse(clause[1]))
{
// if (clause.size() >= 2)
// cout << " - Propagate resulted in conflict because " << toString(clause[1]) << " is also false." << endl;
// else
// cout << " - Propagate resulted in conflict since clause is single-literal." << endl;
// Copy over the remaining watches and replace.
while (it != end) watchReplacement.emplace_back(move(*it++));
m_watches[falseLiteral] = move(watchReplacement);
// Mark the queue as finished.
m_assignmentQueuePointer = m_assignmentTrail.size();
return clause;
}
else
{
// cout << " - resulted in new assignment: " << toString(clause[1]) << endl;
watchReplacement.emplace_back(&clause);
enqueue(clause[1], &clause);
}
}
m_watches[falseLiteral] = move(watchReplacement);
}
return nullopt;
}
std::pair CDCL::analyze(Clause _conflictClause)
{
solAssert(!_conflictClause.empty());
//cout << "Analyzing conflict." << endl;
Clause learntClause;
size_t backtrackLevel = 0;
set seenVariables;
int pathCount = 0;
size_t trailIndex = m_assignmentTrail.size() - 1;
optional resolvingLiteral;
do
{
//cout << " conflict clause: " << toString(_conflictClause) << endl;
for (Literal literal: _conflictClause)
if ((!resolvingLiteral || literal != *resolvingLiteral) && !seenVariables.count(literal.variable))
{
seenVariables.insert(literal.variable);
size_t variableLevel = m_levelForVariable.at(literal.variable);
if (variableLevel == currentDecisionLevel())
{
//cout << " ignoring " << toString(literal) << " at current decision level." << endl;
// ignore variable, we will apply resolution with its reason.
pathCount++;
}
else
{
//cout << " adding " << toString(literal) << " @" << variableLevel << " to learnt clause." << endl;
vsids_bump_var_act((uint32_t)literal.variable);
learntClause.push_back(literal);
backtrackLevel = max(backtrackLevel, variableLevel);
}
}/*
else
cout << " already seen " << toString(literal) << endl;*/
solAssert(pathCount > 0);
pathCount--;
while (!seenVariables.count(m_assignmentTrail[trailIndex--].variable));
resolvingLiteral = m_assignmentTrail[trailIndex + 1];
//cout << " resolving literal: " << toString(*resolvingLiteral) << endl;
seenVariables.erase(resolvingLiteral->variable);
// TODO Is there always a reason? Not if it's a decision variable.
if (pathCount > 0)
{
_conflictClause = *m_reason.at(*resolvingLiteral);
//cout << " reason: " << toString(_conflictClause) << endl;
}
}
while (pathCount > 0);
solAssert(resolvingLiteral);
learntClause.push_back(~(*resolvingLiteral));
// Move to front so we can directly propagate.
swap(learntClause.front(), learntClause.back());
//cout << "-> learnt clause: " << toString(learntClause) << " backtrack to " << backtrackLevel << endl;
return {move(learntClause), backtrackLevel};
}
void CDCL::addClause(Clause _clause)
{
uint64_t max_var = (uint32_t)activity.size();
uint64_t new_max_var = 0;
for(auto const& l: _clause) {
new_max_var = std::max(l.variable+1, max_var);
}
int64_t to_add = (int64_t)new_max_var - (int64_t)max_var;
if (to_add > 0) {
activity.insert(activity.end(), (uint64_t)to_add, 0.0);
}
for(auto const& l: _clause) {
if (!order.inHeap((int)l.variable)) order.insert((int)l.variable);
}
m_clauses.push_back(make_unique(move(_clause)));
setupWatches(*m_clauses.back());
}
void CDCL::enqueue(Literal const& _literal, Clause const* _reason)
{
/*
cout << "Enqueueing " << toString(_literal) << " @" << currentDecisionLevel() << endl;
if (_reason)
cout << " because of " << toString(*_reason) << endl;
*/
// TODO assert that assignmnets was unknown
m_assignments[_literal.variable] = _literal.positive;
m_levelForVariable[_literal.variable] = currentDecisionLevel();
if (_reason) {
m_reason[_literal] = _reason;
}
m_assignmentTrail.push_back(_literal);
}
void CDCL::cancelUntil(size_t _backtrackLevel)
{
// TODO what if we backtrack to zero?
//cout << "Canceling until " << _backtrackLevel << endl;
solAssert(m_assignmentQueuePointer == m_assignmentTrail.size());
size_t assignmentsToUndo = m_assignmentTrail.size() - m_decisionPoints.at(_backtrackLevel);
if (m_assignmentTrail.size() > m_longest_trail) {
m_assignments_cache= m_assignments;
m_longest_trail = m_assignmentTrail.size();
}
for (size_t i = 0; i < assignmentsToUndo; i++)
{
Literal l = m_assignmentTrail.back();
//cout << " undoing " << toString(l) << endl;
m_assignmentTrail.pop_back();
m_assignments.erase(l.variable);
m_reason.erase(l);
// TODO maybe could do without.
m_levelForVariable.erase(l.variable);
if (!order.inHeap((int)l.variable)) {
order.insert((int)l.variable);
}
}
m_decisionPoints.resize(_backtrackLevel);
m_assignmentQueuePointer = m_assignmentTrail.size();
solAssert(currentDecisionLevel() == _backtrackLevel);
}
optional CDCL::nextDecisionVariable()
{
while(true) {
if (order.empty()) return nullopt;
size_t i = (size_t)order.removeMin();
if (!m_assignments.count(i)) return i;
}
return nullopt;
}
bool CDCL::isAssigned(Literal const& _literal) const
{
return m_assignments.count(_literal.variable);
}
bool CDCL::isAssignedTrue(Literal const& _literal) const
{
return (
m_assignments.count(_literal.variable) &&
m_assignments.at(_literal.variable) == _literal.positive
);
}
bool CDCL::isAssignedFalse(Literal const& _literal) const
{
return (
m_assignments.count(_literal.variable) &&
!m_assignments.at(_literal.variable) == _literal.positive
);
}
bool CDCL::isUnknownOrAssignedTrue(Literal const& _literal) const
{
return (
!m_assignments.count(_literal.variable) ||
m_assignments.at(_literal.variable) == _literal.positive
);
}
string CDCL::toString(Literal const& _literal) const
{
return (_literal.positive ? "" : "~") + m_variables.at(_literal.variable);
}
string CDCL::toString(Clause const& _clause) const
{
vector literals;
for (Literal const& l: _clause)
literals.emplace_back(toString(l));
return "(" + joinHumanReadable(literals) + ")";
}