/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ // SPDX-License-Identifier: GPL-3.0 /** * @author Christian * @date 2015 * LValues for use in the expression compiler. */ #include #include #include #include #include #include using namespace solidity; using namespace solidity::evmasm; using namespace solidity::frontend; using namespace solidity::langutil; using namespace solidity::util; StackVariable::StackVariable(CompilerContext& _compilerContext, VariableDeclaration const& _declaration): LValue(_compilerContext, _declaration.annotation().type), m_baseStackOffset(m_context.baseStackOffsetOfVariable(_declaration)), m_size(m_dataType->sizeOnStack()) { } void StackVariable::retrieveValue(SourceLocation const& _location, bool) const { unsigned stackPos = m_context.baseToCurrentStackOffset(m_baseStackOffset); if (stackPos + 1 > 16) //@todo correct this by fetching earlier or moving to memory BOOST_THROW_EXCEPTION( StackTooDeepError() << errinfo_sourceLocation(_location) << util::errinfo_comment(util::stackTooDeepString) ); solAssert(stackPos + 1 >= m_size, "Size and stack pos mismatch."); for (unsigned i = 0; i < m_size; ++i) m_context << dupInstruction(stackPos + 1); } void StackVariable::storeValue(Type const&, SourceLocation const& _location, bool _move) const { unsigned stackDiff = m_context.baseToCurrentStackOffset(m_baseStackOffset) - m_size + 1; if (stackDiff > 16) BOOST_THROW_EXCEPTION( StackTooDeepError() << errinfo_sourceLocation(_location) << util::errinfo_comment(util::stackTooDeepString) ); else if (stackDiff > 0) for (unsigned i = 0; i < m_size; ++i) m_context << swapInstruction(stackDiff) << Instruction::POP; if (!_move) retrieveValue(_location); } void StackVariable::setToZero(SourceLocation const& _location, bool) const { CompilerUtils(m_context).pushZeroValue(*m_dataType); storeValue(*m_dataType, _location, true); } MemoryItem::MemoryItem(CompilerContext& _compilerContext, Type const& _type, bool _padded): LValue(_compilerContext, &_type), m_padded(_padded) { } void MemoryItem::retrieveValue(SourceLocation const&, bool _remove) const { if (m_dataType->isValueType()) { if (!_remove) m_context << Instruction::DUP1; CompilerUtils(m_context).loadFromMemoryDynamic(*m_dataType, false, m_padded, false); } else m_context << Instruction::MLOAD; } void MemoryItem::storeValue(Type const& _sourceType, SourceLocation const&, bool _move) const { CompilerUtils utils(m_context); if (m_dataType->isValueType()) { solAssert(_sourceType.isValueType(), ""); utils.moveIntoStack(_sourceType.sizeOnStack()); utils.convertType(_sourceType, *m_dataType, true); if (!_move) { utils.moveToStackTop(m_dataType->sizeOnStack()); utils.copyToStackTop(1 + m_dataType->sizeOnStack(), m_dataType->sizeOnStack()); } if (!m_padded) { solAssert(m_dataType->calldataEncodedSize(false) == 1, "Invalid non-padded type."); solAssert(m_dataType->category() != Type::Category::UserDefinedValueType, ""); if (m_dataType->category() == Type::Category::FixedBytes) m_context << u256(0) << Instruction::BYTE; m_context << Instruction::SWAP1 << Instruction::MSTORE8; } else { utils.storeInMemoryDynamic(*m_dataType, m_padded); m_context << Instruction::POP; } } else { solUnimplementedAssert(_sourceType == *m_dataType, "Conversion not implemented for assignment to memory."); solAssert(m_dataType->sizeOnStack() == 1, ""); if (!_move) m_context << Instruction::DUP2 << Instruction::SWAP1; // stack: [value] value lvalue // only store the reference m_context << Instruction::MSTORE; } } void MemoryItem::setToZero(SourceLocation const&, bool _removeReference) const { CompilerUtils utils(m_context); solAssert(_removeReference, ""); utils.pushZeroValue(*m_dataType); utils.storeInMemoryDynamic(*m_dataType, m_padded); m_context << Instruction::POP; } ImmutableItem::ImmutableItem(CompilerContext& _compilerContext, VariableDeclaration const& _variable): LValue(_compilerContext, _variable.annotation().type), m_variable(_variable) { solAssert(_variable.immutable(), ""); } void ImmutableItem::retrieveValue(SourceLocation const&, bool) const { solUnimplementedAssert(m_dataType->isValueType()); if (m_context.runtimeContext()) CompilerUtils(m_context).loadFromMemory( static_cast(m_context.immutableMemoryOffset(m_variable)), *m_dataType, false, true ); else for (auto&& slotName: m_context.immutableVariableSlotNames(m_variable)) m_context.appendImmutable(slotName); } void ImmutableItem::storeValue(Type const& _sourceType, SourceLocation const&, bool _move) const { CompilerUtils utils(m_context); solUnimplementedAssert(m_dataType->isValueType()); solAssert(_sourceType.isValueType(), ""); utils.convertType(_sourceType, *m_dataType, true); m_context << m_context.immutableMemoryOffset(m_variable); if (_move) utils.moveIntoStack(m_dataType->sizeOnStack()); else utils.copyToStackTop(m_dataType->sizeOnStack() + 1, m_dataType->sizeOnStack()); utils.storeInMemoryDynamic(*m_dataType); m_context << Instruction::POP; } void ImmutableItem::setToZero(SourceLocation const&, bool _removeReference) const { CompilerUtils utils(m_context); solUnimplementedAssert(m_dataType->isValueType()); solAssert(_removeReference); m_context << m_context.immutableMemoryOffset(m_variable); utils.pushZeroValue(*m_dataType); utils.storeInMemoryDynamic(*m_dataType); m_context << Instruction::POP; } StorageItem::StorageItem(CompilerContext& _compilerContext, VariableDeclaration const& _declaration): StorageItem(_compilerContext, *_declaration.annotation().type) { solAssert(!_declaration.immutable(), ""); auto const& location = m_context.storageLocationOfVariable(_declaration); m_context << location.first << u256(location.second); } StorageItem::StorageItem(CompilerContext& _compilerContext, Type const& _type): LValue(_compilerContext, &_type) { if (m_dataType->isValueType()) { if (m_dataType->category() != Type::Category::Function) solAssert(m_dataType->storageSize() == m_dataType->sizeOnStack(), ""); solAssert(m_dataType->storageSize() == 1, "Invalid storage size."); } } void StorageItem::retrieveValue(SourceLocation const&, bool _remove) const { // stack: storage_key storage_offset if (!m_dataType->isValueType()) { solAssert(m_dataType->sizeOnStack() == 1, "Invalid storage ref size."); if (_remove) m_context << Instruction::POP; // remove byte offset else m_context << Instruction::DUP2; return; } if (!_remove) CompilerUtils(m_context).copyToStackTop(sizeOnStack(), sizeOnStack()); if (m_dataType->storageBytes() == 32) m_context << Instruction::POP << Instruction::SLOAD; else { Type const* type = m_dataType; if (type->category() == Type::Category::UserDefinedValueType) type = type->encodingType(); bool cleaned = false; m_context << Instruction::SWAP1 << Instruction::SLOAD << Instruction::SWAP1 << u256(0x100) << Instruction::EXP << Instruction::SWAP1 << Instruction::DIV; if (type->category() == Type::Category::FixedPoint) // implementation should be very similar to the integer case. solUnimplemented("Not yet implemented - FixedPointType."); else if (FunctionType const* fun = dynamic_cast(type)) { if (fun->kind() == FunctionType::Kind::External) { CompilerUtils(m_context).splitExternalFunctionType(false); cleaned = true; } else if (fun->kind() == FunctionType::Kind::Internal) { m_context << Instruction::DUP1 << Instruction::ISZERO; CompilerUtils(m_context).pushZeroValue(*fun); m_context << Instruction::MUL << Instruction::OR; } } else if (type->leftAligned()) { CompilerUtils(m_context).leftShiftNumberOnStack(256 - 8 * type->storageBytes()); cleaned = true; } else if ( type->category() == Type::Category::Integer && dynamic_cast(*type).isSigned() ) { m_context << u256(type->storageBytes() - 1) << Instruction::SIGNEXTEND; cleaned = true; } if (!cleaned) { solAssert(type->sizeOnStack() == 1, ""); m_context << ((u256(0x1) << (8 * type->storageBytes())) - 1) << Instruction::AND; } } } void StorageItem::storeValue(Type const& _sourceType, SourceLocation const& _location, bool _move) const { CompilerUtils utils(m_context); solAssert(m_dataType, ""); // stack: value storage_key storage_offset if (m_dataType->isValueType()) { solAssert(m_dataType->storageBytes() <= 32, "Invalid storage bytes size."); solAssert(m_dataType->storageBytes() > 0, "Invalid storage bytes size."); if (m_dataType->storageBytes() == 32) { solAssert(m_dataType->sizeOnStack() == 1, "Invalid stack size."); // offset should be zero m_context << Instruction::POP; if (!_move) m_context << Instruction::DUP2 << Instruction::SWAP1; m_context << Instruction::SWAP1; utils.convertType(_sourceType, *m_dataType, true); m_context << Instruction::SWAP1; m_context << Instruction::SSTORE; } else { // OR the value into the other values in the storage slot m_context << u256(0x100) << Instruction::EXP; // stack: value storage_ref multiplier // fetch old value m_context << Instruction::DUP2 << Instruction::SLOAD; // stack: value storage_ref multiplier old_full_value // clear bytes in old value m_context << Instruction::DUP2 << ((u256(1) << (8 * m_dataType->storageBytes())) - 1) << Instruction::MUL; m_context << Instruction::NOT << Instruction::AND << Instruction::SWAP1; // stack: value storage_ref cleared_value multiplier utils.copyToStackTop(3 + m_dataType->sizeOnStack(), m_dataType->sizeOnStack()); // stack: value storage_ref cleared_value multiplier value if (auto const* fun = dynamic_cast(m_dataType)) { solAssert( _sourceType.isImplicitlyConvertibleTo(*m_dataType), "function item stored but target is not implicitly convertible to source" ); solAssert(!fun->hasBoundFirstArgument(), ""); if (fun->kind() == FunctionType::Kind::External) { solAssert(fun->sizeOnStack() == 2, ""); // Combine the two-item function type into a single stack slot. utils.combineExternalFunctionType(false); } else { solAssert(fun->sizeOnStack() == 1, ""); m_context << ((u256(1) << (8 * m_dataType->storageBytes())) - 1) << Instruction::AND; } } else if (m_dataType->leftAligned()) { solAssert(_sourceType.category() == Type::Category::FixedBytes || ( _sourceType.encodingType() && _sourceType.encodingType()->category() == Type::Category::FixedBytes ), "source not fixed bytes"); CompilerUtils(m_context).rightShiftNumberOnStack(256 - 8 * m_dataType->storageBytes()); } else { solAssert(m_dataType->sizeOnStack() == 1, "Invalid stack size for opaque type."); // remove the higher order bits utils.convertType(_sourceType, *m_dataType, true, true); } m_context << Instruction::MUL << Instruction::OR; // stack: value storage_ref updated_value m_context << Instruction::SWAP1 << Instruction::SSTORE; if (_move) utils.popStackElement(*m_dataType); } } else { solAssert( _sourceType.category() == m_dataType->category(), "Wrong type conversation for assignment." ); if (m_dataType->category() == Type::Category::Array) { m_context << Instruction::POP; // remove byte offset ArrayUtils(m_context).copyArrayToStorage( dynamic_cast(*m_dataType), dynamic_cast(_sourceType) ); if (_move) m_context << Instruction::POP; } else if (m_dataType->category() == Type::Category::Struct) { // stack layout: source_ref target_ref target_offset // note that we have structs, so offset should be zero and are ignored m_context << Instruction::POP; auto const& structType = dynamic_cast(*m_dataType); auto const& sourceType = dynamic_cast(_sourceType); solAssert( structType.structDefinition() == sourceType.structDefinition(), "Struct assignment with conversion." ); solAssert(!structType.containsNestedMapping(), ""); if (sourceType.location() == DataLocation::CallData) { solAssert(sourceType.sizeOnStack() == 1, ""); solAssert(structType.sizeOnStack() == 1, ""); m_context << Instruction::DUP2 << Instruction::DUP2; m_context.callYulFunction(m_context.utilFunctions().updateStorageValueFunction(sourceType, structType, 0), 2, 0); } else { for (auto const& member: structType.members(nullptr)) { // assign each member that can live outside of storage Type const* memberType = member.type; solAssert(memberType->nameable(), ""); Type const* sourceMemberType = sourceType.memberType(member.name); if (sourceType.location() == DataLocation::Storage) { // stack layout: source_ref target_ref std::pair const& offsets = sourceType.storageOffsetsOfMember(member.name); m_context << offsets.first << Instruction::DUP3 << Instruction::ADD; m_context << u256(offsets.second); // stack: source_ref target_ref source_member_ref source_member_off StorageItem(m_context, *sourceMemberType).retrieveValue(_location, true); // stack: source_ref target_ref source_value... } else { solAssert(sourceType.location() == DataLocation::Memory, ""); // stack layout: source_ref target_ref m_context << sourceType.memoryOffsetOfMember(member.name); m_context << Instruction::DUP3 << Instruction::ADD; MemoryItem(m_context, *sourceMemberType).retrieveValue(_location, true); // stack layout: source_ref target_ref source_value... } unsigned stackSize = sourceMemberType->sizeOnStack(); std::pair const& offsets = structType.storageOffsetsOfMember(member.name); m_context << dupInstruction(1 + stackSize) << offsets.first << Instruction::ADD; m_context << u256(offsets.second); // stack: source_ref target_ref target_off source_value... target_member_ref target_member_byte_off StorageItem(m_context, *memberType).storeValue(*sourceMemberType, _location, true); } } // stack layout: source_ref target_ref solAssert(sourceType.sizeOnStack() == 1, "Unexpected source size."); if (_move) utils.popStackSlots(2); else m_context << Instruction::SWAP1 << Instruction::POP; } else BOOST_THROW_EXCEPTION( InternalCompilerError() << errinfo_sourceLocation(_location) << util::errinfo_comment("Invalid non-value type for assignment.")); } } void StorageItem::setToZero(SourceLocation const&, bool _removeReference) const { if (m_dataType->category() == Type::Category::Array) { if (!_removeReference) CompilerUtils(m_context).copyToStackTop(sizeOnStack(), sizeOnStack()); ArrayUtils(m_context).clearArray(dynamic_cast(*m_dataType)); } else if (m_dataType->category() == Type::Category::Struct) { // stack layout: storage_key storage_offset // @todo this can be improved: use StorageItem for non-value types, and just store 0 in // all slots that contain value types later. auto const& structType = dynamic_cast(*m_dataType); for (auto const& member: structType.members(nullptr)) { // zero each member that is not a mapping Type const* memberType = member.type; if (memberType->category() == Type::Category::Mapping) continue; std::pair const& offsets = structType.storageOffsetsOfMember(member.name); m_context << offsets.first << Instruction::DUP3 << Instruction::ADD << u256(offsets.second); StorageItem(m_context, *memberType).setToZero(); } if (_removeReference) m_context << Instruction::POP << Instruction::POP; } else { solAssert(m_dataType->isValueType(), "Clearing of unsupported type requested: " + m_dataType->toString()); if (!_removeReference) CompilerUtils(m_context).copyToStackTop(sizeOnStack(), sizeOnStack()); if (m_dataType->storageBytes() == 32) { // offset should be zero m_context << Instruction::POP << u256(0) << Instruction::SWAP1 << Instruction::SSTORE; } else { m_context << u256(0x100) << Instruction::EXP; // stack: storage_ref multiplier // fetch old value m_context << Instruction::DUP2 << Instruction::SLOAD; // stack: storage_ref multiplier old_full_value // clear bytes in old value m_context << Instruction::SWAP1 << ((u256(1) << (8 * m_dataType->storageBytes())) - 1) << Instruction::MUL; m_context << Instruction::NOT << Instruction::AND; // stack: storage_ref cleared_value m_context << Instruction::SWAP1 << Instruction::SSTORE; } } } StorageByteArrayElement::StorageByteArrayElement(CompilerContext& _compilerContext): LValue(_compilerContext, TypeProvider::byte()) { } void StorageByteArrayElement::retrieveValue(SourceLocation const&, bool _remove) const { // stack: ref byte_number if (_remove) m_context << Instruction::SWAP1 << Instruction::SLOAD << Instruction::SWAP1 << Instruction::BYTE; else m_context << Instruction::DUP2 << Instruction::SLOAD << Instruction::DUP2 << Instruction::BYTE; m_context << (u256(1) << (256 - 8)) << Instruction::MUL; } void StorageByteArrayElement::storeValue(Type const&, SourceLocation const&, bool _move) const { // stack: value ref byte_number m_context << u256(31) << Instruction::SUB << u256(0x100) << Instruction::EXP; // stack: value ref (1<<(8*(31-byte_number))) m_context << Instruction::DUP2 << Instruction::SLOAD; // stack: value ref (1<<(8*(31-byte_number))) old_full_value // clear byte in old value m_context << Instruction::DUP2 << u256(0xff) << Instruction::MUL << Instruction::NOT << Instruction::AND; // stack: value ref (1<<(32-byte_number)) old_full_value_with_cleared_byte m_context << Instruction::SWAP1; m_context << (u256(1) << (256 - 8)) << Instruction::DUP5 << Instruction::DIV << Instruction::MUL << Instruction::OR; // stack: value ref new_full_value m_context << Instruction::SWAP1 << Instruction::SSTORE; if (_move) m_context << Instruction::POP; } void StorageByteArrayElement::setToZero(SourceLocation const&, bool _removeReference) const { // stack: ref byte_number solAssert(_removeReference, ""); m_context << u256(31) << Instruction::SUB << u256(0x100) << Instruction::EXP; // stack: ref (1<<(8*(31-byte_number))) m_context << Instruction::DUP2 << Instruction::SLOAD; // stack: ref (1<<(8*(31-byte_number))) old_full_value // clear byte in old value m_context << Instruction::SWAP1 << u256(0xff) << Instruction::MUL; m_context << Instruction::NOT << Instruction::AND; // stack: ref old_full_value_with_cleared_byte m_context << Instruction::SWAP1 << Instruction::SSTORE; } TupleObject::TupleObject( CompilerContext& _compilerContext, std::vector>&& _lvalues ): LValue(_compilerContext), m_lvalues(std::move(_lvalues)) { } unsigned TupleObject::sizeOnStack() const { unsigned size = 0; for (auto const& lv: m_lvalues) if (lv) size += lv->sizeOnStack(); return size; } void TupleObject::retrieveValue(SourceLocation const&, bool) const { solAssert(false, "Tried to retrieve value of tuple."); } void TupleObject::storeValue(Type const& _sourceType, SourceLocation const& _location, bool) const { // values are below the lvalue references unsigned valuePos = sizeOnStack(); TypePointers const& valueTypes = dynamic_cast(_sourceType).components(); solAssert(valueTypes.size() == m_lvalues.size(), ""); // valuePos .... refPos ... // We will assign from right to left to optimize stack layout. for (size_t i = 0; i < m_lvalues.size(); ++i) { std::unique_ptr const& lvalue = m_lvalues[m_lvalues.size() - i - 1]; Type const* valType = valueTypes[valueTypes.size() - i - 1]; unsigned stackHeight = m_context.stackHeight(); solAssert(!valType == !lvalue, ""); if (!lvalue) continue; valuePos += valType->sizeOnStack(); // copy value to top CompilerUtils(m_context).copyToStackTop(valuePos, valType->sizeOnStack()); // move lvalue ref above value CompilerUtils(m_context).moveToStackTop(valType->sizeOnStack(), lvalue->sizeOnStack()); lvalue->storeValue(*valType, _location, true); valuePos += m_context.stackHeight() - stackHeight; } // As the type of an assignment to a tuple type is the empty tuple, we always move. CompilerUtils(m_context).popStackElement(_sourceType); } void TupleObject::setToZero(SourceLocation const&, bool) const { solAssert(false, "Tried to delete tuple."); }