/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ // SPDX-License-Identifier: GPL-3.0 /** * @author Christian * @date 2015 * Code generation utils that handle arrays. */ #include #include #include #include #include #include #include #include #include #include #include using namespace solidity; using namespace solidity::evmasm; using namespace solidity::frontend; using namespace solidity::langutil; void ArrayUtils::copyArrayToStorage(ArrayType const& _targetType, ArrayType const& _sourceType) const { // this copies source to target and also clears target if it was larger // need to leave "target_ref target_byte_off" on the stack at the end // stack layout: [source_ref] [source length] target_ref (top) solAssert(_targetType.location() == DataLocation::Storage, ""); Type const* targetBaseType = _targetType.baseType(); Type const* sourceBaseType = _sourceType.baseType(); // TODO unroll loop for small sizes bool sourceIsStorage = _sourceType.location() == DataLocation::Storage; bool fromCalldata = _sourceType.location() == DataLocation::CallData; bool directCopy = sourceIsStorage && sourceBaseType->isValueType() && *sourceBaseType == *targetBaseType; bool haveByteOffsetSource = !directCopy && sourceIsStorage && sourceBaseType->storageBytes() <= 16; bool haveByteOffsetTarget = !directCopy && targetBaseType->storageBytes() <= 16; unsigned byteOffsetSize = (haveByteOffsetSource ? 1u : 0u) + (haveByteOffsetTarget ? 1u : 0u); // stack: source_ref [source_length] target_ref // store target_ref for (unsigned i = _sourceType.sizeOnStack(); i > 0; --i) m_context << swapInstruction(i); // stack: target_ref source_ref [source_length] if (_targetType.isByteArrayOrString()) { // stack: target_ref source_ref [source_length] if (fromCalldata && _sourceType.isDynamicallySized()) { // stack: target_ref source_ref source_length m_context << Instruction::SWAP1; // stack: target_ref source_length source_ref m_context << Instruction::DUP3; // stack: target_ref source_length source_ref target_ref m_context.callYulFunction( m_context.utilFunctions().copyByteArrayToStorageFunction(_sourceType, _targetType), 3, 0 ); } else { // stack: target_ref source_ref m_context << Instruction::DUP2; // stack: target_ref source_ref target_ref m_context.callYulFunction( m_context.utilFunctions().copyByteArrayToStorageFunction(_sourceType, _targetType), 2, 0 ); } // stack: target_ref return; } // retrieve source length if (_sourceType.location() != DataLocation::CallData || !_sourceType.isDynamicallySized()) retrieveLength(_sourceType); // otherwise, length is already there if (_sourceType.location() == DataLocation::Memory && _sourceType.isDynamicallySized()) { // increment source pointer to point to data m_context << Instruction::SWAP1 << u256(0x20); m_context << Instruction::ADD << Instruction::SWAP1; } // stack: target_ref source_ref source_length Type const* targetType = &_targetType; Type const* sourceType = &_sourceType; m_context.callLowLevelFunction( "$copyArrayToStorage_" + sourceType->identifier() + "_to_" + targetType->identifier(), 3, 1, [=](CompilerContext& _context) { ArrayUtils utils(_context); ArrayType const& _sourceType = dynamic_cast(*sourceType); ArrayType const& _targetType = dynamic_cast(*targetType); // stack: target_ref source_ref source_length _context << Instruction::DUP3; // stack: target_ref source_ref source_length target_ref utils.retrieveLength(_targetType); // stack: target_ref source_ref source_length target_ref target_length if (_targetType.isDynamicallySized()) { // store new target length solAssert(!_targetType.isByteArrayOrString()); _context << Instruction::DUP3 << Instruction::DUP3 << Instruction::SSTORE; } if (sourceBaseType->category() == Type::Category::Mapping) { solAssert(targetBaseType->category() == Type::Category::Mapping, ""); solAssert(_sourceType.location() == DataLocation::Storage, ""); // nothing to copy _context << Instruction::POP << Instruction::POP << Instruction::POP << Instruction::POP; return; } // stack: target_ref source_ref source_length target_ref target_length // compute hashes (data positions) _context << Instruction::SWAP1; if (_targetType.isDynamicallySized()) CompilerUtils(_context).computeHashStatic(); // stack: target_ref source_ref source_length target_length target_data_pos _context << Instruction::SWAP1; utils.convertLengthToSize(_targetType); _context << Instruction::DUP2 << Instruction::ADD; // stack: target_ref source_ref source_length target_data_pos target_data_end _context << Instruction::SWAP3; // stack: target_ref target_data_end source_length target_data_pos source_ref evmasm::AssemblyItem copyLoopEndWithoutByteOffset = _context.newTag(); solAssert(!_targetType.isByteArrayOrString()); // skip copying if source length is zero _context << Instruction::DUP3 << Instruction::ISZERO; _context.appendConditionalJumpTo(copyLoopEndWithoutByteOffset); if (_sourceType.location() == DataLocation::Storage && _sourceType.isDynamicallySized()) CompilerUtils(_context).computeHashStatic(); // stack: target_ref target_data_end source_length target_data_pos source_data_pos _context << Instruction::SWAP2; utils.convertLengthToSize(_sourceType); _context << Instruction::DUP3 << Instruction::ADD; // stack: target_ref target_data_end source_data_pos target_data_pos source_data_end if (haveByteOffsetTarget) _context << u256(0); if (haveByteOffsetSource) _context << u256(0); // stack: target_ref target_data_end source_data_pos target_data_pos source_data_end [target_byte_offset] [source_byte_offset] evmasm::AssemblyItem copyLoopStart = _context.newTag(); _context << copyLoopStart; // check for loop condition _context << dupInstruction(3 + byteOffsetSize) << dupInstruction(2 + byteOffsetSize) << Instruction::GT << Instruction::ISZERO; evmasm::AssemblyItem copyLoopEnd = _context.appendConditionalJump(); // stack: target_ref target_data_end source_data_pos target_data_pos source_data_end [target_byte_offset] [source_byte_offset] // copy if (sourceBaseType->category() == Type::Category::Array) { solAssert(byteOffsetSize == 0, "Byte offset for array as base type."); auto const& sourceBaseArrayType = dynamic_cast(*sourceBaseType); solUnimplementedAssert( _sourceType.location() != DataLocation::CallData || !_sourceType.isDynamicallyEncoded() || !sourceBaseArrayType.isDynamicallySized(), "Copying nested calldata dynamic arrays to storage is not implemented in the old code generator." ); _context << Instruction::DUP3; if (sourceBaseArrayType.location() == DataLocation::Memory) _context << Instruction::MLOAD; _context << Instruction::DUP3; utils.copyArrayToStorage(dynamic_cast(*targetBaseType), sourceBaseArrayType); _context << Instruction::POP; } else if (directCopy) { solAssert(byteOffsetSize == 0, "Byte offset for direct copy."); _context << Instruction::DUP3 << Instruction::SLOAD << Instruction::DUP3 << Instruction::SSTORE; } else { // Note that we have to copy each element on its own in case conversion is involved. // We might copy too much if there is padding at the last element, but this way end // checking is easier. // stack: target_ref target_data_end source_data_pos target_data_pos source_data_end [target_byte_offset] [source_byte_offset] _context << dupInstruction(3 + byteOffsetSize); if (_sourceType.location() == DataLocation::Storage) { if (haveByteOffsetSource) _context << Instruction::DUP2; else _context << u256(0); StorageItem(_context, *sourceBaseType).retrieveValue(SourceLocation(), true); } else if (sourceBaseType->isValueType()) CompilerUtils(_context).loadFromMemoryDynamic(*sourceBaseType, fromCalldata, true, false); else solUnimplemented("Copying of type " + _sourceType.toString(false) + " to storage not yet supported."); // stack: target_ref target_data_end source_data_pos target_data_pos source_data_end [target_byte_offset] [source_byte_offset] ... assertThrow( 2 + byteOffsetSize + sourceBaseType->sizeOnStack() <= 16, StackTooDeepError, util::stackTooDeepString ); // fetch target storage reference _context << dupInstruction(2 + byteOffsetSize + sourceBaseType->sizeOnStack()); if (haveByteOffsetTarget) _context << dupInstruction(1 + byteOffsetSize + sourceBaseType->sizeOnStack()); else _context << u256(0); StorageItem(_context, *targetBaseType).storeValue(*sourceBaseType, SourceLocation(), true); } // stack: target_ref target_data_end source_data_pos target_data_pos source_data_end [target_byte_offset] [source_byte_offset] // increment source if (haveByteOffsetSource) utils.incrementByteOffset(sourceBaseType->storageBytes(), 1, haveByteOffsetTarget ? 5 : 4); else { _context << swapInstruction(2 + byteOffsetSize); if (sourceIsStorage) _context << sourceBaseType->storageSize(); else if (_sourceType.location() == DataLocation::Memory) _context << sourceBaseType->memoryHeadSize(); else _context << sourceBaseType->calldataHeadSize(); _context << Instruction::ADD << swapInstruction(2 + byteOffsetSize); } // increment target if (haveByteOffsetTarget) utils.incrementByteOffset(targetBaseType->storageBytes(), byteOffsetSize, byteOffsetSize + 2); else _context << swapInstruction(1 + byteOffsetSize) << targetBaseType->storageSize() << Instruction::ADD << swapInstruction(1 + byteOffsetSize); _context.appendJumpTo(copyLoopStart); _context << copyLoopEnd; if (haveByteOffsetTarget) { // clear elements that might be left over in the current slot in target // stack: target_ref target_data_end source_data_pos target_data_pos source_data_end target_byte_offset [source_byte_offset] _context << dupInstruction(byteOffsetSize) << Instruction::ISZERO; evmasm::AssemblyItem copyCleanupLoopEnd = _context.appendConditionalJump(); _context << dupInstruction(2 + byteOffsetSize) << dupInstruction(1 + byteOffsetSize); StorageItem(_context, *targetBaseType).setToZero(SourceLocation(), true); utils.incrementByteOffset(targetBaseType->storageBytes(), byteOffsetSize, byteOffsetSize + 2); _context.appendJumpTo(copyLoopEnd); _context << copyCleanupLoopEnd; _context << Instruction::POP; // might pop the source, but then target is popped next } if (haveByteOffsetSource) _context << Instruction::POP; _context << copyLoopEndWithoutByteOffset; // zero-out leftovers in target // stack: target_ref target_data_end source_data_pos target_data_pos_updated source_data_end _context << Instruction::POP << Instruction::SWAP1 << Instruction::POP; // stack: target_ref target_data_end target_data_pos_updated if (targetBaseType->storageBytes() < 32) utils.clearStorageLoop(TypeProvider::uint256()); else utils.clearStorageLoop(targetBaseType); _context << Instruction::POP; } ); } void ArrayUtils::copyArrayToMemory(ArrayType const& _sourceType, bool _padToWordBoundaries) const { solUnimplementedAssert( !_sourceType.baseType()->isDynamicallySized(), "Nested dynamic arrays not implemented here." ); CompilerUtils utils(m_context); if (_sourceType.location() == DataLocation::CallData) { if (!_sourceType.isDynamicallySized()) m_context << _sourceType.length(); if (!_sourceType.isByteArrayOrString()) convertLengthToSize(_sourceType); std::string routine = "calldatacopy(target, source, len)\n"; if (_padToWordBoundaries) routine += R"( // Set padding suffix to zero mstore(add(target, len), 0) len := and(add(len, 0x1f), not(0x1f)) )"; routine += "target := add(target, len)\n"; m_context.appendInlineAssembly("{" + routine + "}", {"target", "source", "len"}); m_context << Instruction::POP << Instruction::POP; } else if (_sourceType.location() == DataLocation::Memory) { retrieveLength(_sourceType); // stack: target source length if (!_sourceType.baseType()->isValueType()) { // copy using a loop m_context << u256(0) << Instruction::SWAP3; // stack: counter source length target auto repeat = m_context.newTag(); m_context << repeat; m_context << Instruction::DUP2 << Instruction::DUP5; m_context << Instruction::LT << Instruction::ISZERO; auto loopEnd = m_context.appendConditionalJump(); m_context << Instruction::DUP3 << Instruction::DUP5; accessIndex(_sourceType, false); MemoryItem(m_context, *_sourceType.baseType(), true).retrieveValue(SourceLocation(), true); if (auto baseArray = dynamic_cast(_sourceType.baseType())) copyArrayToMemory(*baseArray, _padToWordBoundaries); else utils.storeInMemoryDynamic(*_sourceType.baseType()); m_context << Instruction::SWAP3 << u256(1) << Instruction::ADD; m_context << Instruction::SWAP3; m_context.appendJumpTo(repeat); m_context << loopEnd; m_context << Instruction::SWAP3; utils.popStackSlots(3); // stack: updated_target_pos return; } // memcpy using the built-in contract if (_sourceType.isDynamicallySized()) { // change pointer to data part m_context << Instruction::SWAP1 << u256(32) << Instruction::ADD; m_context << Instruction::SWAP1; } if (!_sourceType.isByteArrayOrString()) convertLengthToSize(_sourceType); // stack: m_context << Instruction::DUP1 << Instruction::DUP4 << Instruction::DUP4; // We can resort to copying full 32 bytes only if // - the length is known to be a multiple of 32 or // - we will pad to full 32 bytes later anyway. if (!_sourceType.isByteArrayOrString() || _padToWordBoundaries) utils.memoryCopy32(); else utils.memoryCopy(); m_context << Instruction::SWAP1 << Instruction::POP; // stack: bool paddingNeeded = _padToWordBoundaries && _sourceType.isByteArrayOrString(); if (paddingNeeded) { // stack: m_context << Instruction::SWAP1 << Instruction::DUP2 << Instruction::ADD; // stack: m_context << Instruction::SWAP1 << u256(31) << Instruction::AND; // stack: evmasm::AssemblyItem skip = m_context.newTag(); if (_sourceType.isDynamicallySized()) { m_context << Instruction::DUP1 << Instruction::ISZERO; m_context.appendConditionalJumpTo(skip); } // round off, load from there. // stack m_context << Instruction::DUP1 << Instruction::DUP3; m_context << Instruction::SUB; // stack: target+size remainder m_context << Instruction::DUP1 << Instruction::MLOAD; // Now we AND it with ~(2**(8 * (32 - remainder)) - 1) m_context << u256(1); m_context << Instruction::DUP4 << u256(32) << Instruction::SUB; // stack: ... 1 <32 - remainder> m_context << u256(0x100) << Instruction::EXP << Instruction::SUB; m_context << Instruction::NOT << Instruction::AND; // stack: target+size remainder target+size-remainder m_context << Instruction::DUP2 << Instruction::MSTORE; // stack: target+size remainder target+size-remainder m_context << u256(32) << Instruction::ADD; // stack: target+size remainder m_context << Instruction::SWAP2 << Instruction::POP; if (_sourceType.isDynamicallySized()) m_context << skip.tag(); // stack m_context << Instruction::POP; } else // stack: m_context << Instruction::ADD; } else { solAssert(_sourceType.location() == DataLocation::Storage, ""); unsigned storageBytes = _sourceType.baseType()->storageBytes(); u256 storageSize = _sourceType.baseType()->storageSize(); solAssert(storageSize > 1 || (storageSize == 1 && storageBytes > 0), ""); retrieveLength(_sourceType); // stack here: memory_offset storage_offset length // jump to end if length is zero m_context << Instruction::DUP1 << Instruction::ISZERO; evmasm::AssemblyItem loopEnd = m_context.appendConditionalJump(); // Special case for tightly-stored byte arrays if (_sourceType.isByteArrayOrString()) { // stack here: memory_offset storage_offset length m_context << Instruction::DUP1 << u256(31) << Instruction::LT; evmasm::AssemblyItem longByteArray = m_context.appendConditionalJump(); // store the short byte array (discard lower-order byte) m_context << u256(0x100) << Instruction::DUP1; m_context << Instruction::DUP4 << Instruction::SLOAD; m_context << Instruction::DIV << Instruction::MUL; m_context << Instruction::DUP4 << Instruction::MSTORE; // stack here: memory_offset storage_offset length // add 32 or length to memory offset m_context << Instruction::SWAP2; if (_padToWordBoundaries) m_context << u256(32); else m_context << Instruction::DUP3; m_context << Instruction::ADD; m_context << Instruction::SWAP2; m_context.appendJumpTo(loopEnd); m_context << longByteArray; } else // convert length to memory size m_context << _sourceType.baseType()->memoryHeadSize() << Instruction::MUL; m_context << Instruction::DUP3 << Instruction::ADD << Instruction::SWAP2; if (_sourceType.isDynamicallySized()) { // actual array data is stored at KECCAK256(storage_offset) m_context << Instruction::SWAP1; utils.computeHashStatic(); m_context << Instruction::SWAP1; } // stack here: memory_end_offset storage_data_offset memory_offset bool haveByteOffset = !_sourceType.isByteArrayOrString() && storageBytes <= 16; if (haveByteOffset) m_context << u256(0) << Instruction::SWAP1; // stack here: memory_end_offset storage_data_offset [storage_byte_offset] memory_offset evmasm::AssemblyItem loopStart = m_context.newTag(); m_context << loopStart; // load and store if (_sourceType.isByteArrayOrString()) { // Packed both in storage and memory. m_context << Instruction::DUP2 << Instruction::SLOAD; m_context << Instruction::DUP2 << Instruction::MSTORE; // increment storage_data_offset by 1 m_context << Instruction::SWAP1 << u256(1) << Instruction::ADD; // increment memory offset by 32 m_context << Instruction::SWAP1 << u256(32) << Instruction::ADD; } else { // stack here: memory_end_offset storage_data_offset [storage_byte_offset] memory_offset if (haveByteOffset) m_context << Instruction::DUP3 << Instruction::DUP3; else m_context << Instruction::DUP2 << u256(0); StorageItem(m_context, *_sourceType.baseType()).retrieveValue(SourceLocation(), true); if (auto baseArray = dynamic_cast(_sourceType.baseType())) copyArrayToMemory(*baseArray, _padToWordBoundaries); else utils.storeInMemoryDynamic(*_sourceType.baseType()); // increment storage_data_offset and byte offset if (haveByteOffset) incrementByteOffset(storageBytes, 2, 3); else { m_context << Instruction::SWAP1; m_context << storageSize << Instruction::ADD; m_context << Instruction::SWAP1; } } // check for loop condition m_context << Instruction::DUP1 << dupInstruction(haveByteOffset ? 5 : 4); m_context << Instruction::GT; m_context.appendConditionalJumpTo(loopStart); // stack here: memory_end_offset storage_data_offset [storage_byte_offset] memory_offset if (haveByteOffset) m_context << Instruction::SWAP1 << Instruction::POP; if (!_sourceType.isByteArrayOrString()) { solAssert(_sourceType.calldataStride() % 32 == 0, ""); solAssert(_sourceType.memoryStride() % 32 == 0, ""); } if (_padToWordBoundaries && _sourceType.isByteArrayOrString()) { // memory_end_offset - start is the actual length (we want to compute the ceil of). // memory_offset - start is its next multiple of 32, but it might be off by 32. // so we compute: memory_end_offset += (memory_offset - memory_end_offest) & 31 m_context << Instruction::DUP3 << Instruction::SWAP1 << Instruction::SUB; m_context << u256(31) << Instruction::AND; m_context << Instruction::DUP3 << Instruction::ADD; m_context << Instruction::SWAP2; } m_context << loopEnd << Instruction::POP << Instruction::POP; } } void ArrayUtils::clearArray(ArrayType const& _typeIn) const { Type const* type = &_typeIn; m_context.callLowLevelFunction( "$clearArray_" + _typeIn.identifier(), 2, 0, [type](CompilerContext& _context) { ArrayType const& _type = dynamic_cast(*type); unsigned stackHeightStart = _context.stackHeight(); solAssert(_type.location() == DataLocation::Storage, ""); if (_type.baseType()->storageBytes() < 32) { solAssert(_type.baseType()->isValueType(), "Invalid storage size for non-value type."); solAssert(_type.baseType()->storageSize() <= 1, "Invalid storage size for type."); } if (_type.baseType()->isValueType()) solAssert(_type.baseType()->storageSize() <= 1, "Invalid size for value type."); _context << Instruction::POP; // remove byte offset if (_type.isDynamicallySized()) ArrayUtils(_context).clearDynamicArray(_type); else if (_type.length() == 0 || _type.baseType()->category() == Type::Category::Mapping) _context << Instruction::POP; else if (_type.baseType()->isValueType() && _type.storageSize() <= 5) { // unroll loop for small arrays @todo choose a good value // Note that we loop over storage slots here, not elements. for (unsigned i = 1; i < _type.storageSize(); ++i) _context << u256(0) << Instruction::DUP2 << Instruction::SSTORE << u256(1) << Instruction::ADD; _context << u256(0) << Instruction::SWAP1 << Instruction::SSTORE; } else if (!_type.baseType()->isValueType() && _type.length() <= 4) { // unroll loop for small arrays @todo choose a good value solAssert(_type.baseType()->storageBytes() >= 32, "Invalid storage size."); for (unsigned i = 1; i < _type.length(); ++i) { _context << u256(0); StorageItem(_context, *_type.baseType()).setToZero(SourceLocation(), false); _context << Instruction::POP << u256(_type.baseType()->storageSize()) << Instruction::ADD; } _context << u256(0); StorageItem(_context, *_type.baseType()).setToZero(SourceLocation(), true); } else { _context << Instruction::DUP1 << _type.length(); ArrayUtils(_context).convertLengthToSize(_type); _context << Instruction::ADD << Instruction::SWAP1; if (_type.baseType()->storageBytes() < 32) ArrayUtils(_context).clearStorageLoop(TypeProvider::uint256()); else ArrayUtils(_context).clearStorageLoop(_type.baseType()); _context << Instruction::POP; } solAssert(_context.stackHeight() == stackHeightStart - 2, ""); } ); } void ArrayUtils::clearDynamicArray(ArrayType const& _type) const { solAssert(_type.location() == DataLocation::Storage, ""); solAssert(_type.isDynamicallySized(), ""); // fetch length retrieveLength(_type); // set length to zero m_context << u256(0) << Instruction::DUP3 << Instruction::SSTORE; // Special case: short byte arrays are stored togeher with their length evmasm::AssemblyItem endTag = m_context.newTag(); if (_type.isByteArrayOrString()) { // stack: ref old_length m_context << Instruction::DUP1 << u256(31) << Instruction::LT; evmasm::AssemblyItem longByteArray = m_context.appendConditionalJump(); m_context << Instruction::POP; m_context.appendJumpTo(endTag); m_context.adjustStackOffset(1); // needed because of jump m_context << longByteArray; } // stack: ref old_length convertLengthToSize(_type); // compute data positions m_context << Instruction::SWAP1; CompilerUtils(m_context).computeHashStatic(); // stack: len data_pos m_context << Instruction::SWAP1 << Instruction::DUP2 << Instruction::ADD << Instruction::SWAP1; // stack: data_pos_end data_pos if (_type.storageStride() < 32) clearStorageLoop(TypeProvider::uint256()); else clearStorageLoop(_type.baseType()); // cleanup m_context << endTag; m_context << Instruction::POP; } void ArrayUtils::resizeDynamicArray(ArrayType const& _typeIn) const { Type const* type = &_typeIn; m_context.callLowLevelFunction( "$resizeDynamicArray_" + _typeIn.identifier(), 2, 0, [type](CompilerContext& _context) { ArrayType const& _type = dynamic_cast(*type); solAssert(_type.location() == DataLocation::Storage, ""); solAssert(_type.isDynamicallySized(), ""); if (!_type.isByteArrayOrString() && _type.baseType()->storageBytes() < 32) solAssert(_type.baseType()->isValueType(), "Invalid storage size for non-value type."); unsigned stackHeightStart = _context.stackHeight(); evmasm::AssemblyItem resizeEnd = _context.newTag(); // stack: ref new_length // fetch old length ArrayUtils(_context).retrieveLength(_type, 1); // stack: ref new_length old_length solAssert(_context.stackHeight() - stackHeightStart == 3 - 2, "2"); // Special case for short byte arrays, they are stored together with their length if (_type.isByteArrayOrString()) { evmasm::AssemblyItem regularPath = _context.newTag(); // We start by a large case-distinction about the old and new length of the byte array. _context << Instruction::DUP3 << Instruction::SLOAD; // stack: ref new_length current_length ref_value solAssert(_context.stackHeight() - stackHeightStart == 4 - 2, "3"); _context << Instruction::DUP2 << u256(31) << Instruction::LT; evmasm::AssemblyItem currentIsLong = _context.appendConditionalJump(); _context << Instruction::DUP3 << u256(31) << Instruction::LT; evmasm::AssemblyItem newIsLong = _context.appendConditionalJump(); // Here: short -> short // Compute 1 << (256 - 8 * new_size) evmasm::AssemblyItem shortToShort = _context.newTag(); _context << shortToShort; _context << Instruction::DUP3 << u256(8) << Instruction::MUL; _context << u256(0x100) << Instruction::SUB; _context << u256(2) << Instruction::EXP; // Divide and multiply by that value, clearing bits. _context << Instruction::DUP1 << Instruction::SWAP2; _context << Instruction::DIV << Instruction::MUL; // Insert 2*length. _context << Instruction::DUP3 << Instruction::DUP1 << Instruction::ADD; _context << Instruction::OR; // Store. _context << Instruction::DUP4 << Instruction::SSTORE; solAssert(_context.stackHeight() - stackHeightStart == 3 - 2, "3"); _context.appendJumpTo(resizeEnd); _context.adjustStackOffset(1); // we have to do that because of the jumps // Here: short -> long _context << newIsLong; // stack: ref new_length current_length ref_value solAssert(_context.stackHeight() - stackHeightStart == 4 - 2, "3"); // Zero out lower-order byte. _context << u256(0xff) << Instruction::NOT << Instruction::AND; // Store at data location. _context << Instruction::DUP4; CompilerUtils(_context).computeHashStatic(); _context << Instruction::SSTORE; // stack: ref new_length current_length // Store new length: Compule 2*length + 1 and store it. _context << Instruction::DUP2 << Instruction::DUP1 << Instruction::ADD; _context << u256(1) << Instruction::ADD; // stack: ref new_length current_length 2*new_length+1 _context << Instruction::DUP4 << Instruction::SSTORE; solAssert(_context.stackHeight() - stackHeightStart == 3 - 2, "3"); _context.appendJumpTo(resizeEnd); _context.adjustStackOffset(1); // we have to do that because of the jumps _context << currentIsLong; _context << Instruction::DUP3 << u256(31) << Instruction::LT; _context.appendConditionalJumpTo(regularPath); // Here: long -> short // Read the first word of the data and store it on the stack. Clear the data location and // then jump to the short -> short case. // stack: ref new_length current_length ref_value solAssert(_context.stackHeight() - stackHeightStart == 4 - 2, "3"); _context << Instruction::POP << Instruction::DUP3; CompilerUtils(_context).computeHashStatic(); _context << Instruction::DUP1 << Instruction::SLOAD << Instruction::SWAP1; // stack: ref new_length current_length first_word data_location _context << Instruction::DUP3; ArrayUtils(_context).convertLengthToSize(_type); _context << Instruction::DUP2 << Instruction::ADD << Instruction::SWAP1; // stack: ref new_length current_length first_word data_location_end data_location ArrayUtils(_context).clearStorageLoop(TypeProvider::uint256()); _context << Instruction::POP; // stack: ref new_length current_length first_word solAssert(_context.stackHeight() - stackHeightStart == 4 - 2, "3"); _context.appendJumpTo(shortToShort); _context << regularPath; // stack: ref new_length current_length ref_value _context << Instruction::POP; } // Change of length for a regular array (i.e. length at location, data at KECCAK256(location)). // stack: ref new_length old_length // store new length _context << Instruction::DUP2; if (_type.isByteArrayOrString()) // For a "long" byte array, store length as 2*length+1 _context << Instruction::DUP1 << Instruction::ADD << u256(1) << Instruction::ADD; _context << Instruction::DUP4 << Instruction::SSTORE; // skip if size is not reduced _context << Instruction::DUP2 << Instruction::DUP2 << Instruction::GT << Instruction::ISZERO; _context.appendConditionalJumpTo(resizeEnd); // size reduced, clear the end of the array // stack: ref new_length old_length ArrayUtils(_context).convertLengthToSize(_type); _context << Instruction::DUP2; ArrayUtils(_context).convertLengthToSize(_type); // stack: ref new_length old_size new_size // compute data positions _context << Instruction::DUP4; CompilerUtils(_context).computeHashStatic(); // stack: ref new_length old_size new_size data_pos _context << Instruction::SWAP2 << Instruction::DUP3 << Instruction::ADD; // stack: ref new_length data_pos new_size delete_end _context << Instruction::SWAP2 << Instruction::ADD; // stack: ref new_length delete_end delete_start if (_type.storageStride() < 32) ArrayUtils(_context).clearStorageLoop(TypeProvider::uint256()); else ArrayUtils(_context).clearStorageLoop(_type.baseType()); _context << resizeEnd; // cleanup _context << Instruction::POP << Instruction::POP << Instruction::POP; solAssert(_context.stackHeight() == stackHeightStart - 2, ""); } ); } void ArrayUtils::incrementDynamicArraySize(ArrayType const& _type) const { solAssert(_type.location() == DataLocation::Storage, ""); solAssert(_type.isDynamicallySized(), ""); if (!_type.isByteArrayOrString() && _type.baseType()->storageBytes() < 32) solAssert(_type.baseType()->isValueType(), "Invalid storage size for non-value type."); if (_type.isByteArrayOrString()) { // We almost always just add 2 (length of byte arrays is shifted left by one) // except for the case where we transition from a short byte array // to a long byte array, there we have to copy. // This happens if the length is exactly 31, which means that the // lowest-order byte (we actually use a mask with fewer bits) must // be (31*2+0) = 62 m_context << Instruction::DUP1 << Instruction::SLOAD << Instruction::DUP1; m_context.callYulFunction(m_context.utilFunctions().extractByteArrayLengthFunction(), 1, 1); m_context.appendInlineAssembly(R"({ // We have to copy if length is exactly 31, because that marks // the transition between in-place and out-of-place storage. switch length case 31 { mstore(0, ref) let data_area := keccak256(0, 0x20) sstore(data_area, and(data, not(0xff))) // Set old length in new format (31 * 2 + 1) data := 63 } sstore(ref, add(data, 2)) // return new length in ref ref := add(length, 1) })", {"ref", "data", "length"}); m_context << Instruction::POP << Instruction::POP; } else m_context.appendInlineAssembly(R"({ let new_length := add(sload(ref), 1) sstore(ref, new_length) ref := new_length })", {"ref"}); } void ArrayUtils::popStorageArrayElement(ArrayType const& _type) const { solAssert(_type.location() == DataLocation::Storage, ""); solAssert(_type.isDynamicallySized(), ""); if (!_type.isByteArrayOrString() && _type.baseType()->storageBytes() < 32) solAssert(_type.baseType()->isValueType(), "Invalid storage size for non-value type."); if (_type.isByteArrayOrString()) { m_context << Instruction::DUP1 << Instruction::SLOAD << Instruction::DUP1; m_context.callYulFunction(m_context.utilFunctions().extractByteArrayLengthFunction(), 1, 1); util::Whiskers code(R"({ if iszero(length) { mstore(0, ) mstore(4, ) revert(0, 0x24) } switch gt(length, 31) case 0 { // short byte array // Zero-out the suffix including the least significant byte. let mask := sub(exp(0x100, sub(33, length)), 1) length := sub(length, 1) slot_value := or(and(not(mask), slot_value), mul(length, 2)) } case 1 { // long byte array mstore(0, ref) let slot := keccak256(0, 0x20) switch length case 32 { let data := sload(slot) sstore(slot, 0) data := and(data, not(0xff)) slot_value := or(data, 62) } default { let offset_inside_slot := and(sub(length, 1), 0x1f) slot := add(slot, div(sub(length, 1), 32)) let data := sload(slot) // Zero-out the suffix of the byte array by masking it. // ((1<<(8 * (32 - offset))) - 1) let mask := sub(exp(0x100, sub(32, offset_inside_slot)), 1) data := and(not(mask), data) sstore(slot, data) // Reduce the length by 1 slot_value := sub(slot_value, 2) } } sstore(ref, slot_value) })"); code("panicSelector", util::selectorFromSignatureU256("Panic(uint256)").str()); code("emptyArrayPop", std::to_string(unsigned(util::PanicCode::EmptyArrayPop))); m_context.appendInlineAssembly(code.render(), {"ref", "slot_value", "length"}); m_context << Instruction::POP << Instruction::POP << Instruction::POP; } else { // stack: ArrayReference retrieveLength(_type); // stack: ArrayReference oldLength m_context << Instruction::DUP1; // stack: ArrayReference oldLength oldLength m_context << Instruction::ISZERO; m_context.appendConditionalPanic(util::PanicCode::EmptyArrayPop); // Stack: ArrayReference oldLength m_context << u256(1) << Instruction::SWAP1 << Instruction::SUB; // Stack ArrayReference newLength if (_type.baseType()->category() != Type::Category::Mapping) { m_context << Instruction::DUP2 << Instruction::DUP2; // Stack ArrayReference newLength ArrayReference newLength; accessIndex(_type, false); // Stack: ArrayReference newLength storage_slot byte_offset StorageItem(m_context, *_type.baseType()).setToZero(SourceLocation(), true); } // Stack: ArrayReference newLength m_context << Instruction::SWAP1 << Instruction::SSTORE; } } void ArrayUtils::clearStorageLoop(Type const* _type) const { solAssert(_type->storageBytes() >= 32, ""); m_context.callLowLevelFunction( "$clearStorageLoop_" + _type->identifier(), 2, 1, [_type](CompilerContext& _context) { unsigned stackHeightStart = _context.stackHeight(); if (_type->category() == Type::Category::Mapping) { _context << Instruction::POP; return; } // stack: end_pos pos evmasm::AssemblyItem loopStart = _context.appendJumpToNew(); _context << loopStart; // check for loop condition _context << Instruction::DUP1 << Instruction::DUP3 << Instruction::GT << Instruction::ISZERO; evmasm::AssemblyItem zeroLoopEnd = _context.newTag(); _context.appendConditionalJumpTo(zeroLoopEnd); // delete _context << u256(0); StorageItem(_context, *_type).setToZero(SourceLocation(), false); _context << Instruction::POP; // increment _context << _type->storageSize() << Instruction::ADD; _context.appendJumpTo(loopStart); // cleanup _context << zeroLoopEnd; _context << Instruction::POP; solAssert(_context.stackHeight() == stackHeightStart - 1, ""); } ); } void ArrayUtils::convertLengthToSize(ArrayType const& _arrayType, bool _pad) const { if (_arrayType.location() == DataLocation::Storage) { if (_arrayType.baseType()->storageSize() <= 1) { unsigned baseBytes = _arrayType.baseType()->storageBytes(); if (baseBytes == 0) m_context << Instruction::POP << u256(1); else if (baseBytes <= 16) { unsigned itemsPerSlot = 32 / baseBytes; m_context << u256(itemsPerSlot - 1) << Instruction::ADD << u256(itemsPerSlot) << Instruction::SWAP1 << Instruction::DIV; } } else m_context << _arrayType.baseType()->storageSize() << Instruction::MUL; } else { if (!_arrayType.isByteArrayOrString()) { if (_arrayType.location() == DataLocation::Memory) m_context << _arrayType.memoryStride(); else m_context << _arrayType.calldataStride(); m_context << Instruction::MUL; } else if (_pad) m_context << u256(31) << Instruction::ADD << u256(32) << Instruction::DUP1 << Instruction::SWAP2 << Instruction::DIV << Instruction::MUL; } } void ArrayUtils::retrieveLength(ArrayType const& _arrayType, unsigned _stackDepth) const { if (!_arrayType.isDynamicallySized()) m_context << _arrayType.length(); else { m_context << dupInstruction(1 + _stackDepth); switch (_arrayType.location()) { case DataLocation::CallData: // length is stored on the stack break; case DataLocation::Memory: m_context << Instruction::MLOAD; break; case DataLocation::Storage: m_context << Instruction::SLOAD; if (_arrayType.isByteArrayOrString()) m_context.callYulFunction(m_context.utilFunctions().extractByteArrayLengthFunction(), 1, 1); break; } } } void ArrayUtils::accessIndex(ArrayType const& _arrayType, bool _doBoundsCheck, bool _keepReference) const { /// Stack: reference [length] index DataLocation location = _arrayType.location(); if (_doBoundsCheck) { // retrieve length ArrayUtils::retrieveLength(_arrayType, 1); // Stack: ref [length] index length // check out-of-bounds access m_context << Instruction::DUP2 << Instruction::LT << Instruction::ISZERO; // out-of-bounds access throws exception m_context.appendConditionalPanic(util::PanicCode::ArrayOutOfBounds); } if (location == DataLocation::CallData && _arrayType.isDynamicallySized()) // remove length if present m_context << Instruction::SWAP1 << Instruction::POP; // stack: switch (location) { case DataLocation::Memory: // stack: if (!_arrayType.isByteArrayOrString()) m_context << u256(_arrayType.memoryHeadSize()) << Instruction::MUL; if (_arrayType.isDynamicallySized()) m_context << u256(32) << Instruction::ADD; if (_keepReference) m_context << Instruction::DUP2; m_context << Instruction::ADD; break; case DataLocation::CallData: if (!_arrayType.isByteArrayOrString()) { m_context << _arrayType.calldataStride(); m_context << Instruction::MUL; } // stack: if (_keepReference) m_context << Instruction::DUP2; m_context << Instruction::ADD; break; case DataLocation::Storage: { if (_keepReference) m_context << Instruction::DUP2; else m_context << Instruction::SWAP1; // stack: [] evmasm::AssemblyItem endTag = m_context.newTag(); if (_arrayType.isByteArrayOrString()) { // Special case of short byte arrays. m_context << Instruction::SWAP1; m_context << Instruction::DUP2 << Instruction::SLOAD; m_context << u256(1) << Instruction::AND << Instruction::ISZERO; // No action needed for short byte arrays. m_context.appendConditionalJumpTo(endTag); m_context << Instruction::SWAP1; } if (_arrayType.isDynamicallySized()) CompilerUtils(m_context).computeHashStatic(); m_context << Instruction::SWAP1; if (_arrayType.baseType()->storageBytes() <= 16) { // stack: // goal: // = <(index % itemsPerSlot) * byteSize> unsigned byteSize = _arrayType.baseType()->storageBytes(); solAssert(byteSize != 0, ""); unsigned itemsPerSlot = 32 / byteSize; m_context << u256(itemsPerSlot) << Instruction::SWAP2; // stack: itemsPerSlot index data_ref m_context << Instruction::DUP3 << Instruction::DUP3 << Instruction::DIV << Instruction::ADD // stack: itemsPerSlot index (data_ref + index / itemsPerSlot) << Instruction::SWAP2 << Instruction::SWAP1 << Instruction::MOD; if (byteSize != 1) m_context << u256(byteSize) << Instruction::MUL; } else { if (_arrayType.baseType()->storageSize() != 1) m_context << _arrayType.baseType()->storageSize() << Instruction::MUL; m_context << Instruction::ADD << u256(0); } m_context << endTag; break; } } } void ArrayUtils::accessCallDataArrayElement(ArrayType const& _arrayType, bool _doBoundsCheck) const { solAssert(_arrayType.location() == DataLocation::CallData, ""); if (_arrayType.baseType()->isDynamicallyEncoded()) { // stack layout: ArrayUtils(m_context).accessIndex(_arrayType, _doBoundsCheck, true); // stack layout: CompilerUtils(m_context).accessCalldataTail(*_arrayType.baseType()); // stack layout: [length] } else { ArrayUtils(m_context).accessIndex(_arrayType, _doBoundsCheck); if (_arrayType.baseType()->isValueType()) { solAssert(_arrayType.baseType()->storageBytes() <= 32, ""); if ( !_arrayType.isByteArrayOrString() && _arrayType.baseType()->storageBytes() < 32 && m_context.useABICoderV2() ) { m_context << u256(32); CompilerUtils(m_context).abiDecodeV2({_arrayType.baseType()}, false); } else CompilerUtils(m_context).loadFromMemoryDynamic( *_arrayType.baseType(), true, !_arrayType.isByteArrayOrString(), false ); } else solAssert( _arrayType.baseType()->category() == Type::Category::Struct || _arrayType.baseType()->category() == Type::Category::Array, "Invalid statically sized non-value base type on array access." ); } } void ArrayUtils::incrementByteOffset(unsigned _byteSize, unsigned _byteOffsetPosition, unsigned _storageOffsetPosition) const { solAssert(_byteSize < 32, ""); solAssert(_byteSize != 0, ""); // We do the following, but avoiding jumps: // byteOffset += byteSize // if (byteOffset + byteSize > 32) // { // storageOffset++; // byteOffset = 0; // } if (_byteOffsetPosition > 1) m_context << swapInstruction(_byteOffsetPosition - 1); m_context << u256(_byteSize) << Instruction::ADD; if (_byteOffsetPosition > 1) m_context << swapInstruction(_byteOffsetPosition - 1); // compute, X := (byteOffset + byteSize - 1) / 32, should be 1 iff byteOffset + bytesize > 32 m_context << u256(32) << dupInstruction(1 + _byteOffsetPosition) << u256(_byteSize - 1) << Instruction::ADD << Instruction::DIV; // increment storage offset if X == 1 (just add X to it) // stack: X m_context << swapInstruction(_storageOffsetPosition) << dupInstruction(_storageOffsetPosition + 1) << Instruction::ADD << swapInstruction(_storageOffsetPosition); // stack: X // set source_byte_offset to zero if X == 1 (using source_byte_offset *= 1 - X) m_context << u256(1) << Instruction::SUB; // stack: 1 - X if (_byteOffsetPosition == 1) m_context << Instruction::MUL; else m_context << dupInstruction(_byteOffsetPosition + 1) << Instruction::MUL << swapInstruction(_byteOffsetPosition) << Instruction::POP; }