/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ // SPDX-License-Identifier: GPL-3.0 #include #include #include #include using namespace std; using namespace solidity; using namespace solidity::phaser; function phaser::buildCrossoverOperator( CrossoverChoice _choice, optional _uniformCrossoverSwapChance ) { switch (_choice) { case CrossoverChoice::SinglePoint: return randomPointCrossover(); case CrossoverChoice::TwoPoint: return randomTwoPointCrossover(); case CrossoverChoice::Uniform: assert(_uniformCrossoverSwapChance.has_value()); return uniformCrossover(_uniformCrossoverSwapChance.value()); default: assertThrow(false, solidity::util::Exception, "Invalid CrossoverChoice value."); }; } function phaser::buildSymmetricCrossoverOperator( CrossoverChoice _choice, optional _uniformCrossoverSwapChance ) { switch (_choice) { case CrossoverChoice::SinglePoint: return symmetricRandomPointCrossover(); case CrossoverChoice::TwoPoint: return symmetricRandomTwoPointCrossover(); case CrossoverChoice::Uniform: assert(_uniformCrossoverSwapChance.has_value()); return symmetricUniformCrossover(_uniformCrossoverSwapChance.value()); default: assertThrow(false, solidity::util::Exception, "Invalid CrossoverChoice value."); }; } Population RandomAlgorithm::runNextRound(Population _population) { RangeSelection elite(0.0, m_options.elitePoolSize); Population elitePopulation = _population.select(elite); size_t replacementCount = _population.individuals().size() - elitePopulation.individuals().size(); return std::move(elitePopulation) + Population::makeRandom( _population.fitnessMetric(), replacementCount, m_options.minChromosomeLength, m_options.maxChromosomeLength ); } Population GenerationalElitistWithExclusivePools::runNextRound(Population _population) { double elitePoolSize = 1.0 - (m_options.mutationPoolSize + m_options.crossoverPoolSize); RangeSelection elitePool(0.0, elitePoolSize); RandomSelection mutationPoolFromElite(m_options.mutationPoolSize / elitePoolSize); RandomPairSelection crossoverPoolFromElite(m_options.crossoverPoolSize / elitePoolSize); std::function mutationOperator = alternativeMutations( m_options.randomisationChance, geneRandomisation(m_options.percentGenesToRandomise), alternativeMutations( m_options.deletionVsAdditionChance, geneDeletion(m_options.percentGenesToAddOrDelete), geneAddition(m_options.percentGenesToAddOrDelete) ) ); std::function crossoverOperator = buildCrossoverOperator( m_options.crossover, m_options.uniformCrossoverSwapChance ); return _population.select(elitePool) + _population.select(elitePool).mutate(mutationPoolFromElite, mutationOperator) + _population.select(elitePool).crossover(crossoverPoolFromElite, crossoverOperator); } Population ClassicGeneticAlgorithm::runNextRound(Population _population) { Population elite = _population.select(RangeSelection(0.0, m_options.elitePoolSize)); Population rest = _population.select(RangeSelection(m_options.elitePoolSize, 1.0)); Population selectedPopulation = select(_population, rest.individuals().size()); std::function crossoverOperator = buildSymmetricCrossoverOperator( m_options.crossover, m_options.uniformCrossoverSwapChance ); Population crossedPopulation = Population::combine( selectedPopulation.symmetricCrossoverWithRemainder( PairsFromRandomSubset(m_options.crossoverChance), crossoverOperator ) ); std::function mutationOperator = mutationSequence({ geneRandomisation(m_options.mutationChance), geneDeletion(m_options.deletionChance), geneAddition(m_options.additionChance), }); RangeSelection all(0.0, 1.0); Population mutatedPopulation = crossedPopulation.mutate(all, mutationOperator); return elite + mutatedPopulation; } Population ClassicGeneticAlgorithm::select(Population _population, size_t _selectionSize) { if (_population.individuals().size() == 0) return _population; size_t maxFitness = 0; for (auto const& individual: _population.individuals()) maxFitness = max(maxFitness, individual.fitness); size_t rouletteRange = 0; for (auto const& individual: _population.individuals()) // Add 1 to make sure that every chromosome has non-zero probability of being chosen rouletteRange += maxFitness + 1 - individual.fitness; vector selectedIndividuals; for (size_t i = 0; i < _selectionSize; ++i) { size_t ball = SimulationRNG::uniformInt(0, rouletteRange - 1); size_t cumulativeFitness = 0; for (auto const& individual: _population.individuals()) { size_t pocketSize = maxFitness + 1 - individual.fitness; if (ball < cumulativeFitness + pocketSize) { selectedIndividuals.push_back(individual); break; } cumulativeFitness += pocketSize; } } assert(selectedIndividuals.size() == _selectionSize); return Population(_population.fitnessMetric(), selectedIndividuals); }