/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
// SPDX-License-Identifier: GPL-3.0
/**
* Code generator for translating Yul / inline assembly to EVM.
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace solidity;
using namespace solidity::yul;
using namespace solidity::util;
CodeTransform::CodeTransform(
AbstractAssembly& _assembly,
AsmAnalysisInfo& _analysisInfo,
Block const& _block,
bool _allowStackOpt,
EVMDialect const& _dialect,
BuiltinContext& _builtinContext,
ExternalIdentifierAccess::CodeGenerator _identifierAccessCodeGen,
UseNamedLabels _useNamedLabelsForFunctions,
std::shared_ptr _context,
std::vector _delayedReturnVariables,
std::optional _functionExitLabel
):
m_assembly(_assembly),
m_info(_analysisInfo),
m_dialect(_dialect),
m_builtinContext(_builtinContext),
m_allowStackOpt(_allowStackOpt),
m_useNamedLabelsForFunctions(_useNamedLabelsForFunctions),
m_identifierAccessCodeGen(std::move(_identifierAccessCodeGen)),
m_context(std::move(_context)),
m_delayedReturnVariables(std::move(_delayedReturnVariables)),
m_functionExitLabel(_functionExitLabel)
{
if (!m_context)
{
// initialize
m_context = std::make_shared();
if (m_allowStackOpt)
m_context->variableReferences = VariableReferenceCounter::run(m_info, _block);
}
}
void CodeTransform::decreaseReference(YulString, Scope::Variable const& _var)
{
if (!m_allowStackOpt)
return;
unsigned& ref = m_context->variableReferences.at(&_var);
yulAssert(ref >= 1, "");
--ref;
if (ref == 0)
m_variablesScheduledForDeletion.insert(&_var);
}
bool CodeTransform::unreferenced(Scope::Variable const& _var) const
{
return !m_context->variableReferences.count(&_var) || m_context->variableReferences[&_var] == 0;
}
void CodeTransform::freeUnusedVariables(bool _popUnusedSlotsAtStackTop)
{
if (!m_allowStackOpt)
return;
for (auto const& identifier: m_scope->identifiers)
if (Scope::Variable const* var = std::get_if(&identifier.second))
if (m_variablesScheduledForDeletion.count(var))
deleteVariable(*var);
// Directly in a function body block, we can also delete the function arguments,
// which live in the virtual function scope.
// However, doing so after the return variables are already allocated, seems to have an adverse
// effect, so we only do it before that.
if (!returnVariablesAndFunctionExitAreSetup() && !m_scope->functionScope && m_scope->superScope && m_scope->superScope->functionScope)
for (auto const& identifier: m_scope->superScope->identifiers)
if (Scope::Variable const* var = std::get_if(&identifier.second))
if (m_variablesScheduledForDeletion.count(var))
deleteVariable(*var);
if (_popUnusedSlotsAtStackTop)
while (m_unusedStackSlots.count(m_assembly.stackHeight() - 1))
{
yulAssert(m_unusedStackSlots.erase(m_assembly.stackHeight() - 1), "");
m_assembly.appendInstruction(evmasm::Instruction::POP);
}
}
void CodeTransform::deleteVariable(Scope::Variable const& _var)
{
yulAssert(m_allowStackOpt, "");
yulAssert(m_context->variableStackHeights.count(&_var) > 0, "");
m_unusedStackSlots.insert(static_cast(m_context->variableStackHeights[&_var]));
m_context->variableStackHeights.erase(&_var);
m_context->variableReferences.erase(&_var);
m_variablesScheduledForDeletion.erase(&_var);
}
void CodeTransform::operator()(VariableDeclaration const& _varDecl)
{
yulAssert(m_scope, "");
size_t const numVariables = _varDecl.variables.size();
auto heightAtStart = static_cast(m_assembly.stackHeight());
if (_varDecl.value)
{
std::visit(*this, *_varDecl.value);
expectDeposit(static_cast(numVariables), static_cast(heightAtStart));
freeUnusedVariables(false);
}
else
{
m_assembly.setSourceLocation(originLocationOf(_varDecl));
size_t variablesLeft = numVariables;
while (variablesLeft--)
m_assembly.appendConstant(u256(0));
}
m_assembly.setSourceLocation(originLocationOf(_varDecl));
bool atTopOfStack = true;
for (size_t varIndex = 0; varIndex < numVariables; ++varIndex)
{
size_t varIndexReverse = numVariables - 1 - varIndex;
YulString varName = _varDecl.variables[varIndexReverse].name;
auto& var = std::get(m_scope->identifiers.at(varName));
m_context->variableStackHeights[&var] = heightAtStart + varIndexReverse;
if (!m_allowStackOpt)
continue;
if (unreferenced(var))
{
if (atTopOfStack)
{
m_context->variableStackHeights.erase(&var);
m_assembly.appendInstruction(evmasm::Instruction::POP);
}
else
m_variablesScheduledForDeletion.insert(&var);
}
else
{
bool foundUnusedSlot = false;
for (auto it = m_unusedStackSlots.begin(); it != m_unusedStackSlots.end(); ++it)
{
if (m_assembly.stackHeight() - *it > 17)
continue;
foundUnusedSlot = true;
auto slot = static_cast(*it);
m_unusedStackSlots.erase(it);
m_context->variableStackHeights[&var] = slot;
if (size_t heightDiff = variableHeightDiff(var, varName, true))
m_assembly.appendInstruction(evmasm::swapInstruction(static_cast(heightDiff - 1)));
m_assembly.appendInstruction(evmasm::Instruction::POP);
break;
}
if (!foundUnusedSlot)
atTopOfStack = false;
}
}
}
void CodeTransform::stackError(StackTooDeepError _error, int _targetStackHeight)
{
m_assembly.appendInstruction(evmasm::Instruction::INVALID);
// Correct the stack.
while (m_assembly.stackHeight() > _targetStackHeight)
m_assembly.appendInstruction(evmasm::Instruction::POP);
while (m_assembly.stackHeight() < _targetStackHeight)
m_assembly.appendConstant(u256(0));
// Store error.
m_stackErrors.emplace_back(std::move(_error));
m_assembly.markAsInvalid();
}
void CodeTransform::operator()(Assignment const& _assignment)
{
int height = m_assembly.stackHeight();
std::visit(*this, *_assignment.value);
expectDeposit(static_cast(_assignment.variableNames.size()), height);
m_assembly.setSourceLocation(originLocationOf(_assignment));
generateMultiAssignment(_assignment.variableNames);
}
void CodeTransform::operator()(ExpressionStatement const& _statement)
{
m_assembly.setSourceLocation(originLocationOf(_statement));
std::visit(*this, _statement.expression);
}
void CodeTransform::operator()(FunctionCall const& _call)
{
yulAssert(m_scope, "");
m_assembly.setSourceLocation(originLocationOf(_call));
if (BuiltinFunctionForEVM const* builtin = m_dialect.builtin(_call.functionName.name))
{
for (auto&& [i, arg]: _call.arguments | ranges::views::enumerate | ranges::views::reverse)
if (!builtin->literalArgument(i))
visitExpression(arg);
m_assembly.setSourceLocation(originLocationOf(_call));
builtin->generateCode(_call, m_assembly, m_builtinContext);
}
else
{
AbstractAssembly::LabelID returnLabel = m_assembly.newLabelId();
m_assembly.appendLabelReference(returnLabel);
Scope::Function* function = nullptr;
yulAssert(m_scope->lookup(_call.functionName.name, GenericVisitor{
[](Scope::Variable&) { yulAssert(false, "Expected function name."); },
[&](Scope::Function& _function) { function = &_function; }
}), "Function name not found.");
yulAssert(function, "");
yulAssert(function->arguments.size() == _call.arguments.size(), "");
for (auto const& arg: _call.arguments | ranges::views::reverse)
visitExpression(arg);
m_assembly.setSourceLocation(originLocationOf(_call));
m_assembly.appendJumpTo(
functionEntryID(*function),
static_cast(function->returns.size() - function->arguments.size()) - 1,
AbstractAssembly::JumpType::IntoFunction
);
m_assembly.appendLabel(returnLabel);
}
}
void CodeTransform::operator()(Identifier const& _identifier)
{
m_assembly.setSourceLocation(originLocationOf(_identifier));
// First search internals, then externals.
yulAssert(m_scope, "");
if (m_scope->lookup(_identifier.name, GenericVisitor{
[&](Scope::Variable& _var)
{
// TODO: opportunity for optimization: Do not DUP if this is the last reference
// to the top most element of the stack
if (size_t heightDiff = variableHeightDiff(_var, _identifier.name, false))
m_assembly.appendInstruction(evmasm::dupInstruction(static_cast(heightDiff)));
else
// Store something to balance the stack
m_assembly.appendConstant(u256(0));
decreaseReference(_identifier.name, _var);
},
[](Scope::Function&)
{
yulAssert(false, "Function not removed during desugaring.");
}
}))
{
return;
}
yulAssert(
m_identifierAccessCodeGen,
"Identifier not found and no external access available."
);
m_identifierAccessCodeGen(_identifier, IdentifierContext::RValue, m_assembly);
}
void CodeTransform::operator()(Literal const& _literal)
{
m_assembly.setSourceLocation(originLocationOf(_literal));
m_assembly.appendConstant(valueOfLiteral(_literal));
}
void CodeTransform::operator()(If const& _if)
{
visitExpression(*_if.condition);
m_assembly.setSourceLocation(originLocationOf(_if));
m_assembly.appendInstruction(evmasm::Instruction::ISZERO);
AbstractAssembly::LabelID end = m_assembly.newLabelId();
m_assembly.appendJumpToIf(end);
(*this)(_if.body);
m_assembly.setSourceLocation(originLocationOf(_if));
m_assembly.appendLabel(end);
}
void CodeTransform::operator()(Switch const& _switch)
{
visitExpression(*_switch.expression);
int expressionHeight = m_assembly.stackHeight();
std::map caseBodies;
AbstractAssembly::LabelID end = m_assembly.newLabelId();
for (Case const& c: _switch.cases)
{
if (c.value)
{
(*this)(*c.value);
m_assembly.setSourceLocation(originLocationOf(c));
AbstractAssembly::LabelID bodyLabel = m_assembly.newLabelId();
caseBodies[&c] = bodyLabel;
yulAssert(m_assembly.stackHeight() == expressionHeight + 1, "");
m_assembly.appendInstruction(evmasm::dupInstruction(2));
m_assembly.appendInstruction(evmasm::Instruction::EQ);
m_assembly.appendJumpToIf(bodyLabel);
}
else
// default case
(*this)(c.body);
}
m_assembly.setSourceLocation(originLocationOf(_switch));
m_assembly.appendJumpTo(end);
size_t numCases = caseBodies.size();
for (auto const& c: caseBodies)
{
m_assembly.setSourceLocation(originLocationOf(*c.first));
m_assembly.appendLabel(c.second);
(*this)(c.first->body);
// Avoid useless "jump to next" for the last case.
if (--numCases > 0)
{
m_assembly.setSourceLocation(originLocationOf(*c.first));
m_assembly.appendJumpTo(end);
}
}
m_assembly.setSourceLocation(originLocationOf(_switch));
m_assembly.appendLabel(end);
m_assembly.appendInstruction(evmasm::Instruction::POP);
}
void CodeTransform::operator()(FunctionDefinition const& _function)
{
yulAssert(m_scope, "");
yulAssert(m_scope->identifiers.count(_function.name), "");
Scope::Function& function = std::get(m_scope->identifiers.at(_function.name));
size_t height = 1;
yulAssert(m_info.scopes.at(&_function.body), "");
Scope* virtualFunctionScope = m_info.scopes.at(m_info.virtualBlocks.at(&_function).get()).get();
yulAssert(virtualFunctionScope, "");
for (auto const& v: _function.parameters | ranges::views::reverse)
{
auto& var = std::get(virtualFunctionScope->identifiers.at(v.name));
m_context->variableStackHeights[&var] = height++;
}
m_assembly.setSourceLocation(originLocationOf(_function));
int const stackHeightBefore = m_assembly.stackHeight();
m_assembly.appendLabel(functionEntryID(function));
m_assembly.setStackHeight(static_cast(height));
CodeTransform subTransform(
m_assembly,
m_info,
_function.body,
m_allowStackOpt,
m_dialect,
m_builtinContext,
m_identifierAccessCodeGen,
m_useNamedLabelsForFunctions,
m_context,
_function.returnVariables,
m_assembly.newLabelId()
);
subTransform.m_scope = virtualFunctionScope;
if (m_allowStackOpt)
// Immediately delete entirely unused parameters.
for (auto const& v: _function.parameters | ranges::views::reverse)
{
auto& var = std::get(virtualFunctionScope->identifiers.at(v.name));
if (util::valueOrDefault(m_context->variableReferences, &var, 0u) == 0)
subTransform.deleteVariable(var);
}
if (!m_allowStackOpt)
subTransform.setupReturnVariablesAndFunctionExit();
subTransform.m_assignedNamedLabels = std::move(m_assignedNamedLabels);
subTransform(_function.body);
m_assignedNamedLabels = std::move(subTransform.m_assignedNamedLabels);
m_assembly.setSourceLocation(originLocationOf(_function));
if (!subTransform.m_stackErrors.empty())
{
m_assembly.markAsInvalid();
for (StackTooDeepError& stackError: subTransform.m_stackErrors)
{
if (stackError.functionName.empty())
stackError.functionName = _function.name;
m_stackErrors.emplace_back(std::move(stackError));
}
}
if (!subTransform.returnVariablesAndFunctionExitAreSetup())
subTransform.setupReturnVariablesAndFunctionExit();
appendPopUntil(*subTransform.m_functionExitStackHeight);
yulAssert(
subTransform.m_functionExitStackHeight &&
*subTransform.m_functionExitStackHeight == m_assembly.stackHeight(),
""
);
m_assembly.appendLabel(*subTransform.m_functionExitLabel);
{
// The stack layout here is:
// ?
// But we would like it to be:
// ?
// So we have to append some SWAP and POP instructions.
// This vector holds the desired target positions of all stack slots and is
// modified parallel to the actual stack.
std::vector stackLayout(static_cast(m_assembly.stackHeight()), -1);
stackLayout[0] = static_cast(_function.returnVariables.size()); // Move return label to the top
for (auto&& [n, returnVariable]: ranges::views::enumerate(_function.returnVariables))
stackLayout.at(m_context->variableStackHeights.at(
&std::get(virtualFunctionScope->identifiers.at(returnVariable.name))
)) = static_cast(n);
if (stackLayout.size() > 17)
{
StackTooDeepError error(
_function.name,
YulString{},
static_cast(stackLayout.size()) - 17,
"The function " +
_function.name.str() +
" has " +
std::to_string(stackLayout.size() - 17) +
" parameters or return variables too many to fit the stack size."
);
stackError(std::move(error), m_assembly.stackHeight() - static_cast(_function.parameters.size()));
}
else
{
while (!stackLayout.empty() && stackLayout.back() != static_cast(stackLayout.size() - 1))
if (stackLayout.back() < 0)
{
m_assembly.appendInstruction(evmasm::Instruction::POP);
stackLayout.pop_back();
}
else
{
m_assembly.appendInstruction(evmasm::swapInstruction(static_cast(stackLayout.size()) - static_cast(stackLayout.back()) - 1u));
std::swap(stackLayout[static_cast(stackLayout.back())], stackLayout.back());
}
for (size_t i = 0; i < stackLayout.size(); ++i)
yulAssert(i == static_cast(stackLayout[i]), "Error reshuffling stack.");
}
}
m_assembly.appendJump(
stackHeightBefore - static_cast(_function.returnVariables.size()),
AbstractAssembly::JumpType::OutOfFunction
);
m_assembly.setStackHeight(stackHeightBefore);
}
void CodeTransform::operator()(ForLoop const& _forLoop)
{
Scope* originalScope = m_scope;
// We start with visiting the block, but not finalizing it.
m_scope = m_info.scopes.at(&_forLoop.pre).get();
int stackStartHeight = m_assembly.stackHeight();
visitStatements(_forLoop.pre.statements);
AbstractAssembly::LabelID loopStart = m_assembly.newLabelId();
AbstractAssembly::LabelID postPart = m_assembly.newLabelId();
AbstractAssembly::LabelID loopEnd = m_assembly.newLabelId();
m_assembly.setSourceLocation(originLocationOf(_forLoop));
m_assembly.appendLabel(loopStart);
visitExpression(*_forLoop.condition);
m_assembly.setSourceLocation(originLocationOf(_forLoop));
m_assembly.appendInstruction(evmasm::Instruction::ISZERO);
m_assembly.appendJumpToIf(loopEnd);
int const stackHeightBody = m_assembly.stackHeight();
m_context->forLoopStack.emplace(Context::ForLoopLabels{ {postPart, stackHeightBody}, {loopEnd, stackHeightBody} });
(*this)(_forLoop.body);
m_assembly.setSourceLocation(originLocationOf(_forLoop));
m_assembly.appendLabel(postPart);
(*this)(_forLoop.post);
m_assembly.setSourceLocation(originLocationOf(_forLoop));
m_assembly.appendJumpTo(loopStart);
m_assembly.appendLabel(loopEnd);
finalizeBlock(_forLoop.pre, stackStartHeight);
m_context->forLoopStack.pop();
m_scope = originalScope;
}
int CodeTransform::appendPopUntil(int _targetDepth)
{
int const stackDiffAfter = m_assembly.stackHeight() - _targetDepth;
for (int i = 0; i < stackDiffAfter; ++i)
m_assembly.appendInstruction(evmasm::Instruction::POP);
return stackDiffAfter;
}
void CodeTransform::operator()(Break const& _break)
{
yulAssert(!m_context->forLoopStack.empty(), "Invalid break-statement. Requires surrounding for-loop in code generation.");
m_assembly.setSourceLocation(originLocationOf(_break));
Context::JumpInfo const& jump = m_context->forLoopStack.top().done;
m_assembly.appendJumpTo(jump.label, appendPopUntil(jump.targetStackHeight));
}
void CodeTransform::operator()(Continue const& _continue)
{
yulAssert(!m_context->forLoopStack.empty(), "Invalid continue-statement. Requires surrounding for-loop in code generation.");
m_assembly.setSourceLocation(originLocationOf(_continue));
Context::JumpInfo const& jump = m_context->forLoopStack.top().post;
m_assembly.appendJumpTo(jump.label, appendPopUntil(jump.targetStackHeight));
}
void CodeTransform::operator()(Leave const& _leaveStatement)
{
yulAssert(m_functionExitLabel, "Invalid leave-statement. Requires surrounding function in code generation.");
yulAssert(m_functionExitStackHeight, "");
m_assembly.setSourceLocation(originLocationOf(_leaveStatement));
m_assembly.appendJumpTo(*m_functionExitLabel, appendPopUntil(*m_functionExitStackHeight));
}
void CodeTransform::operator()(Block const& _block)
{
Scope* originalScope = m_scope;
m_scope = m_info.scopes.at(&_block).get();
for (auto const& statement: _block.statements)
if (auto function = std::get_if(&statement))
createFunctionEntryID(*function);
int blockStartStackHeight = m_assembly.stackHeight();
visitStatements(_block.statements);
bool isOutermostFunctionBodyBlock = m_scope && m_scope->superScope && m_scope->superScope->functionScope;
bool performValidation = !m_allowStackOpt || !isOutermostFunctionBodyBlock;
finalizeBlock(_block, performValidation ? std::make_optional(blockStartStackHeight) : std::nullopt);
m_scope = originalScope;
}
void CodeTransform::createFunctionEntryID(FunctionDefinition const& _function)
{
Scope::Function& scopeFunction = std::get(m_scope->identifiers.at(_function.name));
yulAssert(!m_context->functionEntryIDs.count(&scopeFunction), "");
std::optional astID;
if (_function.debugData)
astID = _function.debugData->astID;
bool nameAlreadySeen = !m_assignedNamedLabels.insert(_function.name).second;
if (m_useNamedLabelsForFunctions == UseNamedLabels::YesAndForceUnique)
yulAssert(!nameAlreadySeen);
m_context->functionEntryIDs[&scopeFunction] =
(
m_useNamedLabelsForFunctions != UseNamedLabels::Never &&
!nameAlreadySeen
) ?
m_assembly.namedLabel(
_function.name.str(),
_function.parameters.size(),
_function.returnVariables.size(),
astID
) :
m_assembly.newLabelId();
}
AbstractAssembly::LabelID CodeTransform::functionEntryID(Scope::Function const& _scopeFunction) const
{
yulAssert(m_context->functionEntryIDs.count(&_scopeFunction), "");
return m_context->functionEntryIDs.at(&_scopeFunction);
}
void CodeTransform::visitExpression(Expression const& _expression)
{
int height = m_assembly.stackHeight();
std::visit(*this, _expression);
expectDeposit(1, height);
}
void CodeTransform::setupReturnVariablesAndFunctionExit()
{
yulAssert(isInsideFunction(), "");
yulAssert(!returnVariablesAndFunctionExitAreSetup(), "");
yulAssert(m_scope, "");
ScopeGuard scopeGuard([oldScope = m_scope, this] { m_scope = oldScope; });
if (!m_scope->functionScope)
{
yulAssert(m_scope->superScope && m_scope->superScope->functionScope, "");
m_scope = m_scope->superScope;
}
// We could reuse unused slots for return variables, but it turns out this is detrimental in practice.
m_unusedStackSlots.clear();
if (m_delayedReturnVariables.empty())
{
m_functionExitStackHeight = 1;
return;
}
// Allocate slots for return variables as if they were declared as variables in the virtual function scope.
for (TypedName const& var: m_delayedReturnVariables)
(*this)(VariableDeclaration{var.debugData, {var}, {}});
m_functionExitStackHeight = ranges::max(m_delayedReturnVariables | ranges::views::transform([&](TypedName const& _name) {
return variableStackHeight(_name.name);
})) + 1;
m_delayedReturnVariables.clear();
}
namespace
{
bool statementNeedsReturnVariableSetup(Statement const& _statement, std::vector const& _returnVariables)
{
if (std::holds_alternative(_statement))
return true;
if (
std::holds_alternative(_statement) ||
std::holds_alternative(_statement)
)
{
std::map references = VariableReferencesCounter::countReferences(_statement);
auto isReferenced = [&references](TypedName const& _returnVariable) {
return references.count(_returnVariable.name);
};
if (ranges::none_of(_returnVariables, isReferenced))
return false;
}
return true;
}
}
void CodeTransform::visitStatements(std::vector const& _statements)
{
std::optional jumpTarget = std::nullopt;
for (auto const& statement: _statements)
{
freeUnusedVariables();
if (
isInsideFunction() &&
!returnVariablesAndFunctionExitAreSetup() &&
statementNeedsReturnVariableSetup(statement, m_delayedReturnVariables)
)
setupReturnVariablesAndFunctionExit();
auto const* functionDefinition = std::get_if(&statement);
if (functionDefinition && !jumpTarget)
{
m_assembly.setSourceLocation(originLocationOf(*functionDefinition));
jumpTarget = m_assembly.newLabelId();
m_assembly.appendJumpTo(*jumpTarget, 0);
}
else if (!functionDefinition && jumpTarget)
{
m_assembly.appendLabel(*jumpTarget);
jumpTarget = std::nullopt;
}
std::visit(*this, statement);
}
// we may have a leftover jumpTarget
if (jumpTarget)
m_assembly.appendLabel(*jumpTarget);
freeUnusedVariables();
}
void CodeTransform::finalizeBlock(Block const& _block, std::optional blockStartStackHeight)
{
m_assembly.setSourceLocation(originLocationOf(_block));
freeUnusedVariables();
// pop variables
yulAssert(m_info.scopes.at(&_block).get() == m_scope, "");
for (auto const& id: m_scope->identifiers)
if (std::holds_alternative(id.second))
{
Scope::Variable const& var = std::get(id.second);
if (m_allowStackOpt)
{
yulAssert(!m_context->variableStackHeights.count(&var), "");
yulAssert(!m_context->variableReferences.count(&var), "");
}
else
m_assembly.appendInstruction(evmasm::Instruction::POP);
}
if (blockStartStackHeight)
{
int deposit = m_assembly.stackHeight() - *blockStartStackHeight;
yulAssert(deposit == 0, "Invalid stack height at end of block: " + std::to_string(deposit));
}
}
void CodeTransform::generateMultiAssignment(std::vector const& _variableNames)
{
yulAssert(m_scope, "");
for (auto const& variableName: _variableNames | ranges::views::reverse)
generateAssignment(variableName);
}
void CodeTransform::generateAssignment(Identifier const& _variableName)
{
yulAssert(m_scope, "");
if (auto var = m_scope->lookup(_variableName.name))
{
Scope::Variable const& _var = std::get(*var);
if (size_t heightDiff = variableHeightDiff(_var, _variableName.name, true))
m_assembly.appendInstruction(evmasm::swapInstruction(static_cast(heightDiff - 1)));
m_assembly.appendInstruction(evmasm::Instruction::POP);
decreaseReference(_variableName.name, _var);
}
else
{
yulAssert(
m_identifierAccessCodeGen,
"Identifier not found and no external access available."
);
m_identifierAccessCodeGen(_variableName, IdentifierContext::LValue, m_assembly);
}
}
size_t CodeTransform::variableHeightDiff(Scope::Variable const& _var, YulString _varName, bool _forSwap)
{
yulAssert(m_context->variableStackHeights.count(&_var), "");
size_t heightDiff = static_cast(m_assembly.stackHeight()) - m_context->variableStackHeights[&_var];
yulAssert(heightDiff > (_forSwap ? 1 : 0), "Negative stack difference for variable.");
size_t limit = _forSwap ? 17 : 16;
if (heightDiff > limit)
{
m_stackErrors.emplace_back(
_varName,
heightDiff - limit,
"Variable " +
_varName.str() +
" is " +
std::to_string(heightDiff - limit) +
" slot(s) too deep inside the stack. " +
stackTooDeepString
);
m_assembly.markAsInvalid();
return _forSwap ? 2 : 1;
}
return heightDiff;
}
int CodeTransform::variableStackHeight(YulString _name) const
{
Scope::Variable const* var = std::get_if(m_scope->lookup(_name));
yulAssert(var, "");
return static_cast(m_context->variableStackHeights.at(var));
}
void CodeTransform::expectDeposit(int _deposit, int _oldHeight) const
{
yulAssert(m_assembly.stackHeight() == _oldHeight + _deposit, "Invalid stack deposit.");
}